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Background: Human brown adipose tissue (BAT), mostly located in the cervical/supraclavicular region, 
is a promising target in obesity treatment. Magnetic resonance imaging (MRI) allows for mapping the fat 
content quantitatively. However, due to the complex heterogeneous distribution of BAT, it has been difficult 
to establish a standardized segmentation routine based on magnetic resonance (MR) images. Here, we 
suggest using a multi-modal deep neural network to detect the supraclavicular fat pocket.
Methods: A total of 50 healthy subjects [median age/body mass index (BMI) =36 years/24.3 kg/m2] 
underwent MRI scans of the neck region on a 3 T Ingenia scanner (Philips Healthcare, Best, Netherlands). 
Manual segmentations following fixed rules for anatomical borders were used as ground truth labels. A deep 
learning-based method (termed as BAT-Net) was proposed for the segmentation of BAT on MRI scans. It 
jointly leveraged two-dimensional (2D) and three-dimensional (3D) convolutional neural network (CNN) 
architectures to efficiently encode the multi-modal and 3D context information from multi-modal MRI 
scans of the supraclavicular region. We compared the performance of BAT-Net to that of 2D U-Net and 
3D U-Net. For 2D U-Net, we analyzed the performance difference of implementing 2D U-Net in three 
different planes, denoted as 2D U-Net (axial), 2D U-Net (coronal), and 2D U-Net (sagittal).
Results: The proposed model achieved an average dice similarity coefficient (DSC) of 0.878 with a 
standard deviation of 0.020. The volume segmented by the network was smaller compared to the ground 
truth labels by 9.20 mL on average with a mean absolute increase in proton density fat fraction (PDFF) 
inside the segmented regions of 1.19 percentage points. The BAT-Net outperformed all implemented 2D 
U-Nets and the 3D U-Nets with average DSC enhancement ranging from 0.016 to 0.023.
Conclusions: The current work integrates a deep neural network-based segmentation into the automated 

4715

https://crossmark.crossref.org/dialog/?doi=10.21037/qims-22-304


Zhao et al. Human supraclavicular fat depot segmentation via deep learning4700

© Quantitative Imaging in Medicine and Surgery. All rights reserved.   Quant Imaging Med Surg 2023;13(7):4699-4715 | https://dx.doi.org/10.21037/qims-22-304

Introduction

In 1902, Japanese biologist Hatai first observed interscapular 
and supraclavicular brown adipose tissue (BAT) in 
human fetuses (1). It was long believed that most of 
the mitochondria, which drive thermogenesis in brown 
adipocytes, disappear after reaching adulthood and that the 
BAT would become functionally and morphologically similar 
to white adipose tissue (WAT). However, many recent studies 
discovered the presence of active BAT in a significant portion 
of healthy adults using 18F-fluorodeoxyglucose positron 
emission tomography (18F-FDG PET) (2,3). In addition to its 
thermo-regulatory role, postprandial BAT activation triggers 
glucose uptake and triglyceride clearance (4,5), and thus can 
improve insulin resistance. Furthermore, postprandial BAT 
activation was found to induce satiation (6). BAT activation 
is thus considered as a potential therapeutic target for the 
treatment of obesity (7). Some works reckon that BAT 
activation may even have more benefits, such as having a role 
in bone health and density (8). A steadily growing community 
of researchers aim at examining BAT presence and activity 
with various imaging modalities including PET, ultrasound 
(US), and magnetic resonance imaging (MRI) (9). Facing the 
large amount of current and future study data, we not only 
need an easy, robust, and reproducible way to automatically 
extract the BAT-containing region within the supraclavicular 
fossa, but also a method to quantify BAT accurately in order 
to enable the evaluation of possible associations between BAT 
and clinical parameters.

While BAT in rodents is linked with a specific anatomical 
region, namely the interscapular region, BAT studies in 
human adults have revealed a more heterogeneous tissue 
composition comprising both BAT, and WAT in different 
perivascular regions (10), and under constant influence by 
seasonal and hormonal changes (11). Many studies had already 
been conducted exploiting magnetic resonance (MR) contrast 

mechanisms to characterize BAT presence and to detect BAT 
activation, both in rodents and humans (9). Chemical-shift 
based water-fat imaging techniques acquire gradient echoes at 
different echo times (TEs) to resolve the water-fat separation, 
rendering a proton density fat fraction (PDFF) map. Due 
to the clinical availability of this technique, it has become a 
popular tool in the research of BAT with MRI.

There is controversy about the correlation between the 
MRI-based fat fraction in a given region of interest (ROI) 
scanned during rest and the BAT presence measured with 
PET during BAT activation (12-15). Yet, some MR-only 
studies revealed significant relative change of PDFF during 
BAT activation paradigms in comparison to baseline PDFF 
measurements (16-19). The BAT ROI selection was guided 
by simultaneously or previously acquired PET images 
revealing voxels with glycolysis (20,21).

In case of MR-only studies, however, diverse segmentation 
rules have been followed: In one study (18), a small ROI 
around the dorsal scapular artery was drawn, another 
study (19) defined a fat depot restricted by the trapezius, 
the sternocleidomastoid muscle, and the clavicle. In two 
studies (16,17), a larger ROI was chosen and divided into 
PDFF intervals for further analysis. Thus, the comparability 
between different pure MR studies is hampered by different 
segmentation rules. Automatic segmentation following 
consistent rules would circumvent a potential bias from 
different segmentation rules.

So far, fully automated segmentation algorithms of 
BAT have been only reported in rodents (22,23). In human 
anatomy, only a semi-automatic multi-atlas segmentation 
(MAS) has been proposed (24). However, the lateral borders 
of the segmentation mask did not follow any anatomical 
structure but were defined by a geometric cylinder. MAS 
conducts segmentation through registering a set of atlases 
to the target image. The corresponding labels of those 
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atlases are then directly transferred from the atlas space to 
the target space using the same obtained parameters, and 
further integrated as the final segmentation, which is time-
consuming and requires high computational costs (25). In 
addition to a lack of a consistent anatomical border definition 
for BAT studies, there is also a lack of consensus on the 
optimal PDFF threshold used for defining potential BAT 
regions. While it has been shown that PDFF in infants of the 
supraclavicular fossa can be as low as 17% (26), MR studies 
in adults have been using the threshold of PDFF as 30%  
(16-19) or 50% (14,27,28) to exclude adjacent voxels 
originating from muscles or vessels after manual annotation. 
Being directly adjacent to bones like the scapula and the 
clavicle, the bone signal can be easily misinterpreted as BAT, 
as bone marrow exhibits similar values on the PDFF maps.

Deep learning methods, as one of the most advanced 
machine learning approaches, have the advantage of being 
able to learn salient feature representations automatically and 
efficiently from the data. They avoid the effort of feature-
engineering in conventional machine learning methods to 
design useful hand-crafted features and therefore make the 
learning process data-driven (29). For image segmentation, 
convolutional neural networks (CNNs) have achieved 
significant success in segmenting previously unseen images 
(30,31). Fully convolutional networks (FCNs) (32) were 
developed to perform semantic segmentation using a 
convolution and deconvolution architecture. The U-Net (33), 
equipped with skip-connections was one such architecture 
proposed for medical image segmentation. Already widely 
utilized in medical image analysis, U-Net-like models 

recently still show state-of-the-art performance in medical 
image analysis (34-36).

In this work, we leverage the deep CNN architecture 
for the automated segmentation of the supraclavicular fat 
depot for the purpose of human BAT analysis based on 
chemical-shift based water-fat MR images. To efficiently 
encode the multi-modal information and 3D context 
information from MRI scans and mimic the workflow of 
physicians for characterizing BAT, we jointly leveraged 
two-dimensional (2D) and three-dimensional (3D) CNN 
architecture to build the network (termed as BAT-Net). 
Our developed deep-learning-based BAT-Net can provide 
consistent quantitative evaluation among subjects and 
therefore support further investigations. Experiment results 
demonstrated that the BAT-Net outperformed widely-
utilized 2D U-Net-like networks (33) and 3D U-Net-
like networks (37). Our code is available for download at: 
https://github.com/BMRRgroup/BATNet.

Methods

Data

MRI data
The study was conducted in accordance with the Declaration 
of Helsinki (as revised in 2013). Study protocols and 
procedures were approved by the Ethics Committee of the 
Faculty of Medicine of the Technical University of Munich, 
Germany (Number 165/16 S). Informed consent was given 
by all individual participants. A total of 50 healthy subjects 
(demographics information in Table 1) underwent MR 
scans of the neck region on a 3T Ingenia scanner (Philips 
Healthcare, Best, Netherlands) [a subcohort from the 
following study (38)]. No intervention for BAT activation 
was performed. A combination of a head and neck coil, 
anterior and posterior coil arrays inside the scanner table 
was used. A 3D multi-echo gradient echo sequence with 
bipolar readouts was used in free breathing with following 
sequence parameters: 6 echoes, repetition time (TR) =12 ms,  
TE =1.24 ms, ΔTE =1 ms, flip angle =5°, bandwidth  
=1,413 Hz/pixel, 268×200×93 acquisition matrix size, field 
of view (FOV) =400×300×140 mm3 sensitivity encoding 
(SENSE) with R=2.5 in antero-posterior (AP) direction 
and scan time of 4 min 16 s. The reconstruction matrix 
size was (initially   288×216×93, before zero-filling 72 lines 
in AP direction), with voxel size 1.389×1.389×1.5 mm3. 
The acquired multi-echo gradient echo imaging data were 
processed online on the scanner using the fat quantification 

Table 1 Demographics information (age, sex, and BMI) of subjects

Characteristics Value

N 50

Gender, n [%]

Female 34 [68]

Male 16 [32]

Normally distributed, mean ± SD [range]

Weight (kg) 71.8±17.6 [51–118]

Height (cm) 171.7±9.3 [156.7–195.0]

Not normally distributed, median [range]

Age (years) 36 [22–77]

BMI (kg/m2) 24.3 [17.4–39.4]

BMI, body mass index; SD, standard deviation.
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routine of the MR vendor. The technique first performs a 
phase error correction and then a complex-based water-fat 
decomposition using a pre-calibrated seven-peak fat spectrum 
and a single T2* to model the T2* decay of the signal with 
TE. The PDFF map was computed as the ratio of the fat 
signal over the sum of fat and water signals. The magnitude 
discrimination approach was used to reduce noise bias in 
areas with low signal-to-noise ratio (SNR), which results in 
PDFF values above 100% and below 0% (39). In addition, 
water and fat images were reconstructed. These four image 
modalities made up four separate channel inputs in the deep 
learning model (40).

Manual segmentation of the human supraclavicular fat 
depot was done based on fat contrast images following 
coherent anatomical rules. The initial raw manual 
segmentation included adjacent muscle tissue, vessels, 
and slightly signal from cortical bone. In a successive pre-
processing step, pixels with PDFF values lower than a 
threshold are removed to exclude muscle and vessel signal. 
Pixels with T2* lower than a certain threshold are removed 
to exclude bone signal (details in section “Pre-processing”).

Manual annotation rules
For the training of our network, ground truth labels were 
generated based on coherent segmentation rules for depicting 
the cervical, supraclavicular, and axillary fat depot. As these 
three are connected, and especially the border between 
axillary and supraclavicular fat depot is molten, we refer 
to it as supraclavicular fat depot. In our work, radiological 
scientists with 4 to 8 years of experience in working with MR 

body imaging, together with a board-certified radiologist, 
defined anatomical landmarks for the segmentation in 
order to obtain reproducible anatomical borders to define 
the supraclavicular fossa with potential BAT presence. The 
segmentation rules were derived both from previously 
published segmentation rules in MR studies (16-19), as well 
as published PET images (20,21), that reveal anatomical areas 
with the highest likelihood of BAT glycolysis. Perivascular 
fat signal in all acquired axial slices was included, starting 
from the chin until 30 cm below. Subcutaneous fat tissue 
and all bones were excluded. The tissue of interest was 
further narrowed down by excluding interscapular fat and 
paravertebral fat, leaving us with cervical (= within the neck), 
supraclavicular (= above the clavicle) and axillary fat pockets, 
as illustrated in Figure 1 of (41). These fat depots follow the 
carotid artery, the subclavian artery as well as the axillary 
artery, respectively.

Following lateral exclusion criteria were defined based 
on the coronal view (Figure S1):
	 Fat, laterally located of the touch point of the 

supraspinatus muscle with the trapezius, was 
excluded;

	 Fat, laterally located from the coracoid process, or 
the collum scapulae, was excluded.

Following medial exclusion criteria were defined based 
on the axial view (Figure S1):
	 Fat, medially located from the scalene muscles 

(superior parts of the scanned region) or the 
serratus anterior muscle (inferior parts of the 
scanned region), was excluded.

A

B

Raw (left) and pre-processed (right) annotation, axial

Raw (left) and pre-processed (right) annotation, coronal

Figure 1 Comparison between raw manual annotation and processed labels. (A) Axial; (B) coronal. The supraclavicular fat depots are shown 
in red. As shown, most non-fatty tissues are removed from the supraclavicular fat depot mask after label pre-processing.

https://cdn.amegroups.cn/static/public/QIMS-22-304-Supplementary.pdf
https://cdn.amegroups.cn/static/public/QIMS-22-304-Supplementary.pdf
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Following dorsal exclusion criteria were defined:
	 Fat, dorsally located from the levator scapulae 

muscle, was excluded. This was for excluding the 
fat pocket surrounding the dorsal scapular artery.

An example of annotation applying these rules is shown 
in Figure S1.

Deep learning model

Overview
To take advantage of 3D information and to prevent over-
fitting, we proposed a hybrid 2D and 3D approach for 
segmentation of supraclavicular fat depot for quantitative 
evaluation of BAT (termed as BAT-Net). The overview of 
the framework is illustrated in Figure 2, which presents the 
structure of the segmentation network and briefly describes 
the function of each component. The main pipeline consists 
of a preliminary segmentation stage and a fine-tuning 
segmentation stage. In the preliminary segmentation stage, 
we developed three combining 2D U-Net-like CNNs to 

mimic the workflow of physicians, who are used to review 
images slice-by-slice in axial, coronal, and sagittal planes to 
delineate areas with potential BAT. The three combining 
2D CNN networks were designed for encoding the 
context information from the axial, coronal, and sagittal 
dimensions, respectively. Considering there exists four 
different MRI modalities, i.e., water, fat, PDFF and T2* 
(detailed information can be found in section “Data”), 
we inputted MRI slices of each modality as four channels 
to leverage the multi-modality information. In the fine-
tuning segmentation stage, a shallow 3D CNN network 
was developed to synthesize predictions of three-combining 
2D networks and the original four-modality MRI scans to 
predict the final segmentation result.

The details of the proposed methods are described in 
the following sections respectively. The U-Net-like 2D 
segmentation is presented in section “Three-combining 2D 
segmentation network”. The 3D fusion network is presented 
in section “3D fusion network”. Finally, the loss function of 
the BAT-Net is described in section “Loss function”.

Fine-tuning segmentation: combining  
multi-modal information, 3D context 

information, preliminary segmentation results.

Preliminary segmentation: leveraging multi-modal information 
and comprehensive 2D context information in axial, coronal, 

and sagittal plans

Sagittal

3D fusion network

Slice-level prediction 
and 3D volume 
reconstruction

Different slicing 
directions 2D U-Nets4 modalities

Fat fraction

Fat

T2*

Water

Coronal

Axial

Figure 2 An overview of the whole network. It consists of three combining 2D U-Net-like networks and a 3D fusion network to mimic the 
workflow of physicians for characterizing BAT regions and to efficiently encode the multi-modal information and extract the 3D context 
information from multi-modal MRI scans for the segmentation of the BAT. The three combining 2D networks leverage multi-modal 
information and comprehensive 2D context information in axial, coronal, and sagittal planes to conduct the preliminary segmentation and 
the 3D fusion network combines multi-modal information, 3D context information and preliminary segmentation results for obtaining a 
fine-tuning segmentation. 2D, two-dimensional; 3D, three-dimensional; BAT, brown adipose tissue; MRI, magnetic resonance imaging.

https://cdn.amegroups.cn/static/public/QIMS-22-304-Supplementary.pdf
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Three-combining 2D segmentation network
Widely regarded as an elegant FCN architecture for image 
segmentation, U-Net-like architectures have been used in 
a great amount of biomedical segmentation applications 
(33,42-44). In this study, we used three combining 2D 
U-Nets to extract informative latent features in water/fat-
contrast MRI, as well as quantitative PDFF and T2* maps 
using axial, coronal, and sagittal planes simultaneously.

The detailed architecture of the U-Net is illustrated in 
Figure S2. It consists of convolutional layers, max pooling 
operation, batch normalization (45), transposed convolution, 
concatenation operation and activation functions organized 
as a down-sampling path including three repeated encoder 
stacks and an up-sampling path including three repeated 
decoder stacks. In each decoder-encoder pair of the U-Net 
architecture, feature maps in the encoder part are cropped 
and concatenated to the corresponding feature maps in 
the decoder part via the skip-connection (concatenation) 
operation, which allows U-Net to better utilize the features 
with higher spatial resolution from shallow layers of the 
encoder part directly to the layers of the decoder part for 
segmentation. With this setting, U-Net is able to effectively 
and efficiently capture local information and high-level global 
information to achieve high accuracy in segmentation tasks.

In this work, the developed U-Net has four down-
sampling and up-sampling processes. Each encoder stack 
consists of two 3×3 convolutions together with a rectified 
linear unit (ReLU) activation function and a batch 
normalization after each convolution and a 2×2 max pooling 
operation with stride of 2 for down-sampling at the end of 
the encoder. Each decoder stack consists of a transposed 

convolution with kernel size 2×2 and a stride of 2 for up-
sampling, a concatenation operation to fuse feature maps 
from the encoder stack into the corresponding decoder 
stack, and two 3×3 convolutions followed by a ReLU and 
a batch normalization. At the end of the U-Net, a 1×1 
convolution with sigmoid activation is applied to map learnt 
features to the segmentation probability map.

3D fusion network
After the three-combining 2D U-Net, we obtained three 
segmentation results with utilizing comprehensive 2D 
context information in the axial, coronal, and sagittal planes, 
respectively. The 3D fusion network is proposed to merge 
these predictions and original multi-modal MRI scans 
for conducting the fine-tuning segmentation. As shown 
in the Figure 3, the 3D fusion network is a 3D FCN (32). 
Considering that the preliminary segmentation results 
can be used to provide references during the fine-tuning 
segmentation stage with 3D fusion network, and to reduce 
computing load, the 3D fusion network is designed to be a 
shallow FCN, which is easier to converge. The 3D fusion 
network, leveraging 3D context information for obtaining a 
fine-tuning segmentation, consists of four 3D convolution 
modules and a final 3D 1×1×1 convolution layer with a 
softmax activation function to map 3D feature maps to the 
final segmentation prediction. Each 3D convolution module 
has a 3×3×3 convolution layer with batch normalization and 
leaky ReLU activation function (46).

Loss function
In medical image segmentation, one of the challenges is 

4 Modalities
3 Predictions of 2D networks

3D convolution
Batch normalization
Leaky ReLU
3D convolution + softmax

Concatenation

3D fusion network

3D prediction

32@3×3×3 32@3×3×3 1@1×1×164@3×3×3 64@3×3×3

Figure 3 The detailed architecture of the 3D fusion network. The 3D fusion network is a shallow 3D neural network designed to synthesize 
multi-modal MRI scans and preliminary segmentation results obtained from three combining 2D networks for obtaining a fine-tuning 
segmentation by leveraging 3D context information. The 3D fusion network consists of four 3D convolution modules and a final 3D 
1×1×1 convolution layer with a softmax activation function to map 3D features to the final segmentation prediction. Each 3D convolution 
module has a 3×3×3 convolution layer with the batch normalization and leaky ReLU activation function. 2D, two-dimensional; 3D, three-
dimensional; ReLU, rectified linear unit; MRI, magnetic resonance imaging.

https://cdn.amegroups.cn/static/public/QIMS-22-304-Supplementary.pdf
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class imbalance between the foreground and the background 
in the dataset. In this work, the supraclavicular fossa 
occupies a relatively small part of the MRI scans. Therefore, 
in this work, we leverage the Dice loss as the loss function, 
which was initially proposed in (47) and then has been 
proven to be well adaptable to the data imbalance tasks 
(48-50). To address possible class imbalance problems, we 
also considered loss functions such as the generalized dice 
loss (50), the focal loss (51), the Tversky loss (52) and their 
combinations. However, as we did not find any obvious 
improvement of segmentation performance on our data 
(Table S1), we kept it simple with the standard dice loss. To 
be specific, let P(xi) denote the prediction probability of a 
voxel xi and G(xi) be the corresponding ground truth at the 
same voxel. The dice loss can be defined as:

( )
( ) ( )

( ) ( )
2

i

i i

i ix X
D

i ix X x X

P x G x
L X

P x G x

ε

ε
∈

∈ ∈

+
= −

+ +
∑

∑ ∑ 	 [1]

where X represents the training images, ε denotes a small 
term to prevent any division by 0 issues.

Pre-processing

M R I  s c a n s  i n c l u d i n g  P D F F,  T 2*  m a p s  a n d  t h e 
corresponding manual annotations were pre-processed 

before being fed into neural networks. The pre-processing 
pipelines are illustrated in Figure 4. Figures 1,5 illustrate the 
comparison of images and manual labels before and after 
pre-processing.

Image pre-processing (PDFF map, T2* map)
The background was removed in both PDFF maps and T2* 
maps by applying a foreground mask. This foreground mask 
was obtained slice-wise by calculating the mean value of the 
water and the fat image respectively and thresholding below 
the mean value. These two separate masks were combined 
by the logical or operator. Thus, voxels with water signal 
under the mean threshold and mean fat signal per slice were 
regarded as background.

Label pre-processing
During the manual segmentation procedure of the entire 
supraclavicular fossa, it would be dramatically time-
consuming to annotate each voxel in the 3D volume 
belonging to the supraclavicular fossa. Therefore, the 
annotator was allowed to draw rough pre-annotations 
including adjacent muscle tissue and vessels. Subsequently, 
a set of well-designed pre-processing rules were applied to 
process the obtained rough raw manual pre-annotations 
into finely adjusted segmentation, which are then regarded 

PDFF=PDFF [(W>Wmean) || (F>Fmean)]
T2*=T2* [(W>Wmean) || (F>Fmean)]

Removing the background

T2*

PDFF

L=L [35%<PDFF<110%]
L=L [T2* >10 ms]

Thresholding

Removing small objects 
(volume <100)

Closing (filling the holes)
Dilation (3×3×3)
Erosion (3×3×3)

SmoothingLabel

Figure 4 The illustration of the pre-processing pipelines for MRI scans (PDFF, T2*) and manual annotation labels. PDFF, proton density fat 
fraction; F, fat; W, water; L, label; MRI, magnetic resonance imaging.

https://cdn.amegroups.cn/static/public/QIMS-22-304-Supplementary.pdf
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as the ground truth.
Specifically, after the supraclavicular fossa regions have 

been delineated roughly using ITK-SNAP (version 3.8.0), 
the irrelevant surrounding non-fatty tissues were then 
removed. As shown in Figure 4, the detailed pre-processing 
includes following two steps: in the first step, voxel-wise 
masks are applied referring to PDFF maps (annotation 
regions satisfy PDFF >35% and PDFF <110%) and T2* 
maps (annotation regions satisfy T2* >10 ms). The PDFF 
threshold of 35% was chosen based on literature values 
(14,16-19,27,28) combined with empiric experience with 
our data. As bone exhibits much lower T2* values than fat, 
the additional T2* maps can help to distinguish fat from 
bone signal. The T2* threshold was thus chosen based 
on literature reports on T2* values of cortical bone, being 
consistently shorter than 10 ms (53-55). After that, in the 
second step, smoothing operations including removal of 
small disconnected regions (voxel volume <100), filling of 
holes, dilation (3×3×3 filter) and an erosion (3×3×3 filter) 
step were performed.

Evaluation

Dice similarity coefficient (DSC) (56) is a popular 
evaluation criteria applied in many segmentation tasks and 
therefore is adopted in this work, which is defined as:

2 X Y 2 TPDSC = =
X + Y 2 TP + FP + FN
× ×

×


	 [2]

where |X| and |Y| in our case denote the segmentation 

prediction of the proposed BAT-Net and the ground truth 
label (pre-processed manual segmentation annotation), 
respectively. Since the label data are Boolean, it can also be 
written as the formulation on the right-hand side, where 
TP, FP, and FN represent true positive, false positive, 
and false negative. All experiment results in this paper are 
evaluated by DSC.

Aside from DSC, precision score and recall score are 
also applied to obtain an extended evaluation with focus 
on FP and FN, respectively. The precision and recall are 
defined as:

X Y TPPrecision = =
X TP + FP


	 [3]

X Y TPRecall = =
Y TP + FN


	 [4]

In addition, to evaluate the quantitative agreement of 
segmentations with the ground truth, Bland-Altman plots (57) 
were applied on the volume (mL) and the mean PDFF (%) 
of the predictions of the proposed BAT-Net and the ground-
truth labels. For a more accurate quantitative evaluation, 
thresholding steps in section “Label pre-processing” were 
applied here again to exclude the voxels that were added by 
smoothing operations.

Experimental setup

Experiments were conducted on a server with the Linux 
operating system (Ubuntu 16.04), which was equipped with 
Intel Core i7-6700 CPU, 32 GB RAM, an NVIDIA Quadro 

Raw (left) and pre-processed (right) PDFF maps, sagittal

Raw (left) and pre-processed (right) T2* maps, sagittal

A

B

Figure 5 Comparison between raw MR images and pre-processed images of the (A) PDFF and (B) T2* modalities. As shown, noise in the 
background region is dramatically reduced. PDFF, proton density fat fraction; MR, magnetic resonance.
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GPU (24 GB RAM) and an NVIDIA Titan-Xp GPU  
(12 GB RAM).

The dataset was randomly divided into a developing set 
(80%) and a test set (20%, 10 subjects). When dividing the 
data, the BMI was considered such that both the developing 
set and the test set has included subjects with all ranges 
of BMIs and the mean BMIs for developing and test sets 
are very close, 24.4 and 24.1 kg/m2, respectively. The 
developing set was further randomly split into training set 
and a validation set in a ratio of 4:1 to develop and train the 
proposed BAT-Net. The proposed model was implemented 
with Python and the Keras library (58). Adam optimizer (59) 
was utilized for training the network with an initial learning 
rate (lr) =5×10−4. Due to the large scale of the 3D fusion 
parameters, the batch size of 3D fusion net was 16, while 
that of 2D U-nets was 128. To avoid over-fitting (60) and 
save training times, we applied an early stopping strategy 
during the training phase, which means the training process 
will be stopped if the validation loss does not decrease after 
certain epochs. The patience of early-stopping was 20 for 
all the networks. In addition, rather than saving the model 
in the last epoch, we automatically saved the model which 
performed best on the validation set.

We conducted comparison experiments between our 
proposed BAT-Net and 2D U-Net/3D U-Net on the 
same training, validation, and test sets. The 3D U-Net 
used in this experiment has three down-sampling and up-
sampling blocks. The encoder and decoder stacks have very 
similar structure as in a 2D U-Net, with 3D convolutional 
kernels of size 3×3×3. The comparison with 2D U-Net 
was implemented in three different slicing planes, denoted 
as 2D U-Net (axial), 2D U-Net (coronal), and 2D U-Net 
(sagittal).

Training based on raw annotation labels vs.  
pre-processed labels
At the beginning, we compared two different supervision 
strategies [using the baseline network architecture 2D 
U-Net (axial)]: (I) using the raw annotation before pre-
processing as ground truth to let the network learn the 
original human-defined annotations and then using 
the pre-processing steps as described in section “Label 
pre-processing” as a post-processing step to refine the 
segmentation prediction and obtain the final segmentation. 
(II) Using the fine-tuned labels after pre-processing as in 
section “Label pre-processing” to enable the network to 
directly learn the processed labels.

Inter-rater evaluation
We evaluated the annotation difference between different 
raters (after pre-processing), 12 randomly selected 
subjects from the dataset were independently annotated 
by an additional rater and the inter-rater consistency was 
evaluated by DSC and Bland-Altman plots (57) on the 
volume (mL) and mean PDFF (%) of the annotation of two 
raters (after label processing).

Results

The experimental results are given in Table 2. The 
proposed BAT-Net achieved an average DSC of 0.878. 
The performance on DSC ranged from 0.853 to 0.920 
with a standard deviation of 0.020. In general, the joint 
2D-3D BAT-Net outperformed both the 2D and the 3D 
U-Net. We also conducted a 5-fold cross validation on all 
the proposed networks and performance of BAT-Net in 
the cross-validation was also superior to other compared 

Table 2 The overall evaluations of the proposed approaches

Method Description
Evaluation metrics, mean ± SD

DSC Precision Recall

2D U-Net (axial) 2D U-Net with inputs sliced in the axial plane 0.860±0.028 0.890±0.029 0.823±0.032

2D U-Net (coronal) 2D U-Net with inputs sliced in coronal plane 0.862±0.032 0.896±0.046 0.832±0.029

2D U-Net (sagittal) 2D U-Net with inputs sliced in sagittal plane 0.855±0.029 0.883±0.052 0.842±0.038

3D U-Net 3D U-Net 0.861±0.032 0.869±0.040 0.856±0.034

BAT-Net Three 2D U-Nets combining with 3D fusion net 0.878±0.020 0.910±0.030 0.848±0.026

The test set is unified, consisting of 4-modality-MR-images. The evaluation metrics are the DSC, precision, and recall. SD, standard 
deviation; DSC, dice similarity coefficient; 2D, two-dimensional; 3D, three-dimensional; BAT, brown adipose tissue; MR, magnetic 
resonance.
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methods (Table S2). In addition, we compared the proposed 
BAT-Net to other methods in terms of trainable parameters 
and operation times. The results of this comparison are 
presented in Table S3.

Raw annotation vs. fine-tuned annotation

As mentioned in section “Training based on raw annotation 
labels vs. pre-processed labels”, we did an experiment on 
comparing training with raw annotation and with fine-tuned 
annotation on 2D U-Net. The result of this experiment is 
illustrated in Table 3. The performance of the first strategy is 
denoted as ‘raw annotation’ with unprocessed raw labels and 
the second strategy is denoted as ‘fine-tuned annotation’ 
with processed labels after the steps in section “Label pre-
processing”. We found that the second training supervision 
strategy outperformed the first one with an average DSC of 
0.860 compared to 0.805. Accordingly, we applied the ‘fine-
tuned annotation’ strategy to all the segmentation models 
in the succeeding experiments.

BAT-Net vs. 2D U-Net

Among all three 2D U-Nets, the network with inputs in 
axial plane and that in coronal plane performed better than 
that in sagittal plane, with average dice score of 0.860, 
0.862 and 0.855, respectively. As expected, the BAT-Net 
outperformed all individual 2D U-Nets with average dice 
score 0.878 (Table 2), which highlights the advantage of 
using a 3D fusion module to encode 3D context information 
in case of our BAT-Net design. Comparing the result 
predictions of BAT-Net with other networks, we found the 
BAT-Net makes fewer FPs than 2D U-Net (axial) and 2D 
U-Net (sagittal) and fewer FNs than 2D U-Net (coronal). 
An increase of both the precision score and the recall score 
was also consistent with these results.

BAT-Net vs. 3D U-Net

Comparing the BAT-Net with 3D U-Net, we found 

a performance enhancement of 0.017 in average DSC  
(Table 2). In Figure 6, we compared the segmentation 
predictions of the BAT-Net and 3D U-Net with the ground 
truth annotation labels. It can be seen that the 3D U-Net 
makes more FP predictions (over segmentation problem), 
and thus, has a lower precision score. The FP predictions 
around the neck regions also indicate the limitation of the 
location recognition of the 3D U-Net. Similar results were 
found in the predictions of the subject with higher volume 
of supraclavicular fat depots, as shown in Figure S3.

PDFF and volume extraction

The Bland-Altman plots of the volume and mean PDFF of 
two raters are shown in Figure 7. The two raters annotated 
segmentations of similar volumes with a mean/minimum/
maximum volume of 189/95.9/443 mL in case of rater 1 
and 193/96.9/446 mL in case of rater 2. The mean absolute 
difference between rater 1 and rater 2 was −4.68 mL with 
minimum/maximum absolute differences of −3.24/8.88 
mL except for one outlier. This outlier had a difference of  
−68.9 mL and was due to falsely annotated regions in an 
obese subject, such as subcutaneous fat by one of the raters.

The resulting mean PDFF values in the segmented 
r e g i o n s  h a d  a  m e a n / m i n i m u m / m a x i m u m  o f 
65.9/59.5/78.8% for rater 1 and 66.0/59.5/79.0% for 
rater 2. Mean PDFF values only varied by small amounts 
between raters 1 and 2 with the minimum/maximum 
absolute differences of −0.425/0.038% and a mean of 
−0.103%. Thus, except for the volume extraction in case of 
one outlier, both annotators’ segmentations were in good 
agreement with each other regarding segmented volume 
and mean PDFF inside the segmented regions. The inter-
rater consistency evaluated with the average DSC was 0.966.

As shown in Figure 8, the volumes predicted by the 
network in the test set had a mean/minimum/maximum 
of 305/151/624 mL and the volumes of the manually 
segmented ground truth labels had a mean/minimum/
maximum of 314/160/627 mL. In terms of absolute 
differences, there was a trend for smaller volumes predicted 

Table 3 Comparison results between using raw annotation or finetuned annotation as the supervision to train the network, evaluated with 2D U-Net 
(axial)

Label Mean Max Min SD

Raw annotation 0.805 0.855 0.766 0.033

Finetuned annotation 0.860 0.915 0.821 0.028

DSC is the performance metric. 2D, two-dimensional; SD, standard deviation; DSC, dice similarity coefficient.

https://cdn.amegroups.cn/static/public/QIMS-22-304-Supplementary.pdf
https://cdn.amegroups.cn/static/public/QIMS-22-304-Supplementary.pdf
https://cdn.amegroups.cn/static/public/QIMS-22-304-Supplementary.pdf
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by the network with a mean difference between the outcome 
of the network and the ground truth labels of −9.20 mL and 
minimum/maximum volume differences of −19.8/6.96 mL.

Mean PDFF values inside the areas predicted by 
the network had mean/minimum/maximum values of 
75.7/66.0/82.7% while the ground truth mean/minimum/

A

B

C

D

E

F

2D U-Net (sagittal)

2D U-Net (coronal)

2D U-Net (axial)Ground truth

BAT-Net

3D U-Net

False positive (FP)True positive (TP) False negative (FN)

Figure 6 Comparison between (A) ground truth, predictions of (D-F) 2D U-Nets, (C) 3D U-Net, and (B) the BAT-Net. The yellow arrows 
mark the main difference compared to the proposed BAT-Net. BAT, brown adipose tissue; 3D, three-dimensional; 2D, two-dimensional.
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Figure 7 Bland-Altman plots for comparison between annotations of two raters after label processing on (A) volume and (B) mean PDFF 
of the segmentation. Both volume and mean PDFF are in good agreement between different raters except for one striking outlier in the 
volume comparison. SD, standard deviation; PDFF, proton density fat fraction.
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maximum PDFF values were 74.5/65.2/82.8%. There was 
also a trend for differences in PDFF. The mean PDFF of 
the network predicted regions was elevated with respect 
to the manually annotated ground truth segmentations in 
every subject in the test set. The mean absolute difference 
was 1.19% and minimum/maximum absolute differences 
were 0.098/2.06%. Therefore, there was a slight bias 
towards smaller volumes and higher mean PDFF values 
predicted by the network compared to the ground truth 
labels.

Discussion

In this paper, a joint 2D-3D CNN architecture, i.e., BAT-
Net, was developed for the automatic segmentation of 
the supraclavicular fossa to quantify BAT volume and 
PDFF. The design of the proposed BAT-Net followed the 
principle of leveraging multi-modal information, encoding 
both global and local 3D context information with—in 
comparison to full 3D U-Net—relatively low computing 
resource and GPU memory consumption.

As shown in section “Raw annotation vs. fine-tuned 
annotation”, we observed a performance enhancement when 
using fine-tuned annotations, compared to raw annotation. 
This suggests that the proposed processing pipeline solves 
the problem of inconsistency of segmentation border 
among subjects in case of the raw annotation, which 

confuses the deep learning networks. Therefore, training 
based on pre-processed, ‘fine-tuned’ labels results in a 
better performance.

In the BAT segmentation task, the 3D location and 
context information are essential for recognizing the 
supraclavicular fat region. Conventional 2D convolutional 
segmentation network conducts slice-wise segmentation, 
which cannot learn the correlation and context information 
among slices. Besides, a performance gap was observed 
among 2D U-Nets with inputs in different slicing 
directions, which may suggest axial and coronal planes, 
compared with sagittal plane, provide a better view for 
a 2D U-Net to encode context information to segment 
supraclavicular fat depots.

Pure 3D convolutional segmentation networks with 
3D kernels have the ability to directly encode 3D context 
information within the MRI scans, but these networks face 
the challenge of having significantly more parameters to 
be optimized and require more GPU memory during the 
training stage (61). In this study, the performance of 3D 
U-Net is even lower than one of the 2D U-Nets, which may 
be caused by following reasons: (I) the 3D U-Net has much 
more trainable parameters than the 2D U-Net, making 
it hard to converge to the optimal point with relatively 
limited medical training data; (II) 3D U-Nets need more 
GPU memory and a relatively small batch size was used 
during training (batch size =16), which may have caused 
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Figure 8 Bland-Altman plots for comparison between ground truth and predictions of the proposed BAT-Net on (A) volume and (B) mean 
PDFF of the segmentation. The volume segmented by the network is smaller on average compared to the ground truth labels while mean 
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the instability in the training (62); (III) the training samples 
were relatively scarce in the 3D settings, where each MRI 
volume is regarded as a sample instead of a slice in the 2D 
settings. All above-mentioned factors are prone to lead to 
over-fitting. In comparison, the proposed BAT-Net employs 
a shallow 3D fusion net to synthesize information and use 
three prediction maps of 2D U-Nets as references to obtain 
the fine-tuned segmentation, which faces a smaller risk for 
over-fitting.

A consistent result from the quantification method is 
essential in BAT analysis, especially when comparing inter-
individual differences, or when observing intra-individual 
changes during activation studies. To achieve this requested 
quantification precision, reproducible labels are necessary. 
In this paper, the reproducibility of volume and mean PDFF 
extraction from a BAT segmentation task was evaluated for 
the first time. This was done by an inter-rater evaluation as 
well as comparing the network-predicted labels with a set 
of ground truth labels, with a high DSC of 0.966 in case of 
the inter-rater consistency. Nevertheless, one of the twelve 
subjects had clearly flawed annotations by one rater evident 
by a 68.9 mL difference at a total segmented volume of 
331 mL, accounting for a difference of 20.8%. While the 
faulty annotation was not used to train the network, it 
reveals the possibility of flawed segmentations. However, 
the mean PDFF of the segmented region seems to be not 
influenced by annotation errors as the inter-rater difference 
in mean PDFF was negligible. It needs to be mentioned 
that manual segmentation in obese subjects, who exhibit an 
above-average amount of fat in the supraclavicular fossa, 
is challenging, as different fat depots are morphologically 
connected in the MRI images, and thus visually more 
difficult to be separated.

When comparing the ground truth labels to the network-
predicted labels with respect to volume and mean PDFF, 
a small bias is observable in both cases. While the volume 
segmented by the network is smaller by an average of 9.20 
mL in the test set, the mean PDFF is higher in each subject 
and is elevated by 1.19% on average. A possible explanation 
for the observed differences is that the network predicted 
masks included fewer voxels at the edges of the fat depots, 
where partial volume effects comprising muscle may occur. 
As these voxels affected by partial volume effect exhibit 
smaller PDFF values, mean overall mean PDFF decreases. 
However, no large deviations with regards to volume or 
mean PDFF are apparent in the test set. Therefore, the 
labels predicted by the network are in good agreement with 
the ground truth labels.

One limitation of this study is that we trained our model 
on 50 healthy volunteers including a limited number of 
obese subjects. The trained result may not be applicable to 
other cohorts, for instance with primarily obese subjects, 
or children. Furthermore, only data from one center were 
used. Training the model on datasets of multiple different 
centers may allow the network to learn domain-invariant 
features among centers and enhance its generalization 
ability. And, due to the data-driven nature of deep learning, 
collecting more training data would further improve the 
performance of the BAT-Net. Therefore, one future step is 
to collect more data and evaluate the BAT-Net in different 
medical centers.

Another limitation is that we did not benchmark all 
possible segmentation network architectures. To prove the 
concept and to match the expectation of clinical community, 
where simple and robust methods are more favorable for 
the potential of clinical translation, we only used the widely 
proven and robust U-Net-like convolutional network to 
build the supraclavicular fossa segmentation model.

It remains to be emphasized that the segmented 
anatomy of the supraclavicular fossa (including the cervical 
and axillary fat pockets) was chosen based on previous 
publications revealing active BAT. While the terms BAT, 
WAT, and beige adipose tissue refer to the cellular lineage 
and cellular function, the term ‘perivascular fat’ refers 
to an anatomical location surrounding vessels. In our 
study, we limited the segmented anatomy to the cervical, 
supraclavicular, and axillary fossa, where BAT, WAT, and 
beige adipocytes are present at the same time. It is not 
possible with MR yet, which has an image resolution of 
about 1 mm3, to morphologically differentiate between cells 
that have a diameter of tens of microns. However, active 
BAT can be also found next to the vertebrae, a location we 
did not include.

While we have trained the network based on locations 
with PDFF in a range of 35–110%, it will be easy for the 
end user of the code we share to choose the final range of 
PDFF values to be included for their analysis. As we did 
not define borders in the superior or inferior direction 
(we segmented all fat pockets surrounding the carotid, the 
subclavian and axillary artery), it will remain open to the 
end user to define the cranial/caudal border according to 
their preference. A possible landmark for the cranial border 
could be the vocal cord. The clavicle could be used as the 
inferior border, but a variability is to be expected depending 
on the patient’s shoulder positioning. Future designs of 
improved network architectures need to account for the 
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potential problem of over-fitting to current annotation 
labels, since as of now, we only have a limited number 
of subjects with labels. Besides, one interesting future 
possibility for improving the segmentation performance 
can be leveraging unannotated data with semi-supervised or 
unsupervised methods to further enhance the performance 
of our method.

Conclusions

This paper proposed an artificial intelligence (AI) 
system on a deep neural network for segmenting the 
supraclavicular fossa for BAT quantification. Experimental 
results demonstrated the potential of deep learning in the 
automatic segmentation of supraclavicular fat depots. The 
proposed BAT-Net with the ability of extracting informative 
latent features can provide consistent segmentation among 
subjects since the architecture and the corresponding 
parameters are determined after training. The model 
integrated multi-modal MRI scans, 2D and 3D, local 
and global context information and showed high-level 
segmentation performance. Our AI system can provide 
consistent quantification results and has the potential to 
facilitate the research on BAT using MRI.
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Supplementary

A

B

C

Figure S1 Fat and water image of one example subject displaying applied annotation rules. (A) Axial view of annotation example; (B) 
coronal view; (C) coronal view. SM, scalene muscles; LS, levator scapulae muscle; Cl, clavicle; CSc, collum scapulae; T, trapezius muscle; S, 
supraspinatus muscle.

Figure S2 The detailed architecture of the U-Net, which consists of an encoder (left) and a decoder (right). Different 2D operations are 
denoted by different arrows. The learnt multi-channel feature maps are shown in light blue and the copied feature maps are shown in white. 
The channel numbers of the feature maps are denoted by the digits above the feature maps. ReLU, rectified linear unit; conv, convolution; 
2D, two-dimensional.
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Figure S3 Comparison between (A) ground truth, predictions of (D-F) 2D U-Nets, (C) 3D U-Net, and (B) the BAT-Net of another subject 
with higher volume of supraclavicular fat depots. BAT, brown adipose tissue; 3D, three-dimensional; 2D, two-dimensional.
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Table S1 The overall evaluations of training of the BAT-Net with different loss functions

Loss function
Evaluation metrics, mean ± SD

DSC Precision Recall

Generalized dice loss 0.874±0.021 0.912±0.028 0.840±0.027

Tversky loss 0.877±0.024 0.890±0.039 0.864±0.024

Focal Tversky loss 0.880±0.022 0.893±0.037 0.868±0.024

Dice loss 0.878±0.020 0.910±0.030 0.848±0.026

BAT, brown adipose tissue; SD, standard deviation; DSC, dice similarity coefficient.

Table S2 Average mean DSC of 5-fold cross-validation on different networks

Methods Average DSC, mean ± SD

2D U-Net (axial) 0.84±0.01

2D U-Net (coronal) 0.84±0.01

2D U-Net (sagittal) 0.83±0.01

3D U-Net 0.83±0.02

BAT-Net 0.85±0.01

DSC, dice similarity coefficient; SD, standard deviation; 2D, two-dimensional; 3D, three-dimensional; BAT, brown adipose tissue.

Table S3 Comparison of the proposed BAT-Net with 2D U-Nets and 3D U-Net on number of trainable parameters, training time, rate of 
convergence and inference time

Methods

Network performance

Number of trainable 
parameters (M)

Training time  
(seconds/epoch)

Time of convergence 
(epochs)

Inference time  
(seconds/subject)

2D U-Net (axial) 7.76 50 48 0.7

2D U-Net (coronal) 7.76 48 58 0.6

2D U-Net (sagittal) 7.76 49 34 0.6

3D U-Net 16.32 130 65 7.1

BAT-Net 0.23 55 132 2.6

BAT, brown adipose tissue; 3D, three-dimensional; 2D, two-dimensional.


