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Background: Three-dimensional (3D) black-blood (BB) vessel wall imaging is a promising noninvasive 
imaging technique for assessing thoracic aortic diseases. We aimed to develop and evaluate a fast thoracic 
aorta vessel wall imaging method with patch-based low-rank tensor (Pt-LRT) reconstruction using the 
3D-modulated variable flip angle fast-spin echo (vFA-FSE) sequence.
Methods: The Pt-LRT technique adopts a low-rank tensor image model with regularization to explore the 
local low-rankness and nonlocal redundancies of the images to assess the thoracic aorta vessel wall. It uses 
high-order tensors to capture correlations between data in multiple dimensions and reconstructs images from 
highly undersampled data. For this study, 12 healthy participants and 2 patients with thoracic aortic diseases 
were evaluated at 3T magnetic resonance (MR). The reconstruction results were compared to the traditional 
generalized autocalibrating partially parallel acquisitions (GRAPPA) and ℓ1-SPIRiT reconstruction to assess 
the feasibility of the proposed framework. Quantitative analyses of the vessel wall thickness (VWT), internal 
diameter (ID), lumen area (LA), and contrast-to-noise ratio (CNR) between the lumen and vessel wall were 
performed on all healthy participants.
Results: Results demonstrated no significant differences between the GRAPPA and the proposed Pt-LRT 
in VWT, ID, or LA of the aorta (P<0.05). A higher mean CNR was attained with 3D patch–based low-rank 
tensor reconstruction than with ℓ1-SPIRiT reconstruction (49.4±10.8 vs. 38.9±8.2).
Conclusions: The proposed 3D BB thoracic aorta vessel wall imaging method can reduce the scan time 
and produce an image quality that is in good agreement with the conventional GRAPPA acquisition, which 
takes approximately more than 8 min. This study also shows that the proposed Pt-LRT method substantially 
improves the visualization and sharpness of the vessel wall and the definition of the tissue boundary 
compared to the imaging obtained with ℓ1-SPIRiT.

Keywords: Magnetic resonance imaging (MRI); patch-based low-rank tensor (Pt-LRT); thoracic aorta; vessel wall 
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Introduction

Diseases of the thoracic aorta are some of the most common 
causes of cardiovascular morbidity and mortality and 
can result in potentially catastrophic consequences (1-3). 
Thoracic aortic imaging can be used to diagnose aortic 
diseases and may help predict cardiovascular risk (4). Aortic 
computed tomography angiography (CTA) with intravenous 
iodinated contrast material is the most widely used 
diagnostic modality for clinical situations (5-7). However, 
CTA has potential risks from radiation and intravenous 
contrast exposure, and it is not suitable to use for repeated 
checks. Furthermore, CTA only enables measurement of 
the lumen stenosis and cannot show lesions on the vessel 
wall. Aortic MR imaging can accurately visualize the entire 
aorta without using ionizing radiation or injecting iodinated 
contrast material (8,9).

Black-blood (BB) vessel wall magnetic resonance 
imaging (MRI) has been demonstrated to be a promising 
technique for the assessment of thoracic aortic diseases 
(10,11). Through blood signal suppression, it can increase 
the contrast between the blood and vessel wall (12). 
Therefore, it can support the detection of conditions such 
as arterial wall thickening, aortic dissection, and vulnerable 
atherosclerotic plaques (13-16). In addition, the high spatial 
resolution can visualize and characterize the composition of 
atherosclerotic plaques in vivo based on MR signal intensity 
and can evaluate the effect of medical treatment on changes 
in wall thickness more precisely (12,17).

Previous studies demonstrated that 3-dimensional (3D) 
imaging has some advantages because it allows for improved 
signal-to-noise (SNR) and higher spatial resolution 
compared to 2D imaging (18,19). BB thoracic aortic 
imaging is realized by using a magnetization-preparative 
module before the pulse to maximize the contrast between 
blood and the vessel wall (20,21). In doing so, the SNR of 
the image may be reduced (22). The thoracic aorta vessel 
wall imaging with a 3D-variable flip angle (vFA) fast-spin 
echo (FSE) with Sampling Perfection with Application-
optimized Contrasts by using different flip angle Evolutions 
(SPACE) has traditionally been used for the assessment 
of the thoracic aortic disease in clinical practice and can 
achieve high spatial resolution vessel wall imaging (23,24).

The BB effect of the 3D vFA-FSE is achieved by setting 
the initial refocusing flip angle (RFA) as low as possible and 
gradually increasing the RFA over the remainder of the 
echo train. The vFA-FSE is named CUBE (GE), SPACE 
(Siemens), and VISTA (Philips) by different vendors. Thus, 
the blood signal can be better suppressed without using 
any magnetization-preparative module (14,25,26), and the 
SNR of the vessel wall can be maintained. However, the 
image data can only be acquired during the middle diastole 
to restrain the cardiac motion artifacts, and it requires a 
long scan time when the 2-fold generalized autocalibrating 
partially parallel acquisitions (GRAPPA) reconstruction is 
used. The low acquisition efficiency may lead to the patient 
moving and is poorly tolerated by most patients.

Compressed sensing (CS) has been widely used because 
it can accelerate image acquisition. Recently, CS has been 
successfully applied to the BB imaging of carotid plaque, 
where it exhibited a comparable image quality to the fully 
sampled methods with significantly reduced scanner times 
(27-29). However, the image quality contains blurring, and 
the image contrast appears reduced for high accelerations 
when the conventional CS is used, such as the ℓ1-SPIRiT 
regularization (30).

Recently, the patch-based low-rankness of the image 
matrix has achieved good results in accelerating MRI 
by using the anatomical correlation of images locally, 
outperforming conventional CS reconstructions by restoring 
better image edges and details, and exhibiting improved 
overall image quality (31,32). The use of tensor structures 
that implicitly enforce low-rankness for accelerated imaging 
has been proposed (33-36). These techniques exploit the 
strong anatomical correlations observed in multidimensional 
images on a global scale, which use the entire image series 
as a tensor directly, or on a local scale, which extract 
the image patches that have higher correlations in the 
neighborhood and rearrange them to form local tensors. 
The reconstruction with patch-based low-rank tensors (Pt-
LRT) using the local processing approach has been shown to 
outperform low-rank tensor reconstruction globally (31,36). 
As an extension of the matrix, the high-order tensors could 
better describe the data by describing multilinear latent 
structures beyond the pairwise interactions captured by 
matrices, which may enable high-resolution thoracic aorta 
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imaging with higher accelerations while maintaining clinical 
image quality and scan time. Therefore, this study primarily 
focused on the optimization of the vFA-FSE sequence to a 
higher acceleration and on improving image quality with the 
Pt-LRT algorithm to achieve an isotropic high-resolution 
thoracic aorta wall imaging with clinically acceptable scan 
duration.

An in vivo experiment was used in this work, with the 
traditional GRAPPA acquisition and CS-based ℓ1-SPIRiT 
reconstruction being compared to determine the superiority 
of the proposed framework. The feasibility of the proposed 
method was demonstrated in 12 healthy participants 
and 2 patients within a 4.5 s free-breathing acquisition. 
Quantitative analyses of the vessel wall thickness (VWT), 
internal diameter (ID), lumen area (LA), and contrast-
to-noise ratio (CNR) between the lumen and wall were 
performed on all healthy participants. Statistical analyses of 
the VWT, ID, and LA were used to test the measurement 
agreement between the Pt-LRT reconstruction and its 
corresponding GRAPPA sampling. Statistical analysis of 
the CNR between the lumen and wall was also used to test 
the image quality between Pt-LRT reconstruction and ℓ1-

SPIRiT reconstruction.

Methods

Sequence optimization and data acquisition

The schematic and timing diagrams of the 3D T1-
weighted BB modulated vFA-FSE sequence are shown in 
Figure 1. The Cartesian undersampling is the prospective. 
To minimize the cardiac motion artifacts and pulsatility 
artifacts, 2 image datasets of the thoracic aorta are acquired 
using electrocardiogram (ECG) gating triggered to the 
middle diastole. One data set is sampled with a variable 
density sampling pattern accompanied by an elliptical 
k-space coverage, and the other is sampled with 1D 
GRAPPA. A fat saturation pulse is used for magnetization 
preparation and is followed by the vFA-FSE acquisition.

An asymmetric pulse is used for the spatially selective 
radiofrequency (RF) excitation, which can shorten the echo 
time and maximize the contrast between the aortic wall, 
blood, and perivascular fat. Furthermore, the echo spacing 
(ESP) can be shorted by employing the short nonselective 
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Figure 1 (A) The fat saturation pulse for the magnetization preparation was inserted before the vFA-FSE acquisition. This sequence 
acquires n (= ETL) echoes per RF excitation, and each of the readouts are obtained in the middle diastole period. (B) The pulse-sequence 
diagram of the T1-weighted vFA-FSE sequence for the thoracic aorta imaging. (C) The flip angle train used in the 3D vFA-FSE. (D) A 
simplified illustration of a k-space sampling pattern. TTD is the time of the trigger delay. R-R is the time interval of a cardiac cycle. vFA, 
variable flip angle; FSE, fast-spin echo; ETL, echo train length; RF, radiofrequency.
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RF pulses in the refocusing pulse train. A short ESP can 
minimize the duration of the echo train thus the reduced 
blurring. 

The flip angle train used in the 3D vFA-FSE is shown 
in Figure 1C. vFA-FSE can reduce the blurring because 
the modulation of the refocusing flip angles keeps the 
magnetization relatively constant over the long echo  
train (37). An echo train of about 45 was used in this work 
to reduce the scan time.

The Cartesian trajectory with variable density is 
performed in the ky-kz plane, where kz is the slice direction. 
A fully sampled k-space center area with 32 autocalibration 
scan (ACS) lines for calibration in GRAPPA reconstruction. 
Variable  density  Cartes ian sampling (Figure  1D )  
with CS is used to accelerate image acquisition, and an 
iterative Pt-LRT algorithm for the imaging reconstruction 
of sparsely undersampled k-space data (38). For each 
mask, a k-space center area 32×22 in size is fully sampled 
for the calibration in the ℓ1-SPIRiT and low-rank tensor 
reconstruction (Figure 1D).

Forward reconstruction model

Let x y zN N NX M × ×∈  be the image to be reconstructed, where Nx , 
Ny, and Nz are the number of voxels in the frequency encoding, 
phase encoding, and slice directions. x y z cN N N NY M × × ×∈  is the 
acquired k-space data, where Nc denotes the number of the 
phase-array coils. Then, the forward reconstruction model 
can be given by the following formula:

 Y EX ε= +  [1]

where ε represents the measurement noise and E is the 
encoding operator (39), including the undersampled Fourier 
operator and the coil sensitivities, which can be formulated 
as E = AFS, where S denotes the coil sensitivity map, F 
denotes the Fourier transform operator, and A denotes the 
undersampling mask. The forward reconstruction model 
presented in Eq. [1] is usually ill-conditioned due to sub-
Nyquist sampling. Therefore, regularizers that induce prior 
information can be incorporated into the objective function, 
and the image reconstruction is then formulated as an 
optimization problem:

( )21argmin
2

λ− +X F
EX Y R X  [2]

where the first term represents data consistency with 
acquired measurements, R(·) is a regularization term, ||·||F is 
the Frobenius norm, and λ is the regularization parameter.

Pt-LRT reconstruction

In this study, a Pt-LRT reconstruction model with 
regularization is proposed to explore the global low-rankness 
and nonlocal self-similarity of the thoracic aorta images. The 
method first extracts similar 3D patches to form fourth-order 
tensors, and then a class of low-rank penalties is employed 
to explore the low-rankness of the tensors. A block matching 
algorithm is used to extract similar anatomical patches from 
X at each spatial location, after which X can be regarded as a 
high-order low-rank representation on a patch scale, possibly 
with respect to an appropriately chosen patch selection 
operator. Let Pp(·) denote the patch selection operator, which 
extracts a group of similar patches centered at pixel p from 
the image (p=1,2,...,Nx×Ny×Nz) (40) and constructs them to a 
fourth-order low-rank tensor Γp, where Γ

p
patchb b b N

p
× × ×∈ , b is 

the patch size, and p
patchN  represents similar patches numbers; 

thus, the process can be formulated as Γp=Pp(X). To reduce 
the complexity, we limit the maximum similar patch number 
to Np,max. Furthermore, the total variation (TV) transform as 
the sparse transform has been widely used for reconstructing 
an MR image from an undersampled data set. TV is suitable 
to use in thoracic aortic imaging since it can preserve image 
edges. Therefore, the image reconstruction problem can be 
modeled as the following optimization problems with the 
high-order low-rank tensor Γp and TV regularization on the 
image:

( )

( )

2
1 2 1*

s

1argm

.t

n

.

i D
2

λ λ− +∑ Γ +

Γ =

X p pF

p p

EX Y X

P X
 [3]

where ||·||* is the nuclear norm, ||·||1 is the L1 norm, ||D(X)||1 

is defined as ( ) ( )
1 1

D X X , ,
i j k

i j k= ∇∑ ∑ ∑ , and λ1 is a 
regularization parameter. Eq. [3] can be converted into the 
following equivalent constrained optimization problem 
through variable splitting:

( ) ( )

2
1 2 1*

1argmin Z
2

,s.t D.

λ λ− +∑ Γ +

Γ = =

X p pF

p p

EX Y

P X Z X
 [4]

By using the Lagrangian optimization scheme, Eq. [4] 
can be rewritten as the following:

( ) ( )
2 2

2 1 1 2

2

2
1 2 1*

1

1argmin Z
2 2 2

α α µ αλ λ
µ µ

− +∑ Γ + Γ +−− + − −X p p p pF
F F

EX Y P X Z D X
 [5]
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2 2 2

α α µ αλ λ
µ µ
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F F

EX Y P X Z D X

Eq. [5] can be solved through the alternating direction 
method of multipliers (ADMM) (41) by transforming the 
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optimization problem into 5 subproblems:
Update on X:

( ) ( ) ( )
2 2

2 1 1 2
1

1 2

21argmin
2 2 2

µ α µ α
µ µ

−= − ++ Γ − −−n
X p pF

F F

L X EX Y P X Z D X

 [6]

( ) ( ) ( )
2 2

2 1 1 2
1

1 2

21argmin
2 2 2

µ α µ α
µ µ

−= − ++ Γ − −−n
X p pF

F F

L X EX Y P X Z D X

Subproblem Eq. [6] could be solved through the 
conjugate gradient (CG) algorithm.

Update on Γp:

( ) ( )
2

1 1
12 *

1

argmin
2p

n
p p p p p

F

L P Xµ αλ
µΓΓ = ∑ Γ + −Γ −  [7]

Subproblem Eq. [7] can be solved in 3 steps. First, high-
order singular value decomposition (HOSVD) is applied 
to the tensors Γp, which effectively acts as a high-order 
denoising process. A demonstration of the HOSVD is 
shown in Algorithm 1 in Appendix 1. Second, the denoised 
tensors are rearranged to form denoised patches. Finally, 
the image patches are overlapping and can be combined by 
simple averaging (see Figure 2, Aggregation) to generate the 
final image estimation T.

Update on Z:

( ) ( )
2

1
2 2

3 2
2

argmin
2Z

n

F

L XZ Z Z Dµ αλ
µ

= + − −  [8]

Subproblem Eq. [8] can be solved with soft thresholding 

with the solution to ( )1 2 2

2 2

  ,n nZ ST D X α λ
µ µ

+  
= + 

 
, where ST(·) 

denotes the soft thresholding operator, which is defined as 

follows:

( ) ( )max 0,m vmST m
m

= −  [9]

where m is an element of the image matrix, and v is the 

threshold.
Update on α1:

( )1 1 1
1 1 1
n n n nX Tα α µ+ + += + −   [10]

Update on α2:

( )( )1 1 1
2 2 2
n n n nD X Zα α µ+ + += + −  [11]

Experiments

All in vivo imaging examinations were performed on 3T 
whole-body MRI scanners (u790, United Imaging, Shanghai, 
China) during free breathing. A 12-channel phased array 
abdomen coil and an integrated spine matrix coil (total of  
24 channels) were used for signal reception. The study 
recruited 12 healthy volunteers (aged 20–55 years; 2 females) 
and 2 patients (aged 64 and 60 years; 1 male and 1 female). 
MR images of the whole thoracic aorta using an oblique 
sagittal orientation were acquired during free breathing. For 
each scan, both conventional GRAPPA and the proposed 3D 
T1-weighted vFA-FSE were acquired in the same participant. 
Both of the 2 imaging schemas were ECG-triggered to the 
mid-diastolic rest period (the trigger delay was about 500–700, 
depending on the cardiac cycle) to minimize flow artifacts.

The conventional GRAPPA acquisition was performed 
as a reference. The imaging parameters for the traditional 
GRAPPA were as follows: GRAPPA undersampling in the 
phase encoding direction with elliptical k-space scanning 
(the total accelerated factor was 3.06); ACS =32, 4 averages; 
echo time (TE)/repetition time (TR) =20.67/R-R ms; 
echo train length (ETL) =40–45; matrix =240×208×76; 
1.2 isotropic resolution; BW =700 Hz/pixel; and spectral 
presaturation with inversion recovery. The average scan 
time was 7.5±1.8 min. Variable density Cartesian sampling 
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Figure 2 The flow diagram of the patch-based low-rank tensor reconstruction method. S1, S2, and S3 denote the X, Y, and Z dimensions of 
the image, respectively. HOSVD, high-order singular value decomposition.
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had similar acquisition parameters as those for GRAPPA 
acquisition except for the use of a CS k-space undersampling 
pattern with an acceleration of 5/5.5, an average of 3.5, and 
a scan time that could be reduced to 4.5 min (about a 40% 
reduction). Then, they were reconstructed with the ℓ1-
SPIRiT and the proposed Pt-LRT reconstruction.

All of the reconstructions were performed in MATLAB 
R2014b (MathWorks, Natick, MA, USA) and a workstation 
with 2 10-core 2.60-GHz Intel Xeon processors (Intel Xeon 
E5-2660V3 and 128 GB memory). The regularization 
parameter λ was determined empirically (the optimal 
value of λ was 0.01) by balancing the noise/artifacts and 
blurring in the ℓ1-SPIRiT reconstructions. For the Pt-LRT 
reconstruction method, all regularization parameters were 
also selected empirically. The size of the patch was set as 
6×6×6. Before application of the ADMM, the k-space data 
were normalized by scaling the data to have a maximum 
magnitude of 1. λ1 with the value of 0.002, 0.002, 0.002, or 
0.004 in the HOSVD denoising process worked well. In 
this study, since the size of the patch used for constructing 
the high-order tensor Γp is 6×6×6, if  p

patchN  denotes the 
number of similar patches, the size of the resultant tensor 
Γp is 6×6×6× p

patchN . The number of rows for the unfolding 
matrix of Γp along the mode-4 (denoted by T(4)) is much 
larger than that of other 3 unfolding matrices of Γp along 
the mode-1, 2, 3 [denoted by T(1), T(2), T(3)]. We used a 
value of 0.004 to provide more weight for the low rankness 
of T(4). For the ADMM penalty parameters µ1 and µ2, and 
the soft thresholding threshold v , we investigated a range 
of values and found empirically that µ1=0.01, µ2=0.05, and 
v=0.01 were good initializations. Furthermore, we used 
varying penalty parameters to make the algorithm reach a 
fast convergence by increasing µ1 and µ2 with an increment 
in each subsequent iteration:

1 1 1 2 2 2/ /ADMM ADMMi iµµ µ µ µ µ→ + → +  [12]

where iADMM denotes the ADMM iteration number, iADMM is 
set as 10, and the CG iteration number is set as 15. In view 
of the convergence numerically, the relative change in the 
solution between 2 consecutive iterations can be calculated 
and defined as follows:

1 1 /iter iter iterF F
X X X− −−  [13]

where Xiter denotes the reconstructed image at the iter-
th ADMM iteration. Based on our experience, the 
performance of Pt-LRT is sensitive to the iteration number 
of ADMM. The relative change stabilizes rapidly within a 
few iteration numbers and has no significant changes when 

the iteration number reaches 10. When the relative change 
in the solution between the 2 consecutive iterations is less 
than the predefined value of 4×10−3 or when the algorithm 
reaches the maximum iteration, the stopping criterion is 
defined.

The study was conducted in consistent with the 
Declaration of Helsinki (as revised in 2013). It was approved 
by the Ethics Committee at the Shenzhen Institute of 
Advanced Technology, Chinese Academy of Sciences (No. 
SIAT-IRB-180315-H0228), and written informed consent 
was obtained before experiments from all participants.

Image analysis

Three different spatial orientations (the transverse, 
coronal, and sagittal views) reconstructed by the GRAPPA, 
Pt-LRT, and ℓ1-SPIRiT are shown in Figures 3,4. A 
conventional GRAPPA sequence was used to serve as a 
reference for morphological (i.e., the lumen and vessel 
wall) quantification and image quality (i.e., CNR, SNR, 
and sharpness) assessment of the thoracic aorta. For each 
healthy participant, the thoracic aorta was divided into  
5 segments from the ascending aorta to the descending aorta 
(Figure 5A). The lumen and outer wall contours of the vessel 
wall (Figure 5B) on all of the cross-sectional slices (Figure 5C)  
were drawn on the 2 above-described reconstructed images 
(GRAPPA, Pt-LRT), which were manually signed by a 
radiologist. Based on these contours, the VWT, ID, and 
LA of the 5 different levels were measured. Quantitative 
analysis (VWT, ID, and LA) was only used on the Pt-LRT 
reconstruction and its corresponding GRAPPA reference 
to test whether the proposed method could obtain the 
accurate measurement of the lumen and vessel wall with 
reduced imaging time. A paired t test was used to compare 
the quantitative analyses of the GRAPPA acquisition and the 
proposed method. A P value of less than 0.05 was considered 
statistically significant.

In addition, to evaluate the effect on image quality, the 
average of the wall-lumen CNR and SNR of the 5 different 
levels of the aorta shown in Figure 5A was measured in 
the 40th slice of the cross-sectional 3D vessel wall images 
acquired with GRAPPA, the proposed method, and ℓ1-
SPIRiT reconstruction.

The CNR between the lumen blood and vessel wall was 
calculated using the following formula:

( ) /WA LA SDCNR SMI SMI Noise= −  [14]

The SNR of  the wal l  [SNR (wal l ) ]  and lumen 
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[SNR(lumen)] were measured, and they were calculated 
using a method adopted from a previous publication (42): 

( )
( )

 SNR wall /

SNR lumen /
WA SD

LA SD

SMI Noise

SMI Noise

=

=
 [15]

where SMIWA and SMILA are the mean signal intensity of 
the vessel WA and the LA (Figure 5B), respectively. The 
mean CNR (mCNR) values for each healthy participant 
were acquired by averaging the measurement results of the 
5 different levels of the aorta from the ascending aorta to 

descending aorta. NoiseSD is the standard deviation of the 
air signal. Furthermore, the differences in CNR between 
the proposed method and ℓ1-SPIRiT reconstruction were 
assessed using a paired t test, and the statistical significance 
was set to P<0.05.

The sharpness measurements of the proposed Pt-LRT, 
GRAPPA, and ℓ1-SPIRiT reconstruction are shown in 
Table 1. The sharpness quantization strategy was similar to 
that used in previous publications (43,44). A straight line 
was drawn perpendicular to the vessel wall to obtain a line 

GRAPPA Patch-based low-rank tensor SPIRiT

Tr
an

sv
er

sa
l &

 c
or

on
al

 v
ie

w
S

ag
itt

al
 v

ie
w

Figure 3 Representative results of the thoracic MRI scans with 3 different views under the GRAPPA, Pt-LRT reconstruction, and ℓ1-
SPIRiT reconstruction. According to the sharpness quantification in Table 1, the vessel definition of Pt-LRT in CNR and sharpness were 
better than those of the ℓ1-SPIRiT reconstruction. The Pt-LRT technique clearly improved overall image quality and produced better 
vessel sharpness, whereas obvious blurring (the red arrowheads in ℓ1-SPIRiT images) was observed in the ℓ1-SPIRiT images. There were no 
significant differences between the Pt-LRT and GRAPPA in the thoracic aorta. The poor blood signal suppression in the aortic arch might 
have been caused by the incomplete flow void due to slow blood flow in the thoracic aorta (the white arrowheads). MRI, magnetic resonance 
imaging; GRAPPA, generalized autocalibrating partially parallel acquisitions; Pt-LRT, patch-based low-rank tensor; CNR, contrast-to-noise 
ratio.
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profile. The sharpness of the boundary was defined based 
on the profile using the following equation:

VWsharpness = 1/d  [16]

where d is defined as the distance between positions where 
the intensity values of the profile can be changed from 
0.2 to 0.8 of the difference between the maximum and 
minimum intensity values (in millimeters). The sharpness 

GRAPPA

SPIRiT

Patch-based low-rank tensor

Figure 4 The results of the thoracic MRI scans from another volunteer. The red arrows show the vessel wall of the thoracic aorta in 3 
directions with the proposed 3 methods. Boundary blurring was presented when ℓ1-SPIRiT reconstruction was performed. MRI, magnetic 
resonance imaging; GRAPPA, generalized autocalibrating partially parallel acquisitions.
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of the vessel wall from the inner and outer boundaries was 
measured from ascending aorta to descending thoracic 
aorta and averaged. The mean sharpness (Msharpness) values 
of each healthy participant were acquired by averaging the 
measurement results of the 5 different levels of the aorta 
from the ascending aorta to descending aorta. We compared 
these quantitative image analyses of the 3 methods.

Furthermore, since the constructed patch-based tensors 
are fourth-order tensors, we cannot visualize them. To show 
the low rankness of the patches, we selected a tensor at the 
ascending aorta region from the constructed patch-based 
tensors and visualized its 4 unfoldings [T(1), T(2), T(3), T(4)]. 
The corresponding singular values demonstrated the low 
rankness of the unfoldings.

Vessel wall thickness (VWT: mm) Internal diameter (ID: mm) Lumen area (LA: mm2)

1 1.8±0.2 21.1±2.8 240.5±56

2 1.5±0.3 17.4±3.2 205.3±62

3 1.5±0.4 16.6±3.5 178.6±25

4 1.3±0.3 16.1±3.7 169.3±30

5 1.2±0.3 15.9±2.9 165.5±50

Quantitative analysis (VWT, ID, and LA) of BB images by the patch-based low-rank tensor 

Vessel wall thickness (VWT: mm) Internal diameter (ID: mm) Lumen area (LA: mm2)

1 1.9±0.3 22.1±1.9 249.1±40

2 1.6±0.2 18.1±2.2 210.1±53

3 1.4±0.5 16.2±2.8 169.6±22

4 1.3±0.2 16.0±3.2 169.1±29

5 1.2±0.1 15.1±2.8 164.1±41

Quantitative analysis (VWT, ID, and LA) of BB images by GRAPPA

1

2

3

3 1 2 4 5

4

5

Noise

LA

WA

A B C

D

E

Figure 5 Qualitative analysis results from healthy volunteers. Data are presented as the mean ± SD. (A) Images in the reformatted sagittal 
view of the aorta and transversal cross-sections at 5 different locations (C1–5). (B) Graphic illustration of measuring the LA and WA in 
healthy participants (the red arrow). The red arrow points to the noise that presents the measurement area of the noise. (C) Transversal 
cross-sections at 5 different locations of the aorta. (D) Quantitative analysis (VWT, ID, and LA) of BB images with the proposed Pt-LRT. (E) 
Quantitative analysis (VWT, ID, and LA) of BB images with the GRAPPA. The P value of the VWT was 0.39, the ID was 0.19, and the LA 
was 0.34. There were no significant differences between the GRAPPA and the proposed Pt-LRT in VWT, ID, or LA of the aorta. P<0.05 
was considered significantly different. SD, standard deviation; LA, lumen area; WA, wall area; VWT, vessel wall thickness; ID, internal 
diameter; Pt-LRT, patch-based low-rank tensor; GRAPPA, generalized autocalibrating partially parallel acquisitions.
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Results

Representative results of the thoracic MR images with 3 
different views are shown in Figures 3,4. A good depiction 
of the aortic arch and clear outer and inner aortic wall 
delineation in the descending aorta was obtained by the 
proposed reconstruction. The image showed a vessel 
definition and sharpness comparable to that of GRAPPA 
(the reference). Boundary blurring/unclear delineation 
existed between the wall and surroundings, as well as the 
outer wall, when ℓ1-SPIRiT reconstruction was performed, 
as shown by the red arrowheads shown in Figures 3,4 on 
the coronal and transverse views. Therefore, the proposed 
approach could provide better quality images of the thoracic 
aorta compared with the ℓ1-SPIRiT approach. However, 
due to slow blood flow in the thoracic aorta (the white 
arrowheads), poor blood-signal suppression was present in 
the aortic arch because of the incomplete flow void.

The results of the quantitative analysis of VWT, ID, and 
LA of the BB images obtained by the proposed method are 
shown in Figures 5,6. The means and standard deviations 
were measured for all healthy volunteers for the 5 different 
levels. As a whole, the lumen gradually became smaller from 
the ascending aorta to the descending aorta. There were no 
significant differences between the GRAPPA imaging and 
the proposed method in VWT, ID, or LA (P<0.05). Linear 
regression was often used to test the measurement agreement 
in morphological and functional parameters between Pt-
LRT and corresponding GRAPPA reference. Bland-Altman 
analysis was also used to determine the extent of agreement. 
Based on the Bland-Altman plots (Figure 6B,6D,6F), excellent 
agreements of VWT, ID, and LA measurement results were 
observed between the Pt-LRT and GRAPPA image sets. For 
VWT measurements, an absolute mean difference of −0.003 
with a 95% limits of agreement from −0.014 to 0.0086 was 
obtained; for ID measurements, −0.037 with a 95% limits 
of agreement from −1.05 to 0.98 was obtained; and for LA 

measurements, −3.20 with a 95% limits of agreement from 
−24.85 to 18.45 was obtained. Therefore, according to the 
linear regression and Bland-Altman analysis, there were 
no significant differences and the agreement was excellent 
between the GRAPPA imaging and the proposed method in 
VWT, ID, and LA.

The mean CNR measurements for the aorta were 
49.4±3.4 and 38.9±6.8 for the proposed reconstruction and 
ℓ1-SPIRiT, respectively. CNR between the arterial wall and 
the lumen was 21% less with ℓ1-SPIRiT compared with 
the proposed reconstruction. The results demonstrated an 
improved image contrast ratio compared to the ℓ1-SPIRiT 
reconstruction. A paired t test (P<0.05) was performed to 
identify statistically significant differences in CNR. The 
analysis of the ℓ1-SPIRiT reconstruction had a significant 
difference compared to that of the proposed reconstruction 
according to the SNR measurements of the proposed Pt-
LRT, GRAPPA, and ℓ1-SPIRiT reconstruction, as shown 
in Table 1. SNR (lumen) in all regions of interest (ROIs) of 
the thoracic aorta were significantly lower with Pt-LRT 
than with GRAPPA or ℓ1-SPIRiT. The CNR and SNR 
(wall) were significantly higher with Pt-LRT than with ℓ1-
SPIRiT. Moreover, Pt-LRT had a slightly lower SNR (wall) 
and CNR than did GRAPPA, but this difference was not 
significant. However, there were no significant differences 
between GRAPPA and Pt-LRT in SNR and CNR. 
Furthermore, in sharpness quantification, there were no 
significant differences between the Pt-LRT and GRAPPA 
in the thoracic aorta wall imaging, whereas the sharpness 
was significantly higher with Pt-LRT than with ℓ1-SPIRiT 
reconstruction. Therefore, the tensor low-rank model does 
not affect the CNR evaluation, although the tensor low-
rank reconstruction results appear a little smoother.

Figure 7A presents the 4 unfoldings of the tensor along 
different modes, and Figure 7B plots the corresponding 
singular values of the unfoldings to demonstrate the low-
rankness of the patch-based tensor. We have added a detailed 

Table 1 Quantitative analysis (SNR, CNR, and sharpness) of the black-blood images

Quantitative analysis index GRAPPA Patch-based low-rank tensor ℓ1-SPIRiT

SNR (lumen) 19.8±3.4 17.9±4.2 20.2±1.3

SNR (wall) 71.2±6.5 67.3±7.6 59.1±8.1

CNR 51.4±3.1 49.4±3.4 38.9±6.8

Sharpness 0.83±0.02 0.78±0.05 0.69±0.12

Data are presented as the mean ± SD. CNR, contrast-to-noise ratio; SNR, signal-to-noise ratio; GRAPPA, generalized autocalibrating 
partially parallel acquisitions; SNR (lumen), the SNR of the lumen area; SNR (wall), the SNR of the wall area.
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description of the HOSVD algorithm in Appendix 1.
Figure 8 shows the BB imaging of the aortic arch in a 

64-year-old male patient with an aortic aneurysm in the 
left side of the aortic arch that was acquired using the 3D 
vFA-FSE sequence. An aneurysm was clearly depicted in 
all 3 views (red arrowheads). The motion artifacts (yellow 
arrowhead) could be seen in the GRAPPA imaging because 
of the long imaging time.

Figure 9 shows the imaging results of a female patient 

(60 years old) with a large saccate superior vena cava tumor 
near the arch of the aorta (red arrowheads). Vortex flow 
patterns were present in the ascending aorta. Although, 
poor blood-signal suppression was seen in the transverse 
multiplanar reformation (MPR) images due to the vortex 
flow in the ascending aorta (white arrowheads). The vessel 
walls were clearly depicted, and the definition of the tumor 
boundary could also be clearly visualized on the transverse 
and coronal views of the BB image.
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Figure 6 Qualitative analysis results from 12 healthy volunteers. (A,C,E) Comparison of VWT, ID, and LA measurements, respectively, 
using the proposed Pt-LRT and conventional GRAPPA as the reference. Blue lines represent the identity line (Y = X), whereas solid red 
lines represent the regression of the results from these 2 methods. (B,D,F) Bland-Altman plots comparing measurement results acquired 
by these 2 imaging techniques. Solid red lines and dashed blue lines indicate the SDs and means of VWT, ID, and LA values between the 
different methods. VWT, vessel wall thickness; ID, internal diameter; LA, lumen area; Pt-LRT, patch-based low-rank tensor reconstruction; 
GRAPPA, generalized autocalibrating partially parallel acquisitions.
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Discussion

Three-dimensional vFA-FSE is commonly used to 
noninvasively assess the vulnerable plaques in the thoracic 
aorta. Recently, several blood-imaging methods with 
multicontrast have been proposed to obtain the bright MR 
angiography and BB vessel wall images simultaneously. 
Examples of related studies include Yoneyama et al. (45), 
who reported a method called REACT (Relaxation-
Enhanced Angiography without Contrast and Triggering 
(REACT) with Multiple Delays (REACT-MD), and 
a method reported by Hu et al. (46) called the MT-
MACS(Multitasking-based Multidimensional Assessment 
Of Cardiovascular System). In addition, Tachikawa et al. (11) 
proposed a novel method named Bright and Dark Blood 
Images with Multishot Gradient-Echo EPI (BRIDGE) to 
evaluate MRA and VWI in the thoracic aorta. However, 
the spatial resolution is lower with these methods. In order 
to image the thoracic aorta, especially for the aortic vessel 
wall, a higher spatial resolution with isotropic resolution is 
critical for the more detailed depiction of the vessel wall, 
and partial volume effects can be reduced. However, higher 
spatial resolution may lead to an increased scan time.

For the low-rank tensor reconstruction, a global low-
rank tensor model that captured data correlation in multiple 

dimensions, including spatiotemporal or spatiospectral 
correlation, was applied to reconstruction images from 
undersampled data in the study by He et al. (33). In the 
study by Guo et al. (36), the functional MRI (fMRI) time 
series was broken into nonoverlapping time blocks and used 
to construct the patch-tensors, which only imposed low-
rankness on temporal blocks instead of the whole fMRI time 
series. In our study, overlapping patches of the whole image 
were used to construct the Pt-LRTs, which exploited the 
similarities among neighboring pixels and nonlocal pixels 
over the whole image and may be more rank-deficient.

In this paper, we present a fast imaging strategy for 3D 
BB thoracic aorta imaging and demonstrate its feasibility 
in healthy participants and patients with thoracic aortic 
diseases. The results show that the optimized vFA-
FSE sequence combined with the patch-based low-rank 
reconstruction can achieve 3D thoracic aorta VWI under 
free-breathing conditions within ~4.5 min. The visualization 
and sharpness of the vessel wall and the definition of the 
tissue boundary are comparable to those of the traditional 
GRAPPA approach, which takes approximately more than 
7.5 min. On average, the proposed method reduces the 
acquisition time by 1.7 min compared with the traditional 
GRAPPA approach. The reconstructed results also show 
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superior CNR, vessel sharpness, and delineation of the 
outer vessel wall with the proposed patch-based low-rank 
reconstruction compared to the ℓ1-SPIRiT reconstruction. 
The image quality contained blurring and reduced image 
contrast for high accelerations when the ℓ1-SPIRiT 
was used. The higher image quality and clear boundary 
definition of the vessel wall enabled by our method 
supported a higher spatial resolution. Thus, a more accurate 
measurement of the small changes in vessel wall dimensions 
could benefit from higher resolution. In this work, the 
spatial resolution was 1.2×1.2×1.2 mm3 with isotropic 
resolution. The higher resolution is highly desirable to 

better delineate the vessel wall of the aortic and reduce the 
partial volume effect.

In this study, we used an average of 4 to increase the SNR 
of the acquired image data. However, in order to reduce 
the free-induction-decay artifacts, we averaged the image 
data along the repetition dimension. Therefore, the data 
used for reconstruction were a single-frame data set, and 
the tensor might not have been low rank if we constructed 
the whole 3D data set as a global tensor. Therefore, we did 
not include the global low-rank tensor as a reference for the 
reconstruction comparison.

Furthermore, respiratory motion is another motion type 

GRAPPA

Patch-based low-rank tensor

Figure 8 A 64-year-old man with a small aortic aneurysm in the left lateral of the aorta arch (red arrowheads). Three views in the lesion are 
shown based on the GRAPPA and proposed patch-based low-rank tensor. Both vessel walls of the aorta arch obtained by the GRAPPA and 
the proposed patch-based low-rank tensor were well depicted. Both blood signals were uniformly suppressed in the aorta arch, and the small 
lesion (red arrows) was clearly depicted. Motion artifact (yellow arrow) was presented in the GRAPPA imaging because of the long imaging 
time. GRAPPA, generalized autocalibrating partially parallel acquisitions.
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that would affect the image quality of cardiac MR images. 
Generally, the diaphragmatic navigator-gated technique (47) 
or respiratory-ordered phase encoding (48) is used to reduce 
respiratory motion artifacts. In our work, these respiratory 

corrections were not used with the vFA-FSE sequence, and 
these strategies may improve image quality. In order to 
trade off the imaging time and respiratory artifacts, multiple 
signals (with scans repeated 3 or 4 times) were averaged to 

GRAPPA

Patch-based low-rank tensor

Figure 9 A 60-year-old woman with a large saccate superior vena cava tumor near the arch of the aorta (red arrows). Vortex flow patterns 
were presented in the ascending aorta. The vessel wall near the lesion could be sufficiently assessed, and superior delineation of the outer 
vessel wall was realized by the 2 methods on the coronal and transverse MPR images (yellow arrows). Poor blood signal suppression was 
seen in the transverse MPR images due to the vortex flow in the ascending aorta (white arrows). MPR, multiplanar reformation.
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minimize respiratory and other motion-related artifacts, as 
has been done previously (49,50).

First, all the imaging data were obtained in the mid-
diastolic period to realize BB imaging. However, this 
strategy may result in severe motion artifacts in patients 
with cardiac arrhythmias and irregular breathing rhythms. 
Furthermore, the magnetic inhomogeneity in the thorax 
leads to SNR reduction of the ascending aorta and partial 
signal loss (51). The image quality can be improved by 
shimming the ascending aorta in focus; however, this 
method may not be suitable for patients with respiratory 
disorders or arrhythmia. Second, with the proposed 
method, conditions of cardiac hypofunction, vortex flow 
patterns, or reduced blood flow can decrease the BB effect 
(i.e., aortic arch) due to insufficient blood flow (24). As 
shown in Figure 3, the slow blood flow in the thoracic aorta 
or the vortex flow in the ascending aorta (Figure 7) can lead 
to an incomplete flow void, thus causing poor blood-signal 
suppression in the aortic arch. Third, with the proposed 
method, the acquisition time is related to the R-R interval, 
with a shorter R-R interval requiring a reduced acquisition 
time. In other words, with a lower heart rate and a longer 
R-R interval, the acquisition time increases. Therefore, 
the imaging time across different individuals may vary 
according to the difference in heart rates. The ETL can be 
increased to shorten the acquisition time in individuals with 
a slow heart rate. Regardless, most can be completed within 
4.5 min.

Our study had some limitations. First, the reconstruction 
time is a major issue that needs to be shortened. In this 
work, to accelerate the process, patch extraction was 
implemented in C++ using graphical processing units, and 
parallel computing was applied in the HOSVD denoising 
of tensors  for each group of similar patches. The 
reconstruction time was about 1 hour. The reconstruction 
time may be further shortened by implementing the whole 
reconstruction in C++, which will be implemented in future 
studies. Furthermore, algorithm optimization and use of 
graphics processing units or parallel processing methods 
should help speed up the reconstruction. Second, a larger 
number of clinical cases are needed to validate the feasibility 
of the proposed technique. In addition, various thoracic 
aortic diseases, including aortic dissection, aortic aneurysm, 
aortic atherosclerosis, and vasculitis, need to be further 
assessed by our developed method. Thus, a large number of 
patients with different types of thoracic aortic diseases need 
to be recruited to test the utility of this method.

Nonetheless, the good image quality of the thoracic 

aorta images is sufficient for the proposed 3D MR imaging 
technique to diagnose diseases of the thoracic aorta.

Conclusions

This work proposed a high-resolution, 3D MRI technique 
for thoracic aorta imaging by optimizing a vFA-FSE 
technique with iterative Pt-LRT reconstruction. The results 
demonstrate that the proposed scheme is approximately 1.7 
times faster than the GRAPPA acquisition and can yield 
comparable image quality. The reconstruction results are 
also better than those of the ℓ1-SPIRiT reconstruction in 
terms of the thoracic aorta vessel delineation, vessel wall 
sharpness, and improved aortic wall-lumen CNR. Further 
evaluation of the proposed method in patients with various 
thoracic aortic diseases will be conducted to determine its 
clinical use in the future.
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Supplementary

Appendix 1

Algorithm 1 Higher-order singular value decomposition (HOSVD) for Pt-LRT reconstruction

INPUT: fourth-order tensor 1 2 3 4 Γ C × × ×∈ N N N N
 with dimensions (N1,N2,N3,N4) and the regularization parameter λ=[λ1, λ2, λ3, λ4]

ALGORITHM:
Unfold the tensor along its single modes:

T(1): reshapes Γ into an N1×( N2×N3×N4)complex matrix.
T(2): reshapes Γ into an N2×( N1×N3×N4) complex matrix.
T(3): reshapes Γ into an N3×( N1×N2×N4) complex matrix.
T(4): reshapes Γ into an N4×( N1 ×N2×N3) complex matrix.

(2) Compute the complex SVD of T(n) (n = 1, 2, 3, 4) and obtain the orthogonal matrices U(1), U(2), U(3) and U(4) from the n-mode signal 
subspace,
(3) Compute the complex core tensor  related by

( ) ( ) ( ) ( )1 2 3 41 2 3 4 =Γ× × × ×U U U U H H H H
  

which is equivalent to its unfolding forms:

( ) ( ) ( ) ( ) ( )  ⊗=  
 U T U UH

n n n i jG , with 1 ≤ n ≤ 4 and € ≠ j ≠ n  

where ⊗ represents the Kronecker product.
(4) Compute the high-order singular value truncation (soft thresholding on G(n):

( )
( )( ) max 0,| |ST p p= −

n G n
p λ
p  

where p is an element of the G(n).
(5) Construct back the filtered tensor with the n-mode (n = 1, 2, 3, 4) unfolding matrix , calculated as follows:

( ) ( ) ( ) ( ) [ ]H
i j= ⊗T U denoise

n n U U  with 1 ≤ n ≤ 4 and i ≠ j ≠ n

OUTPUT: The denoised tensor  is obtained by folding.


