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Background: Accurate whole prostate segmentation on magnetic resonance imaging (MRI) is important in 
the management of prostatic diseases. In this multicenter study, we aimed to develop and evaluate a clinically 
applicable deep learning-based tool for automatic whole prostate segmentation on T2-weighted imaging 
(T2WI) and diffusion-weighted imaging (DWI).
Methods: In this retrospective study, 3-dimensional (3D) U-Net-based models in the segmentation tool 
were trained with 223 patients who underwent prostate MRI and subsequent biopsy from 1 hospital and 
validated in 1 internal testing cohort (n=95) and 3 external testing cohorts: PROSTATEx Challenge for 
T2WI and DWI (n=141), Tongji Hospital (n=30), and Beijing Hospital for T2WI (n=29). Patients from 
the latter 2 centers were diagnosed with advanced prostate cancer. The DWI model was further fine-
tuned to compensate for the scanner variety in external testing. A quantitative evaluation, including Dice 
similarity coefficients (DSCs), 95% Hausdorff distance (95HD), and average boundary distance (ABD), and a 
qualitative analysis were used to evaluate the clinical usefulness.
Results: The segmentation tool showed good performance in the testing cohorts on T2WI (DSC: 0.922 
for internal testing and 0.897–0.947 for external testing) and DWI (DSC: 0.914 for internal testing and 
0.815 for external testing with fine-tuning). The fine-tuning process significantly improved the DWI model’s 
performance in the external testing dataset (DSC: 0.275 vs. 0.815; P<0.01). Across all testing cohorts, the 
95HD was <8 mm, and the ABD was <3 mm. The DSCs in the prostate midgland (T2WI: 0.949–0.976; 
DWI: 0.843–0.942) were significantly higher than those in the apex (T2WI: 0.833–0.926; DWI: 0.755–0.821) 
and base (T2WI: 0.851–0.922; DWI: 0.810–0.929) (all P values <0.01). The qualitative analysis showed that 
98.6% of T2WI and 72.3% of DWI autosegmentation results in the external testing cohort were clinically 
acceptable.
Conclusions: The 3D U-Net-based segmentation tool can automatically segment the prostate on T2WI 
with good and robust performance, especially in the prostate midgland. Segmentation on DWI was feasible, 
but fine-tuning might be needed for different scanners.
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Introduction

Accurate prostate whole-gland segmentation on magnetic 
resonance imaging (MRI) plays an important role in 
the management of prostate cancer and benign prostate 
hyperplasia (1,2). For malignant prostate cancer, accurate 
and efficient prostate contour identification is critical 
for magnetic resonance (MR) ultrasound fusion biopsy, 
cancer staging, and radiation therapy (2,3). Apart from 
providing the prostate contour, autosegmentation of the 
whole prostate gland can also calculate the prostate volume 
more efficiently and accurately, which could facilitate the 
management of benign prostate hyperplasia in surgery 
planning and treatment response evaluation (4).

Traditionally, the segmentation of the whole prostate 
gland is performed manually on T2-weighted imaging 
(T2WI). However, manual segmentation is a time-
consuming process that requires the observer to have 
a good grasp of the anatomy of the prostate gland and 
its relevant structures. The recent advancements in the 
application of deep learning have resulted in outstanding 
achievements in medical imaging analysis. A recently 
proposed U-Net architecture has been successfully applied 
to prostate segmentation (5,6). Previous studies focused 
on the autosegmentation of the whole prostate gland with 
T2WI have reported mean Dice scores of 0.825 to 0.940 
(6-10). However, most of these studies were based on public 
or single-center datasets. Although several multicenter and 
multi-MR vendor studies have been carried out to prove 
the stability and reliability of these convolutional neural 
networks (CNNs), these studies lack external validation 
using nonpublic heterogeneous datasets (5,7). Additionally, 
wi th  the  d iagnos i s  and management  of  prosta te 
malignancies being considered, diffusion-weighted imaging 
(DWI) is also vital (11,12). Nevertheless, few studies have 
reported the feasibility of segmenting the whole prostate 
gland on DWI. Therefore, a preliminary study is needed 
to demonstrate the feasibility of this approach, which could 
serve as the foundation for future intraprostatic lesion 
segmentation. Furthermore, a more important indicator of 
these segmentation models—the clinical utility—has only 
been sparsely reported in the literature.

In this study, we aimed to develop a 3-dimensional 
(3D) U-Net-based segmentation tool for automatic and 

accurate segmentation of the whole prostate gland on 
both T2WI and DWI and to verify the tool’s performance 
in heterogeneous multicenter datasets. In addition, we 
performed a qualitative analysis of the autosegmentation 
results to assess the models’ clinical practicability. We 
present the following article in accordance with the 
TRIPOD reporting checklist (available at https://qims.
amegroups.com/article/view/10.21037/qims-22-1068/rc).

Methods

Datasets

Patients who were treatment-naive and who underwent 
prostate multiparametric MRI (mpMRI) and subsequent 
biopsy between November 2014 and December 2018 
at  Peking Union Medical  College Hospital  were 
retrospectively enrolled. Patients were excluded if the image 
quality was poor and had severe artifacts or if the normal 
prostate margins were difficult to identify due to extensive 
tumor invasion. A total of 318 patients were finally included. 
These patients were divided into a training-validation 
cohort (n=223; n=178 in the training group and n=45 in the 
validation group, in each fold of cross-validation) and an 
independent internal testing cohort (n=95) based on their 
MR examination times.

Additionally, to fully verify the performance of the 
models in different groups, 3 external testing cohorts (1 
public and 2 private) were employed in this study. The 
public external testing cohort used the testing group of 
the PROSTATEx Challenge available from The Cancer 
Imaging Archive (PXtest cohort, n=141), in which the task 
was to predict the clinical significance of prostate lesions 
found in MRI (13,14). Another 2 external testing cohorts 
included patients from different nonpublic centers with 
various vendors. These patients received a diagnosis 
of advanced prostate cancer and were candidates for 
androgen-deprivation treatment. After patients were 
excluded following the same criteria mentioned above, the 
final datasets included 30 patients from Tongji Hospital 
(TJH cohort) and 29 patients from Beijing Hospital (BJH 
cohort). The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013) and approved 
by the institutional review board of Peking Union Medical 
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College Hospital (No. K22C1922). Individual consent for 
this retrospective analysis was waived. Figure S1 shows the 
dataset selection process of this study.

Prostate MR image acquisition and ground truth 
segmentation

For patients from our institution, a 3.0 T MR scanner 
(Discovery 750, GE Healthcare, Milwaukee, WI, USA) 
was used. For patients from the PROSTATEx dataset, 
2 different types of Siemens 3.0 T MR scanners, the 
Magnetom Trio and Skyra, were used. The MR vendors 
for the TJH cohort and the BJH cohort included Siemens, 
GE, and Philips, with different magnetic field strengths  
(1.5 T and 3.0 T). The detailed MRI acquisition parameters 
of each group are presented in Table S1. Our institution 
followed the recommendation of Prostate Imaging-
Reporting and Data System version 2 (PI-RADS v.2) and 
acquired DWI images with b values of 0, 100, 150, 200, 
500, 800, 1,000, 1,500, and 2,000 s/mm2. However, in 
the external testing group (PXtest cohort), only 3 b values 
were acquired (50, 400, and 800 s/mm2). On the other 
hand, benign prostate signal suppression increased as the 
b value increased, which would limit the reorganization of 
the whole prostate gland (15). Therefore, we chose DWI 
images with b value =800 s/mm² for analysis in this study.

The patients’ axial T2WI and DWI images were 
collected and manually segmented by 1 radiologist (>1,000 
prostate MR images interpreted) to serve as the ground 
truth. Another senior radiologist (>3,000 prostate MR 
images interpreted) reviewed the images and modified 
the contour if necessary. Manual segmentation on MR 
images was performed on the Deepwise Research Platform 
(Deepwise Healthcare; http://label.deepwise.com). In the 
manual segmentation process, the radiologist who was 
blinded to the automatic segment carefully segmented 
the prostate nature contour to serve as the ground truth, 
which meant that when the tumor was beyond the 
prostate capsule, this portion would not be included in the 
segmentation. For the TJH cohort and BJH cohort, only 
T2WI images were collected for testing, and because of 
the retrospective collecting manner, these patients’ DWI 
images were unavailable.

Segmentation process for the whole prostate gland

Preprocessing
Before the model was trained, the axial images were resampled 

to a uniform pixel spacing, the median of the pixel spacing 
of the training cohort, to offset the bias caused by resolution 
inconsistency (T2WI images: 3.00×0.51×0.51; DWI 
images: 3.00×1.41×1.41). The input patch size of images 
was the average nonzero area of all images (T2WI images: 
14×352×352; DWI images: 20×174×250). Then, the intensity 
of the images was normalized using z score normalization.

CNN
The proposed segmentation tool contained 2 CNN models 
for T2WI and DWI. 3D U-Net-based segmentation models 
were trained with a self-configuring nnU-Net (16), in which 
the model structure and the optimal hyperparameters were 
obtained automatically. For every pixel of an input image, 
the model outputs a likelihood estimate for being part of 
the whole prostate gland. The overall framework of the 
model training procedure is shown in Figure 1. The model’s 
structure is elaborated in Appendix 1 and Table S2.

To avoid overfitting, data augmentation methods, 
including mirroring, scaling, rotation, and translation, 
were applied. The training was performed using 5-fold 
cross-validation with 500 epochs for each run and an 
initial learning rate of 0.01. The batch size of 2 was 
calculated using the nnU-Net framework based on the 
graphics processing unit (GPU) memory and the number 
of parameters of the model. The loss function was the 
combination of the Dice loss and the binary cross entropy 
(BCE) loss.

In the inference stage, the ensemble results of the  
5 models trained in the 5-fold cross-validation procedure 
were used as the mode prediction, and the postprocessing 
was applied to further refine the segmentation results. In 
the postprocessing procedure, the regions other than the 
maximum connected domain were filtered out to reduce the 
false-positive identification of extraprostatic organs or tissues.

Fine-tuning process
Previous studies reported a s ignif icantly inferior 
performance of CNN models for autosegmentation on 
DWI images in external datasets with different MR vendors 
(17,18). With the concern of the inferiority of our DWI 
model in external testing, the fine-tuning method was set as 
an alternative compensation method for the DWI model in 
our study. Furthermore, the training group of PROSTATEx 
(PXtrain cohort, n=203) was collected for fine-tuning. The 
original training cohort and the fine-tuning cohort were 
combined to train another 50 epochs, with an initial 
learning rate of 0.0001. This procedure is seen as an upper 
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bound on the possible performance of domain adaption (19). 
More details about the fine-tuning process are presented in 
Appendix 2.

Quantitative analysis

We calculated the Dice similarity coefficient (DSC), 95% 
Hausdorff distance (95HD), and average boundary distance 
(ABD) to evaluate the performance of our 3D U-Net 
models. The DSC is widely used to quantify the spatial 
overlap between segmentations, with its value ranging 
from 0 (indicating no overlap) to 1 (indicating perfect  
overlap) (20). 95HD and ABD are commonly used 
to evaluate the boundary errors of segmentations. To 
investigate how the prostate morphology would affect the 
model’s performance, we calculated the DSC in the apex, 
midgland, and base of the prostate.

Qualitative analysis

To evaluate the utility of CNN segmentation results in 
clinical practice, qualitative analysis was performed in the 
internal testing cohort and PXtest cohort. The radiologist 
(>1,000 prostate MR images interpreted) scored the CNN 
segmentation results on both T2WI and DWI using the 

following 5-point scoring system: 5, perfect; 4, acceptable; 
3, unacceptable with moderate corrections required; 2, 
unacceptable with major corrections required; and 1, 
reject. The soring details are presented in Table 1. CNN 
segmentation results with scores ≥4 were considered 
clinically acceptable.

Statistical analysis

The software used for data analysis was R version 4.2.0 
(The R Foundation for Statistical Computing, https://www.
r-project.org) and PyTorch version 1.6.0 (https://pytorch.
org/). The major component of our code is available 
in open-source repositories (nnU-Net: available from 
https://github.com/MIC-DKFZ/nnUNet). The patients’ 
characteristics and the metrics’ distributions are described 
as the median and interquartile range (IQR) or mean and 
standard deviation for quantitative characteristics and by 
the frequency and percentage for qualitative characteristics. 
The quantitative segmentation performance difference 
between before and after the fine-tuning process and 
among the different parts of the prostate was compared 
using a paired Wilcoxon test. The P values were corrected 
with the Bonferroni-Holm procedure for the number of 
combinations. P values <0.05 were considered statistically 
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Figure 1 A schematic illustration of the model training and evaluation process of this study. (A) Image collection. T2WI and DWI were 
included in the study. (B) Image preprocessing. The preprocessing procedure was composed of resampling and normalization. (C) Model 
training. The T2WI and DWI models were trained using a 5-fold cross-validation procedure. (D) Joint training. The DWI model was 
further trained through the combination of a training cohort and the PXtrain cohort. (E) Model evaluation. Our models were evaluated 
using 1 internal testing cohort and 3 external testing cohorts (PXtest cohort, TJH cohort, and BJH cohort), and subjective evaluation was 
also performed. T2WI, T2-weighted images; DWI, diffusion-weighted images; PXtrain, the training group of the PROSTATEx Challenge 
dataset; PXtest cohort, testing group of the PROSTATEx Challenge dataset; TJH cohort, Tongji Hospital cohort; BJH cohort, Beijing 
Hospital cohort.

https://cdn.amegroups.cn/static/public/QIMS-22-1068-supplementary.pdf


Quantitative Imaging in Medicine and Surgery, Vol 13, No 5 May 2023 3259

© Quantitative Imaging in Medicine and Surgery. All rights reserved.   Quant Imaging Med Surg 2023;13(5):3255-3265 | https://dx.doi.org/10.21037/qims-22-1068

Table 1 Criteria for qualitative analysis

Score Criteria

1 Reject: adjusting the CNN segmentation would take more time than manual segmentation, and manual resegmentation is 
preferred

2 Unacceptable with major corrections required: the time needed for adjusting CNN segmentation and manual resegmentation is 
comparable

3 Unacceptable with moderate corrections required: manual adjustment would be faster than manual segmentation but would 
require several minutes

4 Acceptable: minor corrections are needed (corrections are expected to be completed within 1 minute). Adjusting the CNN 
segmentation consumes substantially less time than does manual segmentation

5 Perfect: no corrections or slight adjustments are needed (it might require a few seconds). The CNN segmentation is ready for 
clinical use

CNN, convolutional neural network.

Table 2 Clinicopathological characteristics of patients in the nonpublic datasets 

Variable Training cohort (n=223) Internal testing cohort (n=95) TJH cohort (n=30) BJH cohort (n=29)

Age (years)† 65±8 66±8 67±8 71±8

Prostate volume (mL)‡,§ 49.1 [34.0–70.3] 41.6 [28.3–58.8] 46.2 [38.0–68.8] 43.0 [31.1–66.5]

PI-RADS¶

1–2 28.3 (63/223) 15.8 (15/95) 0.0 (0/30) 0.0 (0/29)

3 9.0 (20/223) 9.5 (9/95) 0.0 (0/30) 24.1 (7/29)

4 29.1 (65/223) 50.5 (48/95) 3.3 (1/30) 27.6 (8/29)

5 33.6 (75/223) 24.2 (23/95) 96.7 (29/30) 48.3 (14/29)

Nonprostate cancer¶ 53.4 (119/223) 29.5 (28/95) 0.0 (0/30) 0.0 (0/29)

Prostate cancer¶ 46.6 (104/223) 70.5 (67/95) 100.0 (30/30) 100.0 (29/29)

Clinical T stage¶

T1–2 59.6 (62/104) 70.1 (47/67) 0.0 (0/30) 20.7 (6/29)

T3 38.5 (40/104) 26.9 (18/67) 40.0 (12/30) 37.9 (11/29)

T4 1.9 (2/104) 3.0 (2/67) 60.0 (18/30) 41.4 (12/29)
†, mean ± standard deviation; ‡, median [interquartile range]; §, volume was calculated from manual segmentation results; ¶, % (n/N). TJH 
cohort, Tongji Hospital cohort; BJH cohort, Beijing Hospital cohort; PI-RADS, Prostate Imaging-Reporting and Data System.

significant.

Results

Patients’ demographic characteristics

The clinicopathological data for patients in nonpublic 
datasets are summarized in Table 2. The mean age in the 
training cohort, internal testing cohort, TJH cohort, 
and BJH cohort was 65±8, 66±8, 67±8, and 71±8 years, 

respectively, with a median prostate volume of 49.1 (IQR, 
34.0–70.3), 41.6 (IQR, 28.3–58.8), 46.2 (IQR, 38.0–68.8), 
and 43.0 (IQR, 31.1–66.5) mL, respectively.

Model segmentation performance for the whole prostate 
gland

The DSC of the 3D U-Net model on T2WI images 
reached 0.922±0.033 in the internal testing cohort, with a 
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95HD of 4.024±3.224 mm and an ABD of 0.681±0.446 mm. 
The average DSCs in the 3 external testing groups were all 
above 0.890, with a range of 0.897–0.947 (Table 3).

As for the DWI segmentation model, its performance is 
also presented in Table 3. The DSC reached 0.914±0.045 
for the internal testing cohort but declined sharply to 0.275 
for the external testing cohort. To clarify the underlying 
reasons for this finding, the influencing factor analysis in the 
external testing cohort is shown in Appendix 3 and Table S3.  
The results showed that scanning parameters, including 
repetition time, MR scanner, echo train length, and slice 
thickness, were significant influencing factors for the DWI 
model in the external testing cohort (all P values <0.05).

After the fine-tuning procedure, the model reached a 
DSC of 0.815±0.155 for the PXtest cohort, and its 95HD and 
ABD were 7.411±13.131 and 2.102±8.264 mm, respectively. 
All these parameters were significantly improved compared 
to the parameters before fine-tuning (all P values <0.001).

Model segmentation performance for the apex, midgland, 
and base of the prostate

The segmentation results in the apex, midgland, and base of 
the prostate in both the internal and external testing cohorts 
are presented in Figure 2. In general, the segmentation 
performance was the best in the midgland of the prostate, 
followed by the base and the apex.

For the T2WI model, the DSCs in the midgland of the 

prostate were 0.949–0.976 in the testing cohorts, while the 
DSCs in the apex (0.833–0.926) and base (0.851–0.922) 
were significantly lower (all P values <0.01). Using DWI 
images, the DSCs in the midgland of the prostate were also 
higher (0.843–0.942) than in the apex (0.755–0.821) and 
base (0.810–0.929) in the testing cohorts (P<0.01).

Qualitative analysis of segmentation performance

The qualitative analysis results for the internal testing 
cohort and PXtest cohort are presented in Table 4. In the 
internal testing cohort, the subjective scores were greater 
than or equal to 4 in 100% of cases for T2WI (92.6% with 
a score of 5 and 7.4% with a score of 4), and the scores were 
greater than or equal to 4 in 97.9% of cases for DWI (89.5% 
with a score of 5 and 8.4% with a score of 4). In the PXtest 
cohort, for T2WI, 79.4% of cases were rated as a score 
of 5, 19.1% of cases were rated as a score of 4, and only  
2 cases (1.4%) were rated as a score of 3. Therefore, 98.6% 
of segmentation results on T2WI were considered clinically 
acceptable. For DWI results, most cases (102/141, 72.3%) 
reached satisfying subjective scores. Specifically, 51.8% of 
cases were rated as a score of 5, and 20.6% of cases were 
rated as a score of 4. Figure 3 shows 2 examples of the 
CNN segmentation results from the PXtest cohort with 
corresponding DSC and subjective scores to illustrate the 
models’ clinical utility with both quantitative and qualitative 
analyse.

Table 3 Dice similarity coefficient, 95% Hausdorff distance, and average boundary distance of the 3-dimensional U-Net model using T2-
weighted and diffusion-weighted images 

Sequences Cohort DSC 95HD (mm) ABD (mm)

T2-
weighted 
imaging

Training cohort (n=223) 0.989±0.002 (0.988–0.989) 0.469±0.124 (0.452–0.485) 0.048±0.021 (0.045–0.051)

Internal testing cohort (n=95) 0.922±0.033 (0.915–0.929) 4.024±3.224 (3.363–4.684) 0.681±0.446 (0.590–0.773)

PXtest cohort (n=141) 0.897±0.051 (0.889–0.906) 4.719±2.768 (4.257–5.182) 1.093±0.697 (0.976–1.209)

TJH cohort (n=30) 0.902±0.134 (0.851–0.953) 4.447±4.046 (2.910–5.983) 0.948±1.188 (0.497–1.399)

BJH cohort (n=29) 0.947±0.032 (0.934–0.959) 3.481±2.803 (2.396–4.566) 0.468±0.359 (0.329–0.607)

Diffusion-
weighted 
imaging

Training cohort (n=223) 0.952±0.011 (0.951–0.954) 0.570±0.406 (0.516–0.624) 0.080±0.038 (0.075–0.085)

Internal testing cohort (n=95) 0.914±0.045 (0.905–0.923) 1.510±1.999 (1.100–1.919) 0.243±0.276 (0.187–0.300)

PXtest cohort (n=141)† 0.275±0.371 (0.213–0.337) 50.823±45.858 (42.988–58.658) 33.385±36.413 (27.163–39.606)

PXtest cohort (n=141)‡ 0.815±0.155*** (0.789–0.841) 7.411±13.131*** (5.217–9.605) 2.102±8.264*** (0.721–3.482)

Data are presented as mean ± standard deviation (95% confidence intervals). ***, P<0.001 when compared with the results before fine-
tuning; †, the results before fine-tuning; ‡, the results after fine-tuning. DSC, Dice similarity coefficient; 95HD, 95% Hausdorff distance; 
ABD, average boundary distance; PXtest cohort, testing group of the PROSTATEx Challenge dataset; TJH cohort, Tongji Hospital cohort; 
BJH cohort, Beijing Hospital cohort.
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Challenge dataset; TJH, Tongji Hospital; BJH, Beijing Hospital. 

Table 4 Qualitative analysis of the segmentation results in the internal testing cohort and PXtest cohort using T2-weighted and diffusion-
weighted images 

Cohorts Cases
Score 

5 4 3 2 1

Internal testing 
cohort

T2WI 92.6 (88/95) 7.4 (7/95) 0.0 (0/95) 0.0 (0/95) 0.0 (0/95)

DWI 89.5 (85/95) 8.4 (8/95) 2.1 (2/95) 0.0 (0/95) 0.0 (0/95)

PXtest cohort T2WI 79.4 (112/141) 19.1 (27/141) 1.4 (2/141) 0.0 (0/141) 0.0 (0/141)

DWI 51.8 (73/141) 20.6 (29/141) 9.9 (14/141) 8.5 (12/141) 9.2 (13/141)

Data are presented as % (n/N). PXtest cohort, testing group of the PROSTATEx Challenge dataset; T2WI, T2-weighted imaging; DWI, 
diffusion-weighted imaging.

Discussion

In this study, we developed a 3D U-Net-based segmentation 
tool to automatically segment the whole prostate gland on 
T2WI and DWI images. We tested the tool’s reliability 
using various internal and external testing groups. In 
general, the model’s performance for segmenting the 
whole prostate gland on T2WI images was outstanding 
and remained stable across different vendors with various 
magnetic field strengths and scanning parameters, especially 
in the midgland of the prostate. The segmentation 
performance on DWI images was also excellent in the 
internal testing group but was impaired by the scanning 

parameter variance in the external testing group. 
Nevertheless, the fine-tuning method was demonstrated 
to be useful in solving this problem and improving the 
model’s performance. Apart from this quantitative analysis, 
our study also performed a qualitative analysis of the 
autosegmentation results, which supported the clinical 
utility of the automated CNN segmentation results.

Numerous  s tud ie s  have  proposed  spec i a l i zed 
architectures and training scheme modifications to achieve 
competitive segmentation (21-23), but it remains difficult 
to improve upon the basic U-Net if the corresponding 
training procedure is designed adequately (16). Thus, U-Net 
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was chosen as the foundation of our model. Studies have 
reported DSCs ranging from 0.825 to 0.940 for CNN-based 
autosegmentation on T2WI (10). However, performances 
in nonpublic heterogenous external testing datasets have 
rarely been reported. Zavala-Romero et al. (7) developed 
a 3D U-Net-based segmentation algorithm for prostate 
segmentation using T2WI across multiple MRI vendors 
and demonstrated that training with heterogeneous data 
could achieve a more stable performance. Soerensen et al. (5) 
used multicenter images to train their deep learning model, 
ProGNet, for prostate whole gland segmentation, which 
showed good performance in public datasets for external 
validation. Comparatively, our segmentation models, which 
were trained using images from 1 MR scanner, also showed 
stable and robust performance in various external testing 
cohorts regardless of the differences in MR scanners, 
magnetic field strengths, and MR acquisition parameters. 
In addition, even though the 2 nonpublic external testing 
cohorts contained more advanced-stage patients and shared 
different patient characteristics with the training group, 
our T2WI model also showed good performance in these 
datasets. The possible reasons for the excellent performance 
of our model on T2WI could be the following: first, the 
scanning parameters of T2WI in the training cohort were 
heterogeneous, and the number of patients was sufficient, 

which would make our model well adapted to various 
cohorts; second, the training procedure in the nnU-Net 
framework was designed adequately, a large variety of 
data augmentation techniques were adopted to prevent 
overfitting, and the ensemble method was used to improve 
the robustness.

DWI i s  indi spensable  for  eva luat ing  prosta te 
malignancies according the PI-RADS. In addition, DWI is 
considered valuable in the dose escalation to the dominant 
intraprostatic lesions in radiotherapy (11). Accurate whole 
prostate gland segmentation on DWI could serve as a 
foundation for future intraprostatic lesion segmentation 
on the same images. However, the feasibility has not been 
demonstrated in previous studies. Some studies have used 
DWI as a complementary sequence and built CNN models 
for the combination of T2WI and DWI (10,24,25). Clark 
et al. (26) designed a model for segmenting DWI images 
(b=0 s/mm2) of the prostate and found good training results. 
In general, DWI images with a b value =0 s/mm2 share 
a great similarity with T2WI, and provide no additional 
information for the diagnosis, while DWI images with 
higher b values are more frequently used in clinical studies. 
We trained our model to segment the whole prostate gland 
on DWI images with b=800 s/mm2 and found excellent 
performance in the internal testing cohort. In addition, we 

Apex                           Midgland                          Base Apex                           Midgland                          Base

DSC =0.931  Subjective score =5

T2WI DWI

M
anual       U

-N
et

DSC =0.912  Subjective score =4 DSC =0.796  Subjective score =2

DSC =0.860  Subjective score =5

A

B

Figure 3 Examples of segmentation results. (A) In this case, the 3-dimensional U-Net model (red line) showed a good overlap with the 
manual segmentation (green line) in the apex, midgland, and base (from left to right) of the prostate on both T2WI and DWI, with an 
overall DSC of 0.931 for T2WI and 0.860 for DWI. The subjective scores for both T2WI and DWI segmentation results were 5. (B) In this 
case, the overall DSC was 0.912 on T2WI and 0.796 for DWI. The subjective score for T2WI was 4, which required minor modification 
in the apex and base of the prostate. As for DWI images, the model showed a poor overlap with the manual segmentation, with a subjective 
score of 2. T2WI, T2-weighted images; DWI, diffusion-weighted images; DSC, Dice similarity coefficient.
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tested the model using an external cohort. Although the 
segmentation performance sharply decreased when the 
model was directly applied to the external testing cohort 
with different MR scanners, this finding was consistent with 
previous studies that segmented acute ischemic lesions and 
lymph nodes on DWI (17,18). The possible reason for the 
decline of the DWI model’s performance in the external 
testing cohort could be the scanning parameter difference 
between these images. The multivariate logistic regression 
analysis showed that the repetition time, MR scanner, echo 
train length, and slice thickness were significant influencing 
factors for autosegmentation in the heterogeneous external 
testing group. Although increasing the cohort size and 
heterogeneity of the training group is a possible solution, 
the fine-tuning procedure—which was demonstrated to be 
useful in our study—could be a more feasible method to 
make up for this deficiency.

We also analyzed the model’s performance in different 
anatomical structures of the prostate: the apex, midgland, 
and base. The results showed that this model performed 
the best in the midgland of the prostate, followed by the 
base and the apex. Segmentation difficulties in the apex and 
base of the prostate were also reported by other studies. Nai  
et al. (10) reported the highest segmenting DSC in the 
midgland of the prostate, but the DSC in the base was 
quite low, with a value of 0.576. Montagne et al. (27) 
found radiologists’ manual segmentation of the whole 
prostate gland showed a significantly higher DSC for the 
midgland (0.95) and a lower DSC for the apex (0.90) and 
the base (0.87). In the apex and base of the prostate, the 
prostate outlines are difficult to differentiate from adjacent 
structures, which increases the difficulty for automatic 
segmentation algorithms. Further improvements of the 
model should be made in the segmentation of the apex and 
base of the prostate.

At present, most CNN-based segmentation models use 
quantitative methods for model evaluation. Nevertheless, 
integrating models into clinical practice and analyzing 
their utility is also important for clinicians. Soerensen 
et al. (5) tested their model in a prospective cohort and 
integrated their deep learning model into the clinical 
workflow as part of fusion biopsy. This model outperformed 
radiology technicians for segmenting the whole prostate 
gland and took significantly less time (35 seconds/case vs.  
10 minutes/case) to yield a clinically useable segmentation 
file. However, their prospective cohort was quite small, 
with only 11 patients. To evaluate the clinical utility of our 
model, we proposed a 5-point subjective scoring system 

based on that of Tang et al. (28). This scoring system’s 
criteria were mainly based on the comparison of the 
estimated time consumption for modification and manual 
resegmentation. Autosegmentation results that required 
minor or even no corrections were considered acceptable. 
Subjective analysis showed most segmentation results on 
T2WI images were clinically acceptable, and under DWI, 
most cases were considered clinically acceptable. These 
automatic segmentation results with high scores were 
considered ready to be used in clinical scenarios with minor 
corrections or even without modification.

There were some limitations to this study. First, 
although we analyzed the model’s performance on DWI 
images, we were limited by the number of external testing 
cohorts. A thorough analysis of related influence factors 
and further improvements is needed. Second, although a 
qualitative analysis was performed to verify the models’ 
clinical practicability, future work integrating them into 
clinical practice and analyzing the performance is needed. 
Finally, the acquisition process for manually segmented 
ground truth data was time-consuming. Considering the 
outstanding performance of our present model, using 
autosegmentation with subsequent radiologists’ manual 
adjustment to serve as the ground truth is feasible in future 
studies. Doing so could save time generating a ground truth 
dataset and make enlarging the training cohort possible.

Conclusions

We found that the 3D U-Net-based segmentation tool 
could automatically segment the prostate using T2WI 
images with a good and robust performance in all testing 
datasets. Autosegmentation on DWI images was also 
feasible, while fine-tuning might be needed in external 
testing groups with heterogenous MR scanning parameters. 
Regardless of the MR sequences, the segmentation results 
for the midgland of the prostate were consistently better 
than for the other parts. These clinically acceptable 
autosegmentation results can help the management of 
prostate diseases in the future.
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Supplementary

Appendix 1 The detailed description of the model architecture

The network architecture, including the encoder path and the decoder path, was automatically determined by the nnU-
Net framework via the data properties. In our case, for the T2-weighted images (T2WI), U-Net architecture consisted 
of 5 downsampling blocks and 5 upsampling blocks. In contrast, for the diffusion-weighted images (DWI) with a lower 
resolution, the model consisted of 3 downsampling blocks and 3 upsampling blocks. The detailed information is elaborated 
upon in Table S2.

Appendix 2 The detailed fine-tuning processes

The original training and fine-tuning cohorts were combined to train another 50 epochs, with a smaller initial learning rate 
of 0.0001. The parameters of the entire network were all updated. Similar to the original training procedure, the batch size 
of 2 was calculated with the nnU-Net framework based on the graphic processing unit (GPU) memory and the number of 
parameters of the model. The loss function was the combination of the Dice loss and the binary cross entropy (BCE) loss.

Appendix 3 Statistical analysis of the influencing factors for the Dice similarity coefficient on DWI 
images in the PXtest cohort without fine-tuning

A multivariate logistic regression analysis was performed to analyze the potential influencing factors in the decline of the 
DWI model’s performance in the external testing cohort. The candidate influencing factors were echo time, repetition time, 
MR scanner, echo train length, and slice thickness.
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Treatment-naive patients who
had undergone prostate MRI and

subsequent biopsy at our
institution between November 2014
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Table S1 MRI acquisition parameters for the axial T2-weighted imaging and diffusion-weighted imaging sequences [median (range)]

Sequences Datasets Cases Scanner
MR field 

strength (T)
TR (msec) TE (msec) Matrix

Slice thickness 
(mm)

Pixel spacing

T2WI Training cohort Our institution 223 GE Discovery MR 750 3.0 4,422 (2,672–5,367) 108 (97–116) 512×512 3 (3–6) 0.51 (0.43–0.78)

Internal testing cohort Our institution 95 GE Discovery MR 750 3.0 4,424 (2,672–5,534) 108 (86–116) 512×512 3 (3–4) 0.51 (0.51–0.53)

External testing  
cohort 1

PXtest cohort 90 Siemens Magnetom Skyra 3.0 5,660 (5,660–8,624) 104 (101–104) 384×384–640×640 3 (3–3.5) 0.5 (0.3–0.5)

51 Siemens Magnetom TrioTim 3.0 4,494 (4,480–5,870) 103 (102–104) 256×256–320×320 3 (3–5) 0.56 (0.56–0.70)

External testing  
cohort 2

TJH cohort 29 Siemens Magnetom Skyra 3.0 6,750 (6,130–7,970) 104 384×384 3 (3–3.5) 0.47

1 Siemens Magnetom Aera 1.5 4,920 90 640×640 4 0.38

External testing  
cohort 3

BJH cohort 10 Siemens Magnetom Espree 1.5 4,650 (3,800–5,040) 115 (102–118) 256×256–320×320 4 (3–4) 0.75 (0.75–0.78)

3 GE Optima MR360 1.5 3,682 (3,660–3,682) 1101 (110–111) 512×512 4 0.47 (0.47–0.59)

1 GE Signa EXCITE 1.5 4,120 122 512×512 5 0.625

9 Philips Achieva 3.0 4,265 (2,500–5,183) 100 (80–100) 480×480–672×672 4 0.42 (0.30–0.5)

5 GE Discovery MR 750 3.0 4,525 (4,103–4,775) 87 (87–89) 512×512 4 0.47

1 GE SIGNA Pioneer 3.0 4,952 86 512×512 4 0.47

DWI Training cohort Our institution 223 GE Discovery MR 750 3.0 2,800 (2,000–4,000) 65 (62–70) 256×256 3 (3–6) 1.41 (0.94–1.56)

Internal testing cohort Our institution 95 GE Discovery MR 750 3.0 2,800 70 (69–70) 256×256 3 (3–4) 1.41

Fine-tuning cohort PXtrain cohort 203 Siemens Magnetom Skyra, and 
TrioTim

3.0 2,700 (2,500–3,300) 63 (63–81) 128×84–128×120 3 (3–4.5) 2

External testing cohort PXtest cohort 90 Siemens Magnetom Skyra 3.0 2,700 (2,700–3,200) 63 128×84–128×120 3 (3–5) 2

51 Siemens Magnetom TrioTim 3.0 2,800 (2,500–3,224) 70 (64–81) 106×128–128×88 3 (3–4) 2

T2WI, T2-weighted imaging; DWI, diffusion-weighted imaging; TR, repetition time; TE, echo time; PXtest cohort, testing group of the PROSTATEx Challenge dataset; TJH cohort, Tongji Hospital cohort; BJH 
cohort, Beijing Hospital cohort; PXtrain cohort, training group of the PROSTATEx Challenge dataset.

Figure S1 Flowchart of the selection process of the datasets in this study. PXtest cohort, testing group of the PROSTATEx Challenge dataset; TJH cohort, Tongji Hospital cohort; BJH cohort, Beijing Hospital 
cohort.
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Table S2 The architecture of the U-Net models for T2-weighted imaging and diffusion-weighted imaging

Block type
Model for T2WI Model for DWI

Conv kernel Pooling Conv kernel Pooling

Downsample 1 [1, 3, 3] ×2 [1, 2, 2] [1, 3, 3] ×2 [2, 1, 1]

Downsample 2 [1, 3, 3] ×2 [1, 2, 2] [1, 3, 3] ×2 [2, 1, 1]

Downsample 3 [3, 3, 3] ×2 [2, 2, 2] [3, 3, 3] ×2 [1, 2, 2]

Downsample 4 [3, 3, 3] ×2 [1, 2, 2] - -

Downsample 5 [3, 3, 3] ×2 [1, 2, 2] - -

Bridge [3, 3, 3] ×2 - [3, 3, 3] ×2 -

Upsample 1 [3, 3, 3] ×2 [1, 2, 2] - -

Upsample 2 [3, 3, 3] ×2 [1, 2, 2] - -

Upsample 3 [3, 3, 3] ×2 [2, 2, 2] [3, 3, 3] ×2 [1, 2, 2]

Upsample 4 [1, 3, 3] ×2 [1, 2, 2] [1, 3, 3] ×2 [2, 1, 1]

Upsample 5 [1, 3, 3] ×2 [1, 2, 2] [1, 3, 3] ×2 [2, 1, 1]

Output [1, 1, 1] - [1, 1, 1] -

T2WI, T2-weighted imaging; DWI, diffusion-weighted imaging.

Table S3 Multivariate regression analyses of factors affecting the Dice similarity coefficient on DWI images in the PXtest cohort without fine-
tuning

Factors Coefficients Lower (2.5%) Upper (97.5%) P value

Echo time 0.004 –0.021 0.029 0.7633

Repetition time 0.001 0.001 0.002 <0.001

MR scanner –0.729 –1.323 –0.136 0.016

Echo train length –0.028 –0.041 –0.015 <0.001

Slice thickness –0.273 –0.405 –0.140 <0.001

DWI, diffusion-weighted imaging; PXtest cohort, testing group of the PROSTATEx Challenge dataset.


