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Background: Recent reports have shown the potential for deep learning (DL) models to automatically 
segment of Couinaud liver segments and future liver remnant (FLR) for liver resections. However, these 
studies have mainly focused on the development of the models. Existing reports lack adequate validation 
of these models in diverse liver conditions and thorough evaluation using clinical cases. This study thus 
aimed to develop and perform a spatial external validation of a DL model for the automated segmentation of 
Couinaud liver segments and FLR using computed tomography (CT) in various liver conditions and to apply 
the model prior to major hepatectomy.
Methods: This retrospective study developed a 3-dimensional (3D) U-Net model for the automated 
segmentation of Couinaud liver segments and FLR on contrast-enhanced portovenous phase (PVP) CT 
scans. Images were obtained from 170 patients from January 2018 to March 2019. First, radiologists 
annotated the Couinaud segmentations. Then, a 3D U-Net model was trained in Peking University First 
Hospital (n=170) and tested in Peking University Shenzhen Hospital (n=178) in cases with various liver 
conditions (n=146) and in candidates for major hepatectomy (n=32). The segmentation accuracy was 
evaluated using the dice similarity coefficient (DSC). Quantitative volumetry to evaluate the resectability was 
compared between manual and automated segmentation.
Results: The DSC in the test data sets 1 and 2 for segments I to VIII was 0.93±0.01, 0.94±0.01, 0.93±0.01, 
0.93±0.01, 0.94±0.00, 0.95±0.00, 0.95±0.00, and 0.95±0.00, respectively. The mean automated FLR and 
FLR% assessments were 493.51±284.77 mL and 38.53%±19.38%, respectively. The mean manual FLR and 
FLR% assessments were 500.92±284.38 mL and 38.35%±19.14%, respectively, in test data sets 1 and 2. 
For test data set 1, when automated segmentation of the FLR% was used, 106, 23, 146, and 57 cases were 
categorized as candidates for a virtual major hepatectomy of types 1, 2, 3, and 4, respectively; however, when 
manual segmentation of the FLR% was used, 107, 23, 146, and 57 cases were categorized as candidates for a 
virtual major hepatectomy of types 1, 2, 3, and 4, respectively. For test data set 2, all cases were categorized 
as candidates for major hepatectomy when automated and manual segmentation of the FLR% was used. No 
significant differences in FLR assessment (P=0.50; U=185,545), FLR% assessment (P=0.82; U=188,337), or 
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Introduction

Post-resectional liver failure (PLF) is highly correlated 
with postoperative mortality and is regarded as one of the 
most severe complications of major hepatectomy (1,2). The 
future liver remnant (FLR) is the volume of the liver that 
will remain after the hepatectomy and has been accepted 
as the most important predictor of PLF (3,4). Existing 
automated methods for FLR assessment are accurate but 
rely on specialized software and manual “virtual cuts” by 
surgeons (1).

Severa l  s tud ie s  have  repor ted  the  au tomated 
segmentation of Couinaud segments based on deep learning 
(DL) algorithms; however, these studies aimed to develop 
a new model and focused on technical feasibility and 
efficiency (5-8). Variations in attenuation and morphology 
of the liver (i.e., the presence of hepatic steatosis, cirrhosis, 
and hepatic tumors) may affect the performance of the DL 
models in real clinical practice. How these models perform 
in diverse liver conditions has not been investigated in 
these studies. This is the major concern of surgeons and 
radiologists in clinical practice.

Prev ious  s tudies  a l so  reported  the  automated 
segmentation of the FLR for liver resection based on DL 
algorithms. However, the validations were inadequate and 
were only processed on a very small public data set (12 
cases) (6) or were processed on clinical cases but lacked 
detailed quantitative and qualitative evaluation (7). The 
differences in the preoperative assessment of the FLR 
and the evaluation of resectability made by DL models 
and human doctors have not been discussed and remain 
unknown.

For a DL model to be applicable in the real workflow 
of surgical planning, fully external validation using clinical 
cases is mandatory, as spectrum bias and overfitting are 
unavoidable and lead to overestimating the accuracy of 
the DL model (9). The external validation data set in our 

study was extracted from medical imaging center of Peking 
University Shenzhen Hospital with a relatively large 
number of clinical cases (n=178) to minimize spectrum bias 
and overfitting. For robust verification, cases with variable 
morphology and attenuation of the liver (i.e., test data set 
1, consisting of cases with normal liver, hepatic steatosis, or 
cirrhosis with or without hepatic lesions) and candidates for 
major hepatectomy (i.e., test data set 2) were included in the 
external validation cohort.

Our study aimed to develop and validate a DL model 
for the automatic assessment of the FLR in an external 
validation cohort to evaluate the feasibility of major 
hepatectomy. Our model can be used for the preoperative 
evaluation of major hepatectomy. In this clinical scenario, 
our model can provide an automated FLR assessment 
both in a quantitative output and as a 3-dimensional (3D) 
visualization for surgeons. We present the following 
article in accordance with the TRIPOD reporting 
checklist (available at https://qims.amegroups.com/article/
view/10.21037/qims-22-1008/rc).

Methods

The retrospective study was conducted in accordance 
with the Declaration of Helsinki (as revised in 2013) and 
approved by the institutional review board (IRB) of Peking 
University First Hospital and Peking University Shenzhen 
Hospital [IRB No. 2019 (169), 2021 (071), and 2021 
(071)-1]. The informed consent waiver for the computed 
tomography (CT) images used was granted.

Patient data

The training data set consisted of 170 portovenous phase 
(PVP) abdominal CT images from 170 patients and was 
derived from 2,283 patients who underwent abdominal 

the indications for major hepatectomy were noted between automated and manual segmentation (McNemar 
test statistic 0.00; P>0.99). 
Conclusions: The DL model could be used to fully automate the segmentation of Couinaud liver 
segments and FLR with CT prior to major hepatectomy in an accurate and clinically practicable manner.

Keywords: Liver; Couinaud liver segments; segmentation; future liver remnant (FLR); deep learning (DL)

Submitted Sep 21, 2022. Accepted for publication Feb 20, 2023. Published online Mar 13, 2023.

doi: 10.21037/qims-22-1008

View this article at: https://dx.doi.org/10.21037/qims-22-1008

https://qims.amegroups.com/article/view/10.21037/qims-22-1008/rc
https://qims.amegroups.com/article/view/10.21037/qims-22-1008/rc


Xie et al. Automated segmentation of FLR3090

© Quantitative Imaging in Medicine and Surgery. All rights reserved.   Quant Imaging Med Surg 2023;13(5):3088-3103 | https://dx.doi.org/10.21037/qims-22-1008

contrast-enhanced CT scans for any reason between 
January 2018 and March 2019 at medical center A (Peking 
University First Hospital). Test data set 1 consisted of 146 
PVP hepatic CT images from 146 patients, and test data 
set 2 consisted of 29 PVP hepatic CT images and 3 delayed 
phase CT images from 32 patients. The test data sets were 
derived from 1,774 patients who underwent abdominal 
contrast-enhanced CT scans between June 2019 and 
December 2021 at medical center B (Peking University 
Shenzhen Hospital). There was no difference between 
the modeled and validated data sets in terms of the study 
setting, the inclusion of study participants, or the outcome 
metrics.

The sample size (170 for the training data set and 178 
for the external test data set) was the largest amount of 
data eligible for the study that could be obtained before 
we started our study. In the data collection, 26 cases with 

incomplete information were excluded (accounting for 
0.75% of the total amount), including 15 cases from medical 
center A and 11 cases from medical center B. These cases 
were excluded because of missing portal venous phase CT 
data. A flowchart is presented in Figure 1.

To enhance the robustness of the model, patients with 
various liver conditions, as confirmed by CT, were included 
in the training data set and test data set 1. Liver conditions 
included a healthy liver, steatosis (including nonalcoholic 
fatty liver disease and hepatic steatosis secondary to 
extensive chemotherapy), and cirrhosis (cirrhosis in chronic 
hepatitis B and C and alcohol-associated cirrhosis). The 
training data set included patients with hepatic lesions (i.e., 
hepatic cyst, hemangioma, focal nodular hyperplasia, and 
hepatocellular carcinoma no larger than 3 cm in diameter). 
Test data set 2 included candidates for major hepatectomy 
with hepatic lesions of hepatocellular carcinoma, 

Train dataset
(170 CT scans in 170 patients)

Excluded (n=341):
•	 Liver mass with diameter of ≥3 cm (n=248)
•	 Poster hepatectomy (n=32)
•	 Missing portal venous phase CT data (n=15)
•	 Inadequate demonstration of portal vein or 

hepatic vein (n=19)
•	 Failure to distinguish left lateral lobe and 

spleen (n=27) 

Patients who accepted abdominal contrast-enhanced CT scans

Patients eligible for the study  
(n=1,942)

Excluded (n=375):
•	 Had preoperative chemotherapy (n=178)
•	 Poster hepatectomy or TACE (n=143)
•	 Missing portal venous phase CT data (n=11)
•	 Inadequate demonstration of portal vein or 

hepatic vein (n=25)
•	 Failure to distinguish left lateral lobe and 

spleen (n=18)

Patients in Medical Center A from January 2018 to 
March 2019 (n=2,283)

Patients in Medical Center B from June 2019 to 
December 2021 (n=1,774)

Patients eligible for the study  
(n=1,399)

(n=1,171)

Randomly 
selected

(n=61)

(n=574)

Randomly 
selected

(n=62)

(n=197)

Randomly 
selected

(n=47)

Test dataset-1
(146 CT scans in 146 patients)

Test dataset-2
(32 CT scans 
in 32 patients)

(n=881)

Randomly 
selected

(n=50)

(n=289)

Randomly 
selected

(n=47)

(n=197)

Randomly 
selected

(n=49)

(n=32)

Randomly 
selected

(n=32)

Reported 
healthy liver

Reported 
healthy liver

Candidates for 
major hepatectomy

Hepatic steatosis Hepatic steatosisCirrhosis Cirrhosis

Figure 1 The flowchart showing the inclusion criteria, exclusion criteria, and distribution of CT scans in the data sets used in this study. CT, 
computed tomography; TACE, transcatheter arterial chemo-embolization.
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cholangiocarcinoma, and metastatic adenocarcinoma. The 
demographic characteristics of the 3 data sets are shown in 
Table 1.

CT imaging

The images were acquired with CT scanners from 
3 different manufacturers: GE Healthcare, Siemens 
Healthineers, and Philips. Iodinated contrast agents 
were used in amounts ranging from 80 to 140 mL. The 
thicknesses of the CT images were 1.0 and 1.25 mm.

As portal veins and hepatic veins formed the outer frame 
of Couinaud liver segments, only CT images with the 
clearest visualization of both the portal veins and hepatic 
veins were included (a total of 345 scans were acquired 

at PVP, and 3 scans of cirrhosis cases were acquired at 
the delayed phase in test data set 2) to obtain better 
segmentation.

Imaging processing and labeling

The images were processed with ITK-SNAP version 
3.8.0. The images were labeled according to Couinaud 
liver segments by a hepatic radiologist (with 8 years of 
experience) in consensus with a radiologist with 20 years’ 
experience in abdomen radiology. The latter radiologist 
performed a quality check and adjusted the annotations 
of the former. The process was performed at all stages of 
development and validation of the DL models. Manual 
segmentation was regarded as the ground truth for 

Table 1 General information of all data sets

Parameter Training data set Test data set 1 Test data set 2

Patients 170 146 32

Female patients, n (%) 64 (37.65) 62 (42.47) 7 (21.88)

Mean age (years), mean ± SD 50.23±13.77 49.04±13.15 54.59±14.29

Liver conditions, n (%)

Reported healthy livers 61 (35.88) 50 (34.25) 27 (84.38)

Steatosis 62 (36.47) 47 (32.19) 3 (9.38)

Cirrhosis 47 (27.65) 49 (33.56) 2 (6.25)

Focal hepatic lesion, n (%)

No lesion 103 (60.59) 55 (31.61) NA

Hepatic cyst 51 (30.00) 72 (41.38) 0

Benign lesion 29 (17.06) 43 (24.71) 9 (25.00)

Malignant tumor 4 (2.35) 14 (8.05) 29 (75.00)

Total volume of all hepatic lesions (mL), 
mean ± SD (range)

2.02±4.13 (0.00–49.40) 1.87±7.92 (0.00–86.05) 448.80±608.60 (9.14–2426.10)

Imaging system, n

GE Light Speed VCT 39 NA NA

GE Discovery CT750 HD 34 NA NA

GE revolution NA 93 14

Philips Brilliance iCT 256 72 NA NA

Siemens definition flash 25 53 18

Imaging parameters

Section thickness (mm) 1.0 1.0/1.25 1.0/1.25

SD, standard deviation; NA, not applicable.
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segmentation and volumetry. For all data sets, the inferior 
vena cava and the main trunk of the portal vein were 
excluded from the labeling, and vessels enclosed by the 
hepatic parenchyma were included.

For all data sets, the first step was liver segmentation, 
followed by the segmentation of the hepatic lesions and 
Couinaud liver segments, and finally prediction of the FLR. 
The key steps in this process are demonstrated in Figure 2.

Model development

We used the 3D U-Net network described by Çiçek  
et al. (10) for the segmentation of Couinaud liver segments. 
Three cascaded 3D U-Net frameworks were trained. 
The first 3D U-Net framework was trained for liver 
segmentation with an average dice similarity coefficient 
(DSC) of 0.98 and a volumetric similarity (VS) of 0.99. The 
next model was trained for the Couinaud segmentation 
of liver segments based on liver segmentation. The third 
was trained for the segmentation of hepatic lesions with 
a detection rate of 100%, an average DSC of 0.69, and  
a VS of 0.78.

The input of the network was a 3D CT image with 
manual annotation of 8 Couinaud liver segments. The 
output was the same shape as the input image and with the 
predicted annotation of the 8 Couinaud liver segments. The 
Dice loss was used as the loss function in the segmentation 
task. During the training of our model, we checked the 
prediction accuracy of the model on a validation data set. 
We kept track of the prediction accuracy on the validation 
data set, and as soon as the validation accuracy started to 
decrease, we stopped our training to prevent overfitting. 
The image resolution was set as 128×192×256. The window 
width and window level were set as 300 and 30 HU, 
respectively. Image amplification methods, such as random 
noise, translation, and affine transform, were used. The 
adaptive movement estimation algorithm (ADAM) gradient 
descent optimization algorithm was used, the initial learning 
rate was 1×10−4, the batch size was set as 2, and the number 
of epochs was 400. The programming language used in 
the study was Python. The hardware for model training 
was a GPU NVIDIA Tesla P100 16 G, and the software 
included Python3.6, PyTorch 0.4.1, Opencv, Numpy, and 
SimpleITK.

Virtual FLR for four types of virtual major hepatectomy
(White segments are planned for virtual surgical resection) (White segments are planned for surgical resection)

FLR for right hepatectomy

Segmentation of Couinaud liver segments

No Yes

Segmentation of hepatic lesion and Couinaud liver segments

Detection of hepatic lesion

Liver segmentation

FLR for left hepatectomy

Figure 2 Key steps in predicting the FLR. FLR, future liver remnant. 
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Model evaluation and qualitative assessment

To evaluate the performance of the segmentation model, 
the DSC was calculated. DSC is defined as the voxel overlap 
between the prediction (X) and the ground truth (Y) and is 
calculated as follows:

2
100%

X Y
DSC

X Y
∩

= ×
+ 	 [1]

To test the clinical usefulness (the consistency between 
the model and human doctors on the evaluation of a 
major hepatectomy based on FLR%) of our DL model, 
we performed a qualitative analysis using the following 
formula:

i

% 100%
TotalL ver HepaticLesion

FLRFLR
V V

= ×
− 	 [2]

VTotalLiver and VHepaticLesion represent the volume of the entire 
liver, including hepatic lesions and the volume of hepatic 
lesions within the liver that are planned to be removed, 
respectively (11).

The differences in FLR and FLR% between the 
model and human doctors were analyzed. For test data 
set 1, the virtual FLR and virtual FLR% assessment for 
4 types of a virtual major hepatectomy (1, complete right 
hepatectomy; 2, extended right hepatectomy; 3, complete 
left hepatectomy; and 4, extended left hepatectomy) were 
calculated for each case. For test data set 2, the FLR and 
FLR% assessment were calculated according to the actual 
resection procedures recorded in the operation notes.

To define the consistency, we used 2 criteria: (I) the 
prediction of resectability for a major hepatectomy was 
consistent between the model and the human doctor 
according to the estimated FLR%, and (II) the absolute 
difference of the FLR% between predictions and manually 
labeled masks was less than 5%. If the difference in the 
FLR% between the model and the human doctor was 
within 5%, the evaluation of resectability was considered 
consistent.

The FLR% cutoffs of 20%, 30%, and 40% in patients 
with healthy livers, hepatic steatosis, and cirrhosis, 
respectively, were accepted as the minimum FLR% values 
for major hepatectomy in this study (12-14).

Statistical analysis and evaluation

The Shapiro-Wilk test was performed to test the normality 
of distributions. Continuous variables are expressed as 

the mean ± standard deviation or as the median and 
interquartile range depending on the normality of the 
data. Categorical variables are expressed as frequencies and 
percentages. The Levene test was performed to analyze 
the homogeneity of variance. Significance was defined as 
a P value less than 0.05 (2-tailed). We used commercially 
available software (GraphPad Prism v7.00, GraphPad 
Software; SPSS for Mac, version 22.0, IBM Corp.) to 
perform the statistical analyses.

To quantitatively evaluate the accuracy of segmentation, 
the DSC values between the predictions and the manually 
labeled Couinaud segmentation were computed. The 
differences in DSC among those with healthy livers, 
steatosis, or cirrhosis, and candidates for major hepatectomy 
were tested using the Kruskal-Wallis test. The differences 
between subgroups were tested using the Mann-Whitney 
test with Bonferroni correction. To evaluate the accuracy 
of volumetry, the FLR, FLR%, and absolute difference of 
the FLR% between manual and automated segmentation 
were compared using the Mann-Whitney test and Bland-
Altman analysis. To test the clinical utility, the evaluation of 
resectability between the model and the human doctor was 
compared using the McNemar test.

Results

Patients and image characteristics

The test data set consisted of 178 patients who underwent 
abdominal contrast-enhanced CT scans at medical center B. 
Test data set 1 consisted of 146 cases with an average age of 
49.04±13.15 years, while test data set 2 consisted of 32 cases 
with an average age of 54.59±14.29 years. The demographic 
characteristics of each data set are shown in Table 1.

Automated segmentation results

Our method was capable of accurately segmenting 8 
functional Couinaud liver segments and the FLR in various 
liver conditions both in test data set 1 and test data set 2. 
The automated segmentation results are shown in Figure 3.  
The differences in the segmentation results between 
automated and manual segmentation are shown in Figure 4.

Segmentation accuracy of Couinaud liver segments

The DSC for the segmentation of each Couinaud liver 
segment ranged from 0.93±0.01 (95% CI: 0.92–0.94) to 
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0.95±0.00 (95% CI: 0.94–0.96) in test data sets 1 and 2  
(Table S1, Figure 5). The DSC differences between 
those with healthy livers, those with hepatic steatosis, 
and candidates for major hepatectomy were statistically 
significant (P<0.001); however, the differences between those 
with healthy livers and those with cirrhosis, between those 
with healthy livers and candidates for a major hepatectomy, 
and between those with livers with cirrhosis and candidates 
for a major hepatectomy were not significant (P=0.86, 
P=0.32, and P=0.15, respectively; Figure 6). Segment VIII 
and segment I provided the highest and lowest DSC values 
in the test data set, respectively. Compared with the methods 

of Jia et al. (5) and Han et al. (8), ours could obtain higher 
DSC values. The results are shown in Table 2.

Volumetric accuracy for Couinaud liver segments, FLR, 
and FLR% of test data set 1+2

The volume of each Couinaud liver segment obtained with 
manual and automated segmentation is shown in Table S1. 
The automated FLR and FLR% assessments ranged from 
77.77 to 1,746.13 mL (mean volume 493.51±284.77 mL) 
and 6.47% to 87.52% (mean value 38.53%±19.38%) in test 
data set 1 and test data set 2, respectively. The manual FLR 

Test data set 1

Candidates for major 
hepatectomy

Test data set 2

Future liver 
remnant

Couinaud 
segmentation

Liver 
segmentation

Original image

Healthy liver Hepatic steatosis Hepatic cirrhosis

Figure 3 Successful automated segmentation results of 8 functional Couinaud liver segments and future liver remnant in various liver 
conditions of test data set 1 and test data set 2.

https://cdn.amegroups.cn/static/public/QIMS-22-1008-Supplementary.pdf
https://cdn.amegroups.cn/static/public/QIMS-22-1008-Supplementary.pdf
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and FLR% assessments ranged from 74.11 to 1,753.28 mL 
(mean volume 500.92±284.38 mL) and 6.08% to 89.67% 
(mean value 38.35%±19.14%) in test data set 1 and test 
data set 2, respectively. The FLR and FLR% assessments 
for subgroups are shown in Figures 7,8 and Table 3. No 
significant differences in volumetry of the Couinaud liver 
segment, FLR, or FLR% assessments were noted between 
the automated and manual values according to the Mann-
Whitney test (P=0.70, P=0.50, P=0.82, respectively) for test 
data sets 1 and 2.

Spearman correlation analysis for the FLR assessment 
showed that the automated measurements strongly 
correlated with the manual measurements in test data sets 
1 and 2 (r=0.99; R2=0.99; slope =0.99; intercept =11.59). 
For the FLR% assessment, the automated measurements 
strongly correlated with the manual measurements 
(r=0.99; R2=0.98; slope =0.98; intercept =0.65) in test data 
sets 1 and 2. The FLR% assessments obtained using the 
automated methods slightly overestimated the manual 
measurements in test data set 1 [bias =−0.31%; P<0.05; 

Automated segmentation Automated segmentationManual segmentation Manual segmentation

A B

Figure 4 The differences of the segmentation results between automated and manual segmentation in test data set 2. (A) A case of 
hepatocellular carcinoma. For the segmentation of Couinaud liver segments, misidentification of segment V and VI occurred around the 
hepatic lesion. The automated segmentation underestimated the manual segmentation of the hepatic lesion. (B) A case of hepatocellular 
carcinoma. For the segmentation of Couinaud liver segments, misidentification of segment II occurred manly due to the relatively rare and 
irregular shape. The automated segmentation underestimated the manual segmentation of the hepatic lesion.
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95% limits of agreement (LoA): −4.14% and 3.52%] but 
slightly underestimated the manual measurements in test 
data set 2 (bias =2.25%; P<0.05; 95% LoA: −12.67% and 
17.17%; Figure 8). The FLR assessments obtained using 
the automated methods slightly underestimated the manual 
measurements in test data set 1 (bias =8.28 mL; P<0.01; 
95% LoA: −48.12 and 64.68 mL) but slightly overestimated 
the manual measurements in test data set 2 (bias =–8.48 mL; 
P<0.05; 95% LoA: −174.14 and 157.18 mL; Figure 7).

For volumetric assessment, our results were compared 
with similar studies at the lobe level (Figure 9). We obtained 
results similar to those of Huang et al. (15), Ruskó et al. (16),  
Butdee et al. (17), and Le et al. (6), with a difference of 
less than 5%. However, our results were quite different 
from those of Chen et al. (18), with a difference of 9% 
in volumetry at the lobe level. However, no detailed 
information on the test data set was provided in Chen et al.’s 
study (i.e., how many cases, the liver conditions included, 
where the data set was extracted); therefore, the reason 

for the relatively large difference in volumetry was not 
analyzed.

Qualitative analysis results

The absolute difference of the FLR%
The absolute difference of the FLR% obtained by automatic 
and manual segmentation ranged from 0% to 18.62% 
(mean value 0.99%±1.64%) in test data set 1 and 0.02% to 
21.01% (mean value 5.65%±5.49%) in test data set 2, with 
an average of 1.23%±2.27% in test data sets 1 and 2. The 
Mann-Whitney test suggested that there was a significant 
difference in the absolute difference of the FLR% between 
test data set 1 and test data set 2 (P<0.0001; U=2,839). 
Figure 10 demonstrates that the absolute difference of the 
FLR% in test data set 2 (median value 4.34±5.49) was larger 
than that in test data set 1 (median value 0.54±1.64). The 
results were within 5% for 96.27% of all cases (573/584 in 
test data set 1, 20/32 in test data set 2).

Healthy livers
Steatosis
Cirrhosis
Candidates for major hepatectomy
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Figure 5 A bar plot of the average DSC of the segmentation model 
of the 8 Couinaud segments. Similar segmentation performances 
were obtained among the 8 Couinaud segments. The whiskers 
indicate the standard deviation of the average DSC values. DSC, 
dice similarity coefficient.

Figure 6 A bar plot of the average DSC of the segmentation model 
in various liver conditions. The DSC differences between healthy 
livers and those hepatic steatoses and between those with hepatic 
steatosis and candidates for major hepatectomy were statistically 
significant (***P<0.001). DSC, dice similarity coefficient.

Table 2 Average DSC value of Couinaud segments in similar studies.

Methods Number of patients Images
Segment

Mean
I II III IV V VI VII VIII

Jia et al. 59 MR 0.805 0.838 0.868 0.907 0.924 0.915 0.916 0.872 0.890

Han et al. 100 MR 0.932 0.922 0.910 0.922 0.881 0.875 0.893 0.881 0.902

Our method 178 CT 0.931 0.939 0.935 0.933 0.938 0.948 0.947 0.949 0.940

DSC, dice similarity coefficient.
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Comparison of the prediction of resectability in test 
data sets 1 and 2 on criteria (a)
A total of 1,232 (146×4×2 + 32×2) FLR% assessment 
results were compared. The number of cases categorized as 
candidates for major hepatectomy is shown in Table 4. For 
test data set 1, 106, 23, 146, and 57 cases were categorized 

with automated segmentation of the FLR% as candidates 
for types 1–4 virtual major hepatectomy, respectively; 
meanwhile, manual segmentation of the FLR% categorized 
107, 23, 146, and 57 cases for types 1–4, respectively. The 
McNemar test suggested no significant differences between  
the automatic segmentation model and human doctors in 
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the prediction of resectability based on FLR% assessments 
(P>0.99; McNemar test statistic 0.00) in test data set 1. 
However, 6 cases (1.03%) were categorized as candidates 
according to manual segmentation but were rejected for 
resection according to automated segmentation, and 7 cases 

(1.20%) were rejected for resection according to manual 
segmentation but were categorized as candidates according 
to automated segmentation.

In test data set 2, both manual or automated segmentation 
categorized all cases as candidates for major hepatectomy.

Table 3 The performance of the model for volumetry in 4 types of major hepatectomy in the test data set

Volumetry

Test data set 1

Test data set 2Type 1: complete  
right hepatectomy

Type 2: extended  
right hepatectomy

Type 3: complete  
left hepatectomy

Type 4: extended  
left hepatectomy

FLR (M) 463.46±150.51 
(438.84, 488.08)

270.80±102.09 
(254.10, 287.50)

869.71±243.53 
(829.87, 909.54)

350.40±106.15 
(333.03, 367.76)

725.99±253.09 
(634.74, 817.24)

FLR (A) 454.12±143.78 
(430.60, 477.64)

258.73±92.77  
(243.55, 273.90)

864.18±243.75 
(824.31, 904.05)

344.21±98.88  
(328.03, 360.38)

734.47±263.08 
(639.62, 829.32)

FLR% (M) 35.27±7.28  
(34.08, 36.46)

20.81±6.59  
(19.73, 21.89)

65.90±6.97  
(64.76, 67.04)

26.85±6.17  
(25.84, 27.86)

59.19±16.56  
(53.22, 65.16)

FLR% (A) 35.47±7.16  
(34.30, 36.64)

20.44±6.33  
(19.41, 21.48)

67.12±6.85  
(66.00, 68.24)

27.04±5.42  
(26.15, 27.92)

56.94±16.24  
(51.08, 62.80)

The absolute difference 
of the FLR%

0.82±1.23  
(0.62, 1.02)

0.52±1.75  
(0.24, 0.81)

1.45±0.96  
(1.29, 1.61)

1.19±2.41  
(0.79, 1.58)

5.65±5.49  
(3.67, 7.63)

Data are expressed as the mean ± standard deviation, and data in parentheses are the 95% CI. FLR, future liver remnant; FLR% (M), 
FLR% obtained by manual segmentation; FLR% (A), FLR% obtained by automated segmentation; the absolute difference of the FLR%, 
the absolute difference of the FLR% between manual and automated segmentation.
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Figure 10 Boxplots showing the absolute difference of the FLR% 
obtained by manual and automated segmentation in test data set 1 
and test data set 2. All values were within 5%, and the evaluations 
of resectability between the evaluations made by the model and 
human doctors were considered consistent, except in 3.73% of 
cases. FLR, future liver remnant.

Figure 9 Comparisons of the volumetry at the lobe level. Our 
results were similar to those obtained by Huang et al. (15), Ruskó 
et al. (16), Butdee et al. (17), and Le et al. (6), with a difference of 
less than 5%.
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Discussion

Several DL models have been developed for the automated 
segmentation of Couinaud liver segments and preoperative 
volumetric assessment (5-8). However, these studies mainly 
concerned technical feasibility. The performance of these 
models has not been fully evaluated using clinical cases and 
various liver conditions. How well these models perform in 
clinical practice, particularly in patients with pathological 
livers and prior to major hepatectomy, remains unknown. 
This is a major concern for surgeons and radiologists in 
clinical practice.

In this study, we developed a DL model to segment 
Couinaud liver segments and FLR and applied this 
technique for preoperative FLR% assessment. The key 
advantages of this study were that the segmentation 
performance was validated using clinical cases with various 
liver conditions, including those with healthy livers, hepatic 
steatosis, or cirrhosis (Figure 3) as well as candidates for 
major hepatectomy with large hepatic lesions including 
hepatocellular carcinoma, cholangiocarcinoma, or 
hemangioma (Figure 11); moreover, we used a relatively 
large amount of CT data (178 cases) and conducted a full 
comparison with human doctors to produce quantitative 
and qualitative results. These are the main distinguishing 
features of our study compared to those previous, as we 
believe it is essential to investigate DL models before they 
can be used in future prospective studies in a clinical setting.

The results of our study suggest that our model allowed 
for accurate, fully automatic segmentation of Couinaud 
segments and volumetry of the FLR% on CT images and 
is robust in various liver conditions. The effectiveness of 
the DL model was validated using clinical cases in another 
medical center and in candidates for major hepatectomy. 
Our model has the potential to be used to assist surgical 
planning by providing FLR% assessment automatically.

The performance of our DL model was compared with 
that of Jia et al. (5) and Han et al. (8) at the functional 
segment level. The higher DSC values yielded by our model 

demonstrated its high consistency with human doctors. 
The performance was also compared among various liver 
conditions. Similar segmentation performances were 
obtained in cases with hepatic steatosis and cirrhosis and in 
candidates for major hepatectomy compared with healthy 
livers, indicating the robustness and generalizability of our 
model to different clinical settings (shown in Figure 5 and 
Table S1).

The qualitative analysis included 2 criteria to evaluate 
the difference between the model and manual segmentation. 
To classify consistency and inconsistency quantitatively, the 
threshold was defined as 5% in the absolute difference of 
the FLR% between the model and manual segmentation. 
FLR% assessment differences between 2 human doctors or 
between model and manual segmentation have rarely been 
reported. Therefore, there is a lack of a reference standard 
for setting the threshold. Marinelli et al. (19) defined an 
absolute percentage of liver volume difference between 
model and manual segmentation of less than 10% as 
successful segmentation; however, this study focused on the 
volumetry of the whole liver. For the volumetry of the FLR, 
a threshold of lower than 10% would be more appropriate. 
Therefore, we defined an absolute difference in the FLR% 
assessment of less than 5% as successfully classifying 
resectability.

The absolute difference in the FLR% in test data set 2 
was larger than that in test data set 1 (Figure 9). According 
to the computing method of the FLR%, the difference 
in volumetry of the FLR, total liver, and hepatic lesion 
between the evaluation made by the model and human 
doctor contributed to the absolute difference of the FLR%. 
The higher DSC values of the liver segmentation model 
(mean DSC, 0.98) and the Couinaud segmentation model 
(average DSC, of 0.94) indicate that the differences in the 
volumetry of the total liver and FLR between the model 
and human doctors are minimal. The worse performance 
of the hepatic lesion model (mean DSC, 0.69; VS, 0.78) 
mainly contributed to the difference in the FLR% between 
the model and human doctors. This factor affected the 

Table 4 The number of cases categorized as candidates for a major hepatectomy

Methods

Test data set 1 (n=146)
Test data set 2 

(n=32)Type 1: complete right 
hepatectomy

Type 2: extended right 
hepatectomy

Type 3: complete left 
hepatectomy

Type 4: extended left 
hepatectomy

Manual segmentation 107 23 146 57 32

Automated segmentation 106 23 146 57 32

https://cdn.amegroups.cn/static/public/QIMS-22-1008-Supplementary.pdf


Xie et al. Automated segmentation of FLR3100

© Quantitative Imaging in Medicine and Surgery. All rights reserved.   Quant Imaging Med Surg 2023;13(5):3088-3103 | https://dx.doi.org/10.21037/qims-22-1008

absolute difference in the FLR% in test data set 2 more 
than in test data set 1 because of the larger hepatic lesions 
present in test data set 2 (mean total hepatic lesion volume 
of 448.80±608.60 mL in test data set 2 vs. 1.87±7.92 mL in 
test data set 1).

For the calculation of the FLR%, we used the ratio of the 
FLR to the total functional liver volume but not the ratio of 
the FLR to the standard liver volume (SLV) [SLV = (1,267.28 
× body surface area) − 794.41]. However, there is controversy 
concerning which calculation method best reflects the total 
liver function (11). FLR is not the only predictor of PLF. 
PLF is now recognized as having multifactorial causation, and 

the predictors include patient-dependent factors and surgery-
dependent factors (13). These patient-dependent factors 
include preoperative bilirubin, international normalized 
ratio, and creatinine (14). In addition, the presence of 
malnutrition, diabetes mellitus, obesity, and liver damage 
due to chemotherapy is also associated with an increased 
risk of PLF (12). Surgery-dependent risk factors include 
intraoperative blood loss of more than 1,000–1,200 mL,  
the extent of surgery (i.e., minor hepatectomy, major 
hepatectomy, or extra major hepatectomy), an FLR <20%, 
and a prolonged operative time of more than 240 min (14). 
Among all these factors, the FLR (including the FLR volume 

Figure 11 Examples of successful automated segmentations in candidates for major hepatectomy. (A) A case of cholangiocarcinoma 
occupying 4 Couinaud liver segments (VIII, VII, V, and VI). (B) A case of hepatic hemangioma occupying 3 Couinaud liver segments (II, III, 
and IV). (C) A case of hepatocellular carcinoma occupying 4 Couinaud liver segments (VIII, VII, V, and VI).
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and function) is considered one of most important predictors 
of PLF.

For the preoperat ive  assessment  of  FLRs,  the 
indocyanine green retention rate at 15 min (ICG R-15) 
is regarded as a reference standard. However, it provides 
functional information on the whole liver rather than 
FLRs (20). Gd-EOB-DTPA (gadolinium ethoxybenzyl-
diethylenetriaminepentaacetic acid)-enhanced MRI, a 
functional imaging technique, can simultaneously evaluate 
function and remnant volume and is regarded as a promising 
indicator of FLRs (21). The volumetry of the FLR does 
not exactly reflect the function of the FLR, especially 
in pathological livers. However, volumetry is basically a 
surrogate method for functional assessment, and inadequate 
volume of the FLR remains an absolute contraindication of 
major hepatectomy (12,22,23). Volumetry on CT images 
is highly accessible and robust, and has a short acquisition 
time; therefore, volumetry of the FLR on CT images 
plays a major role in the preoperative assessment of major 
hepatectomy. Manual segmentation of the remnant liver on 
CT images should be regarded as the final gold standard 
in the evaluation of the FLR in future prospective studies 
using DL.

Some limitations to our study should be noted. First, 
livers with severe morphological anomalies, such as 
posthepatectomy, were excluded. A more robust model is 
needed for the subsegmentation of such livers. Second, 
similar to previous studies focusing on the preoperative 
assessment of the FLR% (1,24,25), our study did not 
exclude large hepatic vessels, which may cause the estimated 
value from the CT volumetric analysis to deviate from the 
real volumetry. Integrating liver vascular subsegmentation 
based on this model should be performed in future studies. 
Third, the unsatisfactory performance of the hepatic lesion 
model decreased the accuracy of the automatic preoperative 
FLR% assessment. A more robust model is needed for the 
segmentation of hepatic lesions.

Conclusions

In conclusion, fully automated segmentation and volumetry 
are feasible for preoperative FLR assessment of major 
hepatectomy, even in various liver conditions and for 
different clinical settings. The DL model demonstrated 
comparable performance to that of a human doctor in the 
final evaluation of resectability prior to major hepatectomy 
in the external validation cohort. Future prospective studies 

should be performed to test the reliability of the model. 
Further studies are needed to investigate what effect the 
model has on decreasing the incidence of PLF and how 
this model can affect the workflow of a surgeon in surgical 
planning.
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Table S1 Performance of segmentation and volumetry of Couinaud liver segments in the test data set [mean ± standard deviation (95% CI)]

Segment
DSC values 
in test data 

set 

DSC values 
in test data 

set 1 

DSC values 
in test data 

set 2

DSC values 
for healthy 

livers

DSC values 
for hepatic 
steatosis

DSC values 
for cirrhosis

Average volume (M) 
of liver segments 

(mL)

Average volume (A) 
of liver segments 

(mL)

Segment I 0.93±0.01 
(0.92, 0.94)

0.93±0.07 
(0.92, 0.94)

0.92±0.03 
(0.86, 0.98)

0.95± 0.10 
(0.92, 0.98)

0.96±0.02 
(0.95, 0.97)

0.90±0.09 
(0.87, 0.92)

36.51±18.02  
(33.85, 39.18)

33.44±13.74  
(31.41, 35.47)

Segment II 0.94±0.01 
(0.93, 0.95)

0.95±0.08 
(0.93, 0.96)

0.90±0.02 
(0.87, 0.94)

0.95±0.04 
(0.94, 0.96)

0.98±0.02 
(0.97, 0.98)

0.90±0.13 
(0.86, 0.94)

142.08±61.55 
(132.97, 151.18)

135.73±55.67 
(127.50, 143.97)

Segment III 0.93±0.01 
(0.92, 0.95) 

0.95±0.07 
(0.93, 0.96) 

0.89±0.03 
(0.83, 0.95)

0.92±0.07 
(0.90, 0.94)

0.96±0.04 
(0.95, 0.97)

0.91±0.10 
(0.89, 0.94)

107.85±72.32  
(97.15, 118.55)

102.41±67.97  
(92.36, 112.47)

Segment IV 0.93±0.01 
(0.92, 0.95)

0.95±0.06 
(0.94, 0.96)

0.86±0.03 
(0.80, 0.92)

0.90±0.08 
(0.88, 0.92)

0.96±0.04 
(0.95, 0.97)

0.93±0.09 
(0.90, 0.95)

198.38±87.03 
(185.51, 211.25)

199.84±79.23 
(188.13, 211.56)

Segment V 0.94±0.00 
(0.93, 0.95)

0.94±0.06 
(0.93, 0.96)

0.91±0.01 
(0.88, 0.94)

0.91±0.05 
(0.89, 0.92)

0.97±0.04 
(0.96, 0.98)

0.90±0.08 
(0.88, 0.93)

245.01±99.58 
(230.28, 259.73)

243.40±95.90 
(229.21, 257.58)

Segment VI 0.95±0.00 
(0.94, 0.96)

0.95±0.06 
(0.94, 0.96)

0.93±0.01 
(0.91, 0.96)

0.91±0.05 
(0.90, 0.92)

0.97±0.03 
(0.96, 0.98)

0.92±0.08 
(0.90, 0.94)

222.02±88.57 
(208.92, 235.12)

215.98±82.39 
(203.80, 228.17)

Segment VII 0.95±0.00 
(0.94, 0.96)

0.95±0.06 
(0.94, 0.96)

0.93±0.01 
(0.91, 0.96)

0.91±0.07 
(0.89, 0.93)

0.97±0.05 
(0.95, 0.98) 

0.92±0.09 
(0.90, 0.94)

146.14±66.18 
(136.35, 155.93)

145.61±60.86 
(136.60, 154.61)

Segment VIII 0.95±0.00 
(0.94, 0.96)

0.96±0.05 
(0.95, 0.96)

0.92±0.02 
(0.88, 0.96)

0.91±0.05 
(0.90, 0.93)

0.97±0.04 
(0.96, 0.98)

0.93±0.06 
(0.92, 0.95)

257.45±115.76 
(240.32, 274.57)

260.95±105.98 
(245.27, 276.63)

Mean 0.94±0.00 
(0.93, 0.94)

0.93±0.07 
(0.93, 0.94)

0.91±0.13 
(0.89, 0.92)

0.92±0.07 
(0.91, 0.93)

0.97±0.04 
(0.96, 0.97)

0.91±0.09 
(0.91, 0.92)

169.43±107.26 
(163.85, 175.01)

167.17±103.98 
(161.77, 172.58)

Volume (M), volume obtained by manual segmentation; volume (A), volume obtained with automated segmentation.
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