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Background: T2* relaxation times in the spinal cartilage endplate (CEP) measured using ultra-short echo 
time magnetic resonance imaging (UTE MRI) reflect aspects of biochemical composition that influence the 
CEP’s permeability to nutrients. Deficits in CEP composition measured using T2* biomarkers from UTE 
MRI are associated with more severe intervertebral disc degeneration in patients with chronic low back 
pain (cLBP). The goal of this study was to develop an objective, accurate, and efficient deep-learning-based 
method for calculating biomarkers of CEP health using UTE images.
Methods: Multi-echo UTE MRI of the lumbar spine was acquired from a prospectively enrolled cross-
sectional and consecutive cohort of 83 subjects spanning a wide range of ages and cLBP-related conditions. 
CEPs from the L4-S1 levels were manually segmented on 6,972 UTE images and used to train neural 
networks utilizing the u-net architecture. CEP segmentations and mean CEP T2* values derived from 
manually- and model-generated segmentations were compared using Dice scores, sensitivity, specificity, 
Bland-Altman, and receiver-operator characteristic (ROC) analysis. Signal-to-noise (SNR) and contrast-to-
noise (CNR) ratios were calculated and related to model performance. 
Results: Compared with manual CEP segmentations, model-generated segmentations achieved sensitives 
of 0.80–0.91, specificities of 0.99, Dice scores of 0.77–0.85, area under the receiver-operating characteristic 
curve values of 0.99, and precision-recall (PR) AUC values of 0.56–0.77, depending on spinal level and 
sagittal image position. Mean CEP T2* values and principal CEP angles derived from the model-predicted 
segmentations had low bias in an unseen test dataset (T2* bias =0.33±2.37 ms, angle bias =0.36±2.65°). To 
simulate a hypothetical clinical scenario, the predicted segmentations were used to stratify CEPs into high, 
medium, and low T2* groups. Group predictions had diagnostic sensitivities of 0.77–0.86 and specificities of 
0.86–0.95. Model performance was positively associated with image SNR and CNR. 
Conclusions: The trained deep learning models enable accurate, automated CEP segmentations and T2* 
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Introduction

The spinal cartilage endplate (CEP) is a thin layer of 
hyaline-like cartilage that separates the vertebral body 
and the intervertebral disc (1,2). In addition to resisting 
mechanical forces from intradiscal pressure (3), the CEP 
is a semi-permeable barrier that enables nutrient transport 
from the vertebral capillaries into the avascular disc (4-6). 
Low CEP permeability—which is influenced by aspects 
of CEP biochemical composition including the relative 
amounts of collagen and aggrecan (5,7)—is thought to be 
one etiologic factor contributing to poor disc nutrition 
and disc degeneration (7-12). Low CEP permeability 
could also contribute to heterogenous outcomes following 
treatment with intradiscal biologic therapies, an emerging 
class of therapies for chronic low back pain (cLBP) (13-17).  
By design, such therapies increase intradiscal nutrient 
demands, and hence therapeutic efficacy may depend on 
CEP permeability (7,13-16). The importance of the CEP in 
disc degeneration and regeneration motivates non-invasive 
assessment of CEP health for elucidating the etiology of 
disc degeneration and helping to identify patients who may 
be likely to benefit from biologic therapies.

Due to its rapid signal decay, the CEP is not visible with 
conventional T1- or T2-weighted magnetic resonance 
imaging (MRI) sequences. Instead, sequences with ultra-
short echo times (UTE) are needed to detect signal from 
the CEP and other short-T2 tissues (18-20). T2* relaxation 
times measured in the CEP using UTE MRI associate 
with biochemical traits such as the ratio of collagen-to-
glycosaminoglycan (GAG) and tissue hydration, among 
other factors which influence CEP permeability (7,11,18). 
This may explain why discs adjacent to CEPs with shorter 
T2* relaxation times—implying lower CEP permeability—

are more severely degenerated than discs adjacent to 
CEPs with longer T2* relaxation times (8). Those findings 
suggest that UTE-based T2* measurements could serve 
as biomarkers of CEP health and (possibly) the disc’s 
regenerative potential.

Prior studies that assessed CEP health with UTE 
imaging used manual or semi-automated methods to 
segment the CEP (8,20,21). Such methods are time 
consuming and subjective; for example, a single annotator 
may spend between 30 and 60 min manually segmenting 
the lower lumbar (L4-S1) CEPs for one patient, depending 
on anatomic variations in CEP presentation, image quantity 
and quality, and annotator experience. Segmentation 
accuracy can also vary between and within annotators, 
which limits the reliability of CEP biomarkers.

The primary goal  of  this  study was to develop 
an efficient, objective, and accurate technique for 
automatically segmenting the lower lumbar CEPs from 
UTE images to enable rapid and reliable computation 
of T2* biomarkers of CEP health. To do this,  we 
developed a convolutional neural network based on the 
u-net architecture (22), which has been successfully used 
to segment various tissues on MRI with high levels of 
accuracy (23-26). A secondary goal was to relate variations 
in model performance with aspects of UTE image quality 
[e.g., signal-to-noise (SNR) and contrast-to-noise (CNR) 
ratios] to facilitate model usage with UTE images acquired 
on different scanners. Finally, we sought to assess the 
diagnostic accuracy of the models for stratifying CEPs into 
groups based on T2* biomarkers, since CEP stratification 
could eventually help phenotype patients. The following 
article is presented in accordance with the STARD 
reporting checklist (available at https://qims.amegroups.
com/article/view/10.21037/qims-22-729/rc).

biomarker computations that are statistically similar to those from manual segmentations. These models 
address limitations with inefficiency and subjectivity associated with manual methods. Such techniques could 
be used to elucidate the role of CEP composition in disc degeneration etiology and guide emerging therapies 
for cLBP.
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Methods

Subjects

Between December 2018 and August 2021, 84 patients with 
cLBP and 20 asymptomatic subjects were prospectively 
recruited for this study (Figure 1). The study was conducted 
in accordance with the Declaration of Helsinki (as revised 
in 2013) and was approved by the institutional review 
board of the University of California, San Francisco. 
Written informed consent was taken from all individual 
participants. Patients were consecutively recruited from 
the non-operative spine service at our institution who met 
the criteria for cLBP established by the National Institutes 
of Health Pain Consortium Research Task Force (27): 
low-back pain for at least three months and at least half 
of the days in past 6 months. Asymptomatic subjects were 
recruited with print advertisements and with the help of 
a cohort identification tool that queries our institution’s 
electronic health records. Major exclusion criteria 
were a history of spine surgery, known disc herniation, 
a history of vertebral fracture, autoimmune disorder 
(including ankylosing spondylitis, rheumatoid arthritis, 
and psoriatic arthritis), or malignancy. Patient-reported 
measures for disability and pain were collected using the  
Oswestry Disability Index (ODI) (28) and Visual Analogue 
Scale (VAS) (29), respectively.

MRI

Subjects were imaged with 3.0-Tesla MRI (Discovery MR750 
scanner, GE Healthcare) using an 8-channel phased-array 
spine coil. Sagittal acquisitions of the lumbar spine were 
obtained with a 3D UTE cones sequence and a chemical 
shift encoding-based (CSE) water-fat sequence (30-33). The 
UTE sequence parameters were: echo times (TE) =0.248, 5.2, 
10.2, 15.2, 20.2, 25.2 ms; repetition time (TR) =32 ms; field-
of-view (FOV) =28 cm; flip angle =17°; in-plane resolution  
=0.5 mm; slice-thickness =3 mm (interpolated to 1 mm); 
receiver bandwidth = ±83.3 kHz. The CSE acquisition 
included a six-echo 3D spoiled gradient-recalled echo 
(SPGR) sequence with iterative decomposition of 
water and fat with echo asymmetry and least-squares 
estimation (IDEAL) reconstruction. The CSE sequence 
had the following parameters: TE =2, 3, 4, 5, 6, 7 ms;  
TR =6.2 ms; FOV =26 cm; flip angle =3°; in-plane 
resolution =1.0 mm; slice thickness =4 mm, receiver  
bandwidth =83.3 kHz. Together, the UTE and CSE MRI 
acquisitions required a total scan time of approximately  
16 minutes (UTE =13 minutes; CSE =3 minutes).

Image processing

To facilitate training of a neural network to segment 

Individuals enrolled between December 

2018 and August 2021 (n=104)

Individuals successfully completed 

MRI acquisitions (n=100) 

Individuals included in the study  

(n=83)

Excluded due to incomplete MRI 

acquisitions (n=4)

Excluded due to endplate damage 

(n=17) 

Figure 1 Flow chart of the individuals included in the study. MRI, magnetic resonance imaging.
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the lower lumbar (L4-L5 and L5-S1) CEPs, the UTE 
images were cropped to a 128×128 pixel (64×64 mm) 
region centered on the L5 vertebral body (Figure 2A,2B). 
Cropping was performed automatically by: (I) segmenting 
the lumbar vertebral bodies from the CSE images using 
a previously developed neural network (25); (II) using the 
resulting vertebral segmentations to compute the centroid 
of the L5 vertebral body; and (III) mapping the coordinates 
of the L5 centroid from CSE space to UTE space using 
a coordinate transformation based on spatial information 
embedded in the image metadata (see Appendix 1). This 
automated process enabled objective, repeatable, and 
efficient isolation of a region encompassing the L4-L5 and 
L5-S1 CEPs; however, this image pre-processing step can 
be done manually and is thus not required to use the models 
described below.

Using the cropped UTE images, two trained annotators 
manually segmented the superior and inferior CEPs at 
the L4-L5 and L5-S1 levels using custom segmentation 
software (IDL 8.8;  Figure 2C ) .  To facil itate CEP 
segmentation, this software up-samples the cropped images 
using bi-linear interpolation and normalizes the voxel signal 
intensities to the range 0–255 to magnify the anatomical 
features and enhance dynamic range and CEP contrast. 
The hyperintense CEP signal from the first UTE echo (TE 
=0.248 ms) guided manual CEP segmentation. Resulting 
CEP segmentations were typically 1–2 voxels thick  
(0.5–1.0 mm), which is  consistent with histology 
measurements of CEP thickness (1,21).

CEP T2* relaxation-time biomarker 

After CEP segmentation, T2* relaxation times were 
computed for all  CEP voxels by fitting the signal 
decay of each voxel to the exponential decay function:  

( ) */ 2
0

iTE T
iSI TE S e=  where SIi denotes the signal intensity of 

voxel i  (IDL 8.8).
The centra l  CEP region i s  thought  to  be  the 

predominant pathway for nutrient transport into the nucleus 
pulposus (4,10), thus the central CEP region was selected 
as the basis for CEP T2* biomarker computation (8,20). 
For each CEP, we identified the central transverse region 
adjacent to the nucleus pulposus by first determining the 
principal CEP orientation angle in the sagittal plane using 
the eigenvalues of the rotational inertia tensor computed 
from the segmented voxel data. After computing principal 
CEP angle, the 3D voxel data were rotated into a standard 
coordinate system and a kidney-bean-shaped template was 
applied defined by Mizrahi’s equation (MATLAB R2020b), 
as described previously (8,20). The central CEP region was 
defined so that it had a radius equal to 50% of the CEP’s 
outer margin. The CEP biomarker was defined as the mean 
T2* value in this central region (Figure 2D).

The inter- and intra-rater reliability of the segmentation 
and templating process for calculating mean CEP T2* 
values were assessed using the intraclass correlation 
coefficient (ICC). To do this, the annotators re-segmented 
a subset of 20 CEPs from five patients a minimum of  
four weeks after initial segmentation. Inter- and intra-rater 

A B C D
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T2* (ms)

0 50

T2* =20.1±8.0 ms

Figure 2 UTE image showing lower lumbar CEPs, CEP segmentations, and a transverse T2* map. (A) Mid-sagittal UTE image showing 
the position of the cropped region, which is centered on the L5 vertebral body. (B) Cropped and up-sampled image with (C) annotated CEP 
segmentations (red). (D) Transverse T2* map of the inferior L4-L5 CEP. The central CEP region (shown) was used to calculate the mean ± 
SD T2* relaxation time. UTE, ultra-short echo time; CEP, cartilage endplate; SD, standard deviation. 
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ICC values were 0.83 [95% confidence interval (CI): 0.62–
0.93] and 0.93 (0.81–0.97), respectively.

Deep learning models

Four independent convolutional neural networks were 
developed to predict CEP segmentation masks at the 
superior and inferior L4-L5 and L5-S1 levels (one neural 
network for each sublevel, e.g., L4-L5 superior). Four 
independent neural networks were developed instead 
of a single multi-class neural network because endplate 
damage at a given lumbar level—which is a common spinal 
pathology (34-36) and exclusion for biologic therapy—
makes CEP segmentation difficult; using independent, 
level-specific neural networks facilitates robust model 
performance as the annotator prospectively chooses the 
subset of intact CEPs to segment in a given subject.

Images were split into training (80% of subjects) and 
testing groups (20% of subjects) for each level-specific 
neural network (37). Dataset division was done on a per-
subject basis (as opposed to a per-image basis) because the 
mean CEP T2* value at each level is computed on a per-
subject basis. The two groups were fully independent (that 
is, no images used in model training were from the same 
patient as those used in model testing). Separation into 
training and testing groups was done pseudo-randomly: 
the subjects were iteratively re-randomized until the 
distributions of mean CEP T2* values at each level for the 

training and testing group differed by <10%. This process 
ensured that both training and testing groups contained the 
clinically-observed range of CEP T2* values.

The level-specific neural networks were built using 
the unmodified u-net architecture (22) implemented in 
Python (3.7.2) and Keras (2.4.3) using Tensorflow (2.3.0). 
A binary cross-entropy loss function was used for model 
training with Adam optimization, learning rate of 10−4, 
and batch size of four. Random image augmentation was 
implemented to enhance the diversity of the training dataset 
and included rotation (±10°); shift, zoom, and shear (±20%); 
and histogram equalization (these model hyperparameters 
were fixed) (38). Models were trained for a minimum of 
20 epochs and loss-function convergence was monitored 
and verified by inspection of the epoch versus loss decay 
curve. The inputs to the models were cropped UTE images 
(128×128 pixel area) and the outputs were probability 
distributions predicting the likelihood (range: 0–1) that each 
pixel was part of the CEP class. Based on these probability 
distributions, level-specific probability cutoffs for binarizing 
the CEP segmentations were chosen to maximize the 3D 
Dice scores in the test dataset (n=16 people). The 3D Dice 
scores were also plotted as a function of cutoff value in 
order to assess the sensitivity of model performance to the 
choice of cutoff value.

Model development and training was performed using 
a four-core 2.7 GHz Intel i7 CPU with 16 GB of memory. 
The trained models and instructions for use are available 
online (39). 

SNR and CNR ratios

To explore imaging factors influencing neural network 
performance, we quantified CEP SNR and CNR. SNR 
was quantified for each image of the first UTE echo (TE 
=0.248 ms) as the mean CEP signal intensity normalized 
by the standard deviation (SD) of the image noise. Noise 
was quantified using the signal from nine circular regions-
of-interest (ROI; each with an area of 1.2 cm2) placed 
randomly in an imaging region outside of the patient. CNR 
was quantified relative to the adjacent vertebral body and 
disc by offsetting the CEP segmentations by two pixels into 
the adjacent tissues (Figure 3). Contrast was calculated as the 
mean pixel-wise difference in signal intensity between the 
offset CEP segmentation and the actual CEP segmentation. 
Reported values for SNR and CNR reflect mean ± SD 
values computed using three consecutive mid-sagittal slices 
in each subject in the test dataset.

Offset into disc

Offset into vertebra

CEP segmentation

Figure 3 CEP segmentations (red) were offset into the adjacent 
disc (orange) and vertebral body (blue) to quantify contrast 
between the CEP and adjacent tissues. CEP, cartilage endplate.
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Second scanner analysis

The training and test datasets used to develop our 
models were acquired using a single MRI scanner. To 
assess the generalizability of the models to segment 
CEPs using images collected from a different scanner, 
we acquired additional UTE and CSE MRI data at 
3.0-Tesla from a separate cohort of five patients with cLBP  
(age =57.8±14.0 years) imaged at a second site (Appendix 2).  
Model performance is reported for this group, though 
images acquired on the second scanner were not used 
as the primary test dataset since the cohort exhibited a 
much narrower range of CEP T2* values and comprised 
a much smaller sample size (the test dataset imaged using 
the primary scanner thus better reflects the full range of 
possible clinical conditions). Finally, we imaged phantoms 
comprised of varying agarose concentrations on the 
primary scanner (at two timepoints) and on the secondary 
scanner (single timepoint, see Appendix 2). The goal of this 
phantom analysis was to confirm that the UTE sequences 
that were implemented on the different scanners yielded 
similar T2* relaxation times for biochemically equivalent 
specimens.

Outcomes and statistical methods

Model performance was quantified in the unseen test dataset 
and in the separate cohort of patients imaged using a second 
scanner using the sensitivity, specificity, area under the 
receiver-operating characteristic curve (ROC-AUC), area 
under the precision-recall curve (PR-AUC), and Dice score 
(computed in 3D and for each sagittal slice) of the neural-
network-generated segmentations relative to the manually-
generated segmentations. Bland-Altman plots were used 
to compare CEP T2* values and CEP orientation angles 
from manually- versus model-generated segmentations (40). 

The Pearson correlation coefficient was used to test for 
associations between neural network performance metrics 
(sensitivity, specificity, and Dice score) and SNR and CNR. 

To assess the diagnostic performance of the models, we 
stratified the CEPs into three equal-sized groups based 
on the tertiles of mean CEP T2* values observed in the 
manually segmented dataset: high CEP T2* (mean T2* > 
66th percentile), medium (between 66th and 33rd percentile), 
and low (≤33rd percentile). The diagnostic performance 
of the models was tested by assessing the sensitivity and 
specificity of group stratifications made using the model-
generated segmentations relative to manual segmentations. 
Statistical analyses were conducted in JMP Pro (16.0) and 
RStudio (1.2). Two-sided P<0.05 was considered statistically 
significant. Data are reported as mean ± SD or mean (95% CI). 

Results

Complete MRI data were successfully acquired from all 
asymptomatic participants and 80/84 (95%) cLBP patients. 
Technical difficulties during MRI acquisition precluded 
including data from remaining 4/84 cLBP patients. 
Following exclusion based on CEP damage (17 subjects), 
332 endplates from 83 subjects were included in the final 
analysis [n=20 asymptomatic subjects, mean ± SD age 
=40.3±11.0 years, 11 (55%) female and 9 (45%) male; n=63 
with cLBP, age =40.2±12.0 years, 29 (46%) female and 34 
(54%) male; Table 1]. Using this dataset, 67 subjects (5,628 
images) were assigned to the training group and 16 subjects 
(1,344 images) to the testing group for each of the four 
spinal levels.

Segmentations produced by the trained neural networks 
appeared grossly similar to those generated manually 
(Figure 4). The sensitivity of the predicted segmentations 
(averaged for all subjects in the unseen test dataset) ranged 
from 0.798–0.894 and the 3D Dice score from 0.771–0.824, 

Table 1 Subject demographic and clinical data from the 83 participants used in the study. 

Characteristic Asymptomatic (n=20) cLBP (n=63) P value

Age (years) 40.3±11.0 (23–67) 40.2±12.0 (19–65) 0.95

Female, male 11 (55%), 9 (45%) 29 (46%), 34 (54%) 0.48

ODI 0.8±2.3 (0–10) 26.3±14.3 (2–74) <0.001

VAS 1.5±1.1 (1–5) 6.6±2.5 (1–11) <0.001

Data are presented as mean ± SD (min–max) or number (percent of total). Differences between groups were computed using Student’s 
t-tests and Chi-squared tests for continuous and categorical variables, respectively. cLBP, chronic low back pain; ODI, Oswestry Disability 
Index; VAS, Visual Analogue Scale; SD, standard deviation. 

https://cdn.amegroups.cn/static/public/QIMS-22-729-Supplementary.pdf
https://cdn.amegroups.cn/static/public/QIMS-22-729-Supplementary.pdf
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Figure 4 The trained neural networks produced CEP segmentations and resulting CEP T2* maps that were similar to those generated 
using manual methods. (A) Representative manually- and (B) model-generated CEP segmentations (red) in a subject from the unseen test 
dataset. (C) Segmentation overlays showing true positives (+), false positives, and false negatives (−). (D) The transverse T2* maps generated 
from these segmentations yielded similar estimates of T2* values (mean ± SD) in the central CEP. CEP, cartilage endplate; SD, standard 
deviation. 

depending on spinal level (Table 2 upper). The specificity 
and ROC-AUC values were 0.99, primarily reflecting a 
relatively high true positive rate coupled with an imbalance 
on the order of 1:103 in the number of false-positives-to-
true-negatives (thus yielding a false positive rate near zero). 
PR-AUC values, which are more informative in unbalanced 
datasets (41), ranged from 0.558–0.714. In addition to 
performance variations between different spinal levels, 
neural network performance also depended on sagittal 
image position. Segmentation performance (and hence the 
accuracy of intra-CEP spatial variation in T2* values) was 
highest mid-sagittally, particularly in the region comprising 

the mid-sagittal 50% where the central CEP is defined, 
and lowest laterally (Table 2 lower, Figure 5). The pixel 
probability cutoff values (range: 0–1) for binarizing the 
CEP segmentations to maximize the Dice scores were 0.24, 
0.32, 0.24, and 0.30 for L4-L5 superior, L4-L5 inferior, 
L5-S1 superior, L5-S1 inferior, respectively (Figure 6). 
Dice scores were relatively insensitive to cutoff values over 
a wide range. For a given individual, the models required  
14.1±0.2 s to segment all lumber CEPs.

CEP SNR values were on average 10.6±3.6 (range:  
4.9–20.6). CNR values between the CEP and adjacent 
vertebra (4.9±2.0, range: 1.5–10.0) were greater than those 
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between the CEP and adjacent disc (2.1±0.9, range: 0.9–4.9). 
The ability of the neural networks to accurately predict 

CEP segmentations depended on CEP SNR and CNR 
in the UTE images (Table 3). Among the parameters 
tested, model performance was most strongly correlated 
with CNR between the CEP and the adjacent vertebra 
(Pearson’s r=0.20–0.22, P<0.006 each for sensitivity, 
specificity, and Dice score). CNR between the CEP and the 
adjacent disc, and overall SNR, were associated with model 
sensitivity (r=0.17, P=0.02 each) but did not reach statistical 
significance for the Dice score (P=0.06 and 0.08 for disc 
CNR and SNR, respectively). 

Bland-Altman plots showed that model-predicted 
segmentations yielded unbiased estimates of mean T2* 
values in the central CEP (Figure 7A) and of principal 
CEP angle (Figure 7B). Mean (95% CI) bias in the T2* 
estimates was 0.33 ms (−0.26, 0.93); mean bias in the angle 
estimates was 0.36° (−0.30, 1.03). There were high levels 
of overall agreement; specifically, the majority (60/64, 
94%) of predicted CEP T2* values and angles were within  
±4.0 ms and ±5° of the respective values computed using 
manual segmentations.

The distribution of T2* values in the test dataset 

were similar between manually-generated segmentations 
(mean T2* =18.9±4.7 ms, range: 6.8–32.0 ms) and model-
generated segmentations (mean T2* =18.6±4.4 ms, range:  
10.6–29.4 ms). The distribution computed from manual 
segmentations was used to stratify CEPs into tertiles 
denoting low (≤16.5 ms), medium (>16.5 and ≤21.0 ms), 
and high (>21.0 ms) T2* groups. Model-predicted 
stratification of individual CEPs into low, medium, and 
high T2* groups (Table 4) had sensitivities of 0.86, 0.86, and 
0.77, respectively, and specificities of 0.93, 0.86, and 0.95, 
respectively.

The neural networks demonstrated similar levels of 
performance when applied to images collected using a 
second scanner (Appendix 2). In the five patients imaged, 
CNR and SNR values from the second scanner were 
approximately 1.5- and 2-fold higher, respectively, than in 
the primary scanner. Model-predicted segmentations yielded 
unbiased estimates of mean T2* values and orientation 
angles when compared to the manual segmentations: mean 
(95% CI) bias in T2* estimates was 0.03 ms (−0.97, 1.02) 
and mean bias in the angle estimates was 1.41° (−0.10, 
2.91). As with the test dataset imaged with the primary 
scanner, the model application to the dataset from the 

Table 2 Neural network performance for the entire MRI volume (upper) and the mid-sagittal 50% region demarcating the central CEP (lower)

Level Sensitivity Specificity ROC-AUC PR-AUC 3D Dice score

Full volume

L4-L5

Superior 0.828 (0.781, 0.876) 0.999 (0.999, 1.000) 0.999 (0.998, 1.000) 0.558 (0.465, 0.650) 0.772 (0.734, 0.811)

Inferior 0.894 (0.878, 0.911) 0.999 (0.999, 0.999) 1.000 (1.000, 1.000) 0.682 (0.635, 0.729) 0.824 (0.805, 0.843)

L5-S1

Superior 0.798 (0.748, 0.847) 1.000 (0.999, 1.000) 0.999 (0.999, 1.000) 0.560 (0.469, 0.560) 0.771 (0.735, 0.807)

Inferior 0.857 (0.800, 0.915) 1.000 (0.999, 1.000) 0.999 (0.999, 1.000) 0.714 (0.662, 0.765) 0.823 (0.789, 0.856)

Mid-sagittal region

L4-L5

Superior 0.854 (0.806, 0.902) 0.999 (0.999, 1.000) 0.999 (0.998, 1.000) 0.607 (0.510, 0.704) 0.796 (0.760, 0.833)

Inferior 0.908 (0.891, 0.925) 0.999 (0.999, 0.999) 0.999 (0.999, 0.999) 0.744 (0.712, 0.776) 0.852 (0.841, 0.864)

L5-S1

Superior 0.840 (0.788, 0.891) 0.999 (0.999, 1.000) 0.999 (0.998, 0.999) 0.609 (0.511, 0.707) 0.800 (0.760, 0.840)

Inferior 0.886 (0.830, 0.943) 0.999 (0.999, 0.999) 0.999 (0.999, 1.000) 0.771 (0.723, 0.819) 0.848 (0.815, 0.880)

The data are shown as mean (95% CI) and reflect performance in the unseen test dataset (n=16 subjects per level). MRI, magnetic 
resonance imaging; CEP, cartilage endplate; ROC, receiver operating characteristic; AUC, area under the curve; PR, precision-recall; CI, 
confidence interval. 
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second scanner showed high levels of overall agreement: 
94% (16/17) of predicted CEP T2* values were within  
±4.0 ms, and 88% (15/17) of predicted angles were within 
±5° of the respective values computed from manually-
generated segmentations.

Results from the agarose phantoms showed that T2* 
values were similar between phantoms imaged at both 

sites, and at the two timepoints imaged at the primary site, 
demonstrating that the UTE sequences implemented on 
the different scanners yielded similar T2* relaxation time 
values for biochemically equivalent specimens (Appendix 2). 

Discussion

The neural networks developed here produced accurate 
segmentations of the lower lumbar CEPs on UTE images, 
which enabled efficient and reliable computation of T2*-
based biomarkers of CEP health. The imaging data used 
to develop these models were acquired from subjects 
spanning a wide range of ages, spinal morphologies, and 
clinical conditions, including both asymptomatic subjects 
and patients with cLBP. We found that segmentation 
performance measured using the Dice similarity score 
varied between 0.77–0.85, depending on spinal level, sagittal 
image position, and aspects of image quality including the 
contrast between the CEP and adjacent vertebra. Voxel-wise 
errors in model-generated segmentations did not propagate 
to biomarker computation: in the unseen dataset used for 
model testing and the smaller independent dataset imaged 
using a second scanner, 94% (60/64 test dataset, 16/17 
second scanner dataset) of predicted mean CEP T2* values 
were within ±4.0 ms of manual values with an overall mean 
bias of <0.5 ms. The magnitudes of those errors are small 
relative to the inter- and intra-subject heterogeneity in CEP 

Figure 5 Neural network performance as a function of sagittal 
image position. Mean (A) Dice score and (B) sensitivity were 
highest mid-sagittally and lowest laterally at all levels (error bars 
indicate SD). The vertical grey lines annotate the mid-sagittal 50% 
region, corresponding to the region used to compute the CEP T2* 
biomarkers and the performance results reported in Table 2 lower. 
SD, standard deviation; CEP, cartilage endplate. 

Figure 6 Level-specific probability cutoff values for binarizing 
CEP segmentations from predicted probability distributions 
(likelihood that each pixel was part of the CEP class) were chosen 
to maximize the 3D Dice score. CEP, cartilage endplate.
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Table 3 Pearson correlation coefficients between SNR, CNR, and neural network performance metrics

Metric SNR CNR: CEP-disc CNR: CEP-vertebra

Sensitivity 0.166* 0.165** 0.220**

Specificity 0.117* 0.231** 0.197**

2D Dice score 0.125* 0.134** 0.210**

* and ** indicate P<0.05 and P<0.01, respectively. SNR, signal-to-noise ratio; CNR, contrast-to-noise ratio; CEP, cartilage endplate. 

Figure 7 Bland-Altman plots of model performance. Compared with manually-generated segmentations, neural-network-generated 
segmentations provided unbiased estimates of (A) mean CEP T2* values and (B) principal CEP orientation in the unseen test dataset. The 
majority (60/64, 94%) of model-generated CEP T2* values and angles were within ±4.0 ms and ±5°, respectively, of manually-generated 
values. CEP, cartilage endplate; SD, standard deviation. 

T2* values (8,20). Thus, we conclude that these trained 
deep-learning-based models enable accurate, automated 
CEP segmentations and T2* biomarker computations 
that are statistically similar to those generated manually, 
and in doing so, address limitations with inefficiency and 
subjectivity associated with manual methods.

We showed that stratifying CEPs into T2*-based sub-

groups using automated segmentations was possible with 
a relatively high combination of sensitivity (0.77–0.86) 
and specificity (0.86–0.95). In general, stratifying CEPs in 
this manner could help phenotype patients by identifying 
patients and levels in which CEP composition is most or 
least likely to influence disc degeneration. However, the 
specific T2* thresholds for stratification were chosen based 
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Table 4 Confusion matrix showing model-predicted stratification of CEPs into low, medium, and high T2* groups 

Manual
Predicted

Low Mid High All

Low (≤16.5 ms) 18 2 1 21

Medium (>16.5 and ≤21.0 ms) 2 18 1 21

High (>21.0 ms) 1 4 17 22

All 21 24 19 64

n=64 CEPs from 16 subjects. CEP, cartilage endplate. 
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on the observed tertiles in our sample distribution, since the 
actual T2* thresholds that implicate the CEP as a primary 
factor in disc degeneration remain unknown. Future studies 
in larger cohorts are required to establish the full clinical 
range of CEP T2* values and to clarify whether there are 
distinct T2* phenotypes that influence disc degeneration 
and prognosticate treatment response following intradiscal 
biologic therapy.

Deep-learning-based techniques including convolutional 
neural networks based on the u-net architecture have 
been successfully used to address the limitations of manual 
segmentation for a variety of tissues and imaging modalities 
(22-26). One factor challenging the clinical utility of such 
models is that the mechanistic factors explaining model 
performance are difficult to discern and quantify (42); a 
lack of understanding of how algorithms make decisions—
the so-called “black box” concept (43)—obscures algorithm 
generalizability. In part for this reason, the World Health 
Organization (44) along with international radiology 
societies (45) have recently advocated that artificial 
intelligence tools be explainable to some extent. Here, we 
found that model performance depended on aspects of 
UTE image quality including SNR and CNR (particularly 
the contrast between the CEP and the adjacent vertebral 
body), and we reported SNR and CNR benchmarks to help 
facilitate comparable levels of model performance across 
different imaging systems. Supporting the external validity 
and generalizability of our models, we found similar levels 
of model performance in a separate cohort of cLBP patients 
imaged with UTE MRI in a second scanner with high SNR 
and CNR values.

We recently showed (8) that CEPs with lower mean T2* 
values were associated with more severe disc degeneration 
in patients with cLBP, which supports the clinical relevance 
of assessing CEP composition using UTE-T2* biomarkers. 
The clinical implications of non-invasive assessment of 
CEP health are also underscored by the need to understand 
heterogenous treatment outcomes observed in cLBP 
patients treated with intradiscal biologic therapies. For 
example, clinical trials of intradiscal biologic therapies 
have not produced consistent results (13), with several 
randomized controlled studies showing no difference from 
placebo (17). The inconsistent therapeutic efficacy of such 
therapies may partly relate to deficits in disc nutrient supply, 
since factors such as low CEP permeability could limit the 
number of cells that can survive in the avascular disc (13-15). 
Thus, the techniques described here for rapid and reliable 
computation of CEP compositional biomarkers from UTE 

MRI have clinical implications for elucidating the role of 
CEP composition in disc degeneration and regeneration.

This study has several limitations. First, the datasets 
used to train and test the models met a particular set of 
clinical conditions, and model performance in patients 
and levels not meeting those criteria is unknown. Factors 
that could affect the signal in the vertebral body relative 
to the CEP, including chemical shift and partial volume 
effects (which can vary depending on imaging parameters), 
and signal intensity changes caused by pathologies 
such as vertebral endplate bone marrow lesions [Modic  
changes (46)] or hemangiomas, could impact model 
performance. Nonetheless, the datasets used here include 
a variety of clinical conditions including asymptomatic 
subjects and patients with cLBP spanning a wide ranges of 
disability scores, ages, and approximately equal numbers 
of females and males. Further, the training and testing 
datasets each comprised the clinically-observed range of 
CEP T2* values: differentiating groups in this way was 
done to limit dataset bias (47). Related, dataset division 
was done according to a two-group design [one training 
group (80% of patients) and one testing group (20% of 
patients)] as opposed to a three-group design (training, 
validation, and testing). This design was chosen because 
a previous study in different subjects had determined the 
model hyperparameters (38), which is one purpose of the 
validation dataset meant to mitigate overfitting. Thus, 
the two-group design enabled a larger unseen dataset in 
which to test model performance. Importantly, images 
used for model training were from different subjects than 
those used for model testing (47). We also tested the 
model in an additional independent cohort of patients 
imaged on a second scanner (Appendix 2) to assess model 
generalizability; model performance is reported for this 
group, but it was not used as the primary test dataset since 
the cohort exhibited a much narrower range of CEP T2* 
values and comprised a much smaller sample size (the 
test dataset imaged using the primary scanner thus better 
reflects the full range of possible clinical conditions). 
Nevertheless, users should be aware of the limited clinical 
criteria used to develop and test these models.

A second limitation relates to the time-saving benefits 
of the software pipeline. CEP segmentation itself is only 
one step in CEP T2* biomarker computation. UTE image 
pre-processing, T2* relaxation-time mapping, and CEP 
transformation and templating are also necessary steps, 
and those steps are not facilitated by the neural networks. 
However, those additional steps are rapid (5–10 minutes) 
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relative to the time required for manual segmentation and 
could be further automated.

A final limitation relates to the clinical applicability 
of CEP T2* measurements. CEP signal intensity and 
T2* values are sensitive to imaging parameters such as 
bandwidth influencing chemical shift and partial volume 
effects (48), in addition to orientation in the scanner due 
to magic angle effects (18,49). Thus, clinical studies using 
CEP T2* values as biomarkers should report the imaging 
parameters used, and also account for the effects of CEP 
orientation on T2* values—for example, by limiting CEP 
T2* analysis to spinal levels oriented near the magic angle 
so that inter-CEP variations in T2* values primarily reflect 
differences in biochemical composition and not differences 
in CEP orientation (8,18). For this reason, we reported 
principal CEP orientation and prediction accuracy (±5° 
of manually-generated values 94% of the time). Future 
studies are needed to clarify both the biochemical factors 
influencing T2* relaxation times in the CEP, and the 
detailed effects of imaging orientation on CEP T2* values.

Conclusions

In summary, this study demonstrates the feasibility and 
accuracy of automatically segmenting human lumbosacral 
CEPs on UTE images. This enables efficient, objective, 
and reliable computation of T2*-based biomarkers of 
CEP composition that are statistically similar to the 
T2* biomarkers derived from manual segmentations. 
These automated techniques help address limitations 
in inefficiency and subjectivity associated with manual 
methods, and may therefore aid in the clinical adoption of 
UTE MRI for elucidating the role of CEP composition in 
disc degeneration etiology and guiding emerging intradiscal 
biologic therapies for cLBP.
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Supplementary

Appendix 1

Detailed method for automated image cropping

The UTE images were cropped to a 128×128 pixel (64×64 mm) region centered on the L5 vertebral body prior to CEP 
segmentation. This cropping process was automated to facilitate objective, repeatable, and rapid isolation of a region 
encompassing the L4-L5 and L5-S1 CEPs. To do this, a previously developed neural network (25) was used to first segment 
the lumbar vertebral bodies from the CSE images (Figure S1). The centroid of the L5 vertebra was computed based on these 
vertebral segmentations and then mapped from CSE space to UTE space (IDL 8.8) utilizing information embedded in the 
DICOM metadata:

where i, j index the row, column pixel location, respectively; ,  represent the row, column pixel spacing (mm);  
and  represent the coordinate-system directional cosines, defined in the DICOM standard as Image Orientation (Patient) 
(0020, 0037); and  represents the reference coordinate system origin, defined in the DICOM standard as Image Position 
(Patient) (0020, 0032).

Appendix 2

Second scanner analysis

To assess the generalizability of the models to images collected at other sites, we acquired UTE and CSE MRI data at 
3.0-Tesla from five patients with cLBP [mean ± SD age =57.8±14.0 years, numeric rating scale (NRS) =5.6±1.9, PEG score 
=6.1±3.0, one female and four males] imaged at a separate academic research hospital. Subjects were imaged with 3.0-Tesla 
MRI (Discovery MR750 scanner, GE Healthcare) using an 8-channel phased-array spine coil to collect sagittal acquisitions of 
the lumbar spine from a 3D UTE cones sequence and a CSE water-fat sequence. The UTE echo times were 0.032, 5.0, 10.2, 
15.2, 20.2, and 25.2 ms. All other imaging parameters were identical to those described previously.

Additionally, we imaged five phantoms comprised of varying agarose concentrations (2%, 4%, 6%, 8%, 10% agarose 
diluted in de-ionized water by weight; type VII agarose, Sigma #A0701) at two timepoints (five months apart) using 
the primary scanner and at a single timepoint using the secondary scanner. The goal of this phantom analysis was to 
assess whether similar UTE sequences applied across different scanners can yield similar T2* relaxation-time values for 
biochemically equivalent specimens. Mean T2* values in each of the five phantoms from each scan were computed using a 
16×16×24 mm cuboidal ROI placed in the phantom’s center. We used linear regression to assess whether the relationship 
between agarose concentration and 1/T2* value differed within or between scanners (intra- and inter-scanner variability, 
respectively).

Results

In the five patients imaged, three levels from two patients were excluded due to endplate damage precluding CEP delineation 
(Figure S2). CEP CNR and SNR values in the second scanner were approximately 1.5- and 2-fold higher, respectively, 
than those in the primary scanner. SNR values were on average 21.2±3.4 (range, 15.3–27.6). CNR values between the CEP 
and adjacent vertebra (7.4±1.8, 4.0–10.1) were greater than those between the CEP and adjacent disc (3.3±1.0, 1.9–5.9). 
Compared to images collected using the primary scanner, the neural networks demonstrated similar levels of segmentation 
performance when applied to images collected using the second scanner: the sensitivity ranged from 0.733–0.853, specificity 
from 0.996–0.998, Dice coefficient from 0.754–0.828, and PR-AUC from 0.503–0.630. There was a relatively narrow range 
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of CEP T2* values (9.3–17.5 ms) in these patients. Model-predicted segmentations yielded unbiased estimates of mean T2* 
values and of principal CEP angle (Figure S3). Mean (95% CI) bias in T2* estimates was 0.03 ms (-0.97–1.02); mean bias in 
the angle estimates was 1.41° (−0.10, 2.91). There were high levels of overall agreement: 94% (16/17) of predicted CEP T2* 
values were within ±4.0 ms, and 88% (15/17) of predicted angles were within ±5° of the respective values computed manually.

For all agarose concentrations, T2* values were similar between phantoms imaged at both sites, and at the two timepoints 
imaged at the primary site (Figure S4). Mean phantom 1/T2* value was significantly associated with agarose concentration (R2 
=0.98, P<0.0001), and the relationship between agarose concentration and 1/T2* value was not different between or within 
scanners (P=0.75 for an interaction between agarose concentration and acquisition group). These data indicate that similar 
UTE sequences applied across scanners can yield similar T2* relaxation time values for biochemically equivalent specimens.

Figure S1 Lumbar vertebral segmentations (red) for the CSE images were used to identify the L5 vertebral body centroid in CSE and UTE 
space to facilitate automated image cropping. CSE, chemical-shift encoding based; UTE, ultra-short echo time; MRI, magnetic resonance 
imaging. 

Figure S2 (A) Mid-sagittal UTE image collected using a second scanner showing endplate damage at L4-L5. This level was excluded 
from analysis. (B) Manually- and (C) model-generated CEP segmentations (red) at L5-S1. (D) Transverse T2* maps generated from these 
segmentations show a similar distribution and mean ± SD T2* values in the central CEP. UTE, ultra-short echo time; CEP, cartilage 
endplate; SD, standard deviation. 
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Figure S3 Bland-Altman plots for (A) CEP T2* values and (B) principal CEP orientation in the five patients imaged with a second scanner. 
CEP, cartilage endplate; SD, standard deviation. 

Figure S4 (A) T2* relaxation times were similar in agarose phantoms imaged with UTE at two sites and also (B) in phantoms imaged at two 
timepoints at the primary site. The relationship between phantom 1/T2* value and agarose concentration (%, w/w) was similar across all 
acquisitions. UTE, ultra-short echo time. 


