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Background: Breast cancer consists not only of neoplastic cells but also of significant changes in the 
surrounding and parenchymal stroma, which can be reflected in radiomics. This study aimed to perform 
breast lesion classification through an ultrasound-based multiregional (intratumoral, peritumoral, and 
parenchymal) radiomic model.
Methods: We retrospectively reviewed ultrasound images of breast lesions from institution #1 (n=485) and 
institution #2 (n=106). Radiomic features were extracted from different regions (intratumoral, peritumoral, 
and ipsilateral breast parenchymal) and selected to train the random forest classifier with the training cohort 
(n=339, a subset of the institution #1 dataset). Then, the intratumoral, peritumoral, and parenchymal, 
intratumoral & peritumoral (In&Peri), intratumoral & parenchymal (In&P), and intratumoral & peritumoral 
& parenchymal (In&Peri&P) models were developed and validated on the internal (n=146, another subset of 
institution 1) and external (n=106, institution #2 dataset) test cohorts. Discrimination was evaluated using the 
area under the curve (AUC). Calibration curve and Hosmer-Lemeshow test assessed calibration. Integrated 
discrimination improvement (IDI) was used to assess performance improvement.
Results: The performance of the In&Peri (AUC values 0.892 and 0.866), In&P (0.866 and 0.863), and 
In&Peri&P (0.929 and 0.911) models was significantly better than that of the intratumoral model (0.849 
and 0.838) in the internal and external test cohorts (IDI test, all P<0.05). The intratumoral, In&Peri and 
In&Peri&P models showed good calibration (Hosmer-Lemeshow test, all P>0.05). The multiregional 
(In&Peri&P) model had the highest discrimination among the 6 radiomic models in the test cohorts, 
respectively. 
Conclusions: The multiregional model combining radiomic information of intratumoral, peritumoral, and 
ipsilateral parenchymal regions yielded better performance than the intratumoral model in distinguishing 
malignant breast lesions from benign lesions.
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Introduction

Breast cancer is the most common cancer diagnosed and 
the second leading cause of cancer death among women in 
the United States (1). Early detection and timely treatment 
are crucial to the prognosis of breast cancer patients (2,3). 
Ultrasound is a common breast screening technique to 
detect cancer without invasion and radiation (4,5). In 
clinical practice, ultrasound can be an alternative and 
complementary method to mammography and magnetic 
resonance imaging (MRI) (6). In 2013, the American 
College of Radiology (ACR) updated the 2nd edition 
of the Breast Imaging Reporting and Data System (BI-
RADS) atlas, a standardized reporting system of breast 
pathology as seen on ultrasound (7). However, ultrasonic 
manifestations are generally based on the subjective 
interpretation of radiologists (8). Breast lesions classified as 
BI-RADS category 4a and higher (more than 2% malignant 
probability) warrant biopsy according to the guideline, 
which is highly sensitive while having some false positives 
inevitably (6,9).

Radiomics refers to the high-throughput calculation 
of quantitative imaging features that may not be visible to 
radiologists (10). Radiomics has been reported to potentially 
improve breast cancer diagnosis, prognosis, and treatment 
prediction (11). In recent years, many radiomic studies for 
discriminating malignant from benign lesions reported a 
wide range of area under the curve (AUC) values since these 
studies extracted features from different medical images 
and datasets and used various machine learning classifiers 
to build models (11,12). Discrimination of the ultrasound-
based radiomic model achieved AUC values ranging from 
0.820 to 0.825 (8,13,14). Recent studies (14-16) improved 
the discrimination of radiomics through multimodal 
ultrasound (color doppler or elastography)-based radiomics 
and deep learning radiomics. Considering breast cancer is 
a complex disease involving the interaction of tumor cells 
with host stromal cells, multiregional radiomic information 
could be a potential approach to improve the performance 
in diagnosing breast cancer (17,18).

The tumor microenvironment is critical for breast 
cancer development, progression, and treatment (19). 
Dynamic contrast enhanced (DCE)-MRI-based textural 
heterogeneity within the peritumoral region was significantly 

associated with the density of tumor-infiltrating lymphocytes 
in breast cancer, suggesting that radiomic features in 
the peritumoral region were associated with the tumor  
microenvironment (20). Parenchyma stromal cells are 
likewise essential in fostering tumor growth (18). Breast 
parenchyma could reflect the biological risk factors associated 
with breast cancer development (21). The radiological pattern 
of the parenchyma was linked to the risk of developing breast 
cancer (22,23). MRI- and mammography-based radiomics 
studies (24,25) have reported that added radiomic features 
beyond the lesion could improve diagnostic accuracy for 
breast cancer.

To our knowledge, reports on ultrasound-based radiomic 
features extracted from the region beyond the lesion 
distinguishing malignant from benign lesions have not been 
published (12). We hypothesized that the performance of 
radiomics in diagnosing breast cancer might be improved 
by combining the information from the lesion, peritumoral 
tissue, and parenchyma. Our study aimed to develop and 
validate a multiregional model by adding ultrasound-
based peritumoral and ipsilateral parenchymal radiomic 
features for breast lesion classification. We present the 
following article in accordance with the TRIPOD reporting 
checklist (available at https://qims.amegroups.com/article/
view/10.21037/qims-22-939/rc).

Methods 

Patients

This study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013). The study 
was approved by the local medical ethics committee of 
the First Affiliated Hospital of Nanchang University (No. 
220204013). All data used in this study were anonymized 
and did not involve personal privacy or commercial 
interests. Thus, the need for informed consent from all 
patients was waived.

This study continuously included patients who 
underwent breast lesion surgery at institution #1 from April 
2018 to April 2022 and at institution #2 from October 2019 
to October 2021. The inclusion criteria included: (I) lesion 
treated with surgical resection and clinicopathological 
results available; (II) ultrasound performed within  
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2 weeks before surgery; and (III) BI-RADS category (7) ≥3. 
The exclusion criteria included: (I) biopsy or anticancer 
treatment (surgery, radiotherapy, and chemotherapy) 
before ultrasound examination; (II) lesion and parenchyma 
unclear on ultrasound images due to artifacts; and c. lesion 
with diameter >40 mm excluded to ensure peritumoral 
tissue and parenchyma present for analysis. Only lesions 
with pathological results were included for multiple breast 
lesions, and complications of benign and malignant lesions 
were excluded.

A total of 591 breast lesions (median of maximum 
diameter 19 mm, range from 4 to 40 mm) of 526 patients 
(526 women; median age 46 years, range from 14 to  
87 years) were included. We estimated that a sample size 
of a minimum of 185 lesions was required based on the 
following input: a type I error of 0.05, a confidence interval 

(CI) of 0.95, an AUC of 0.80, and a ratio of the number of 
benign to malignant lesions in the study sample of 1 (26). 
Breast lesions from institution #1 were randomly assigned 
to the training (n=339) and internal test cohorts (n=146) at 
a ratio of 7:3, and the institution #2 dataset was used as the 
external test cohort (n=106) (Figure 1A).

Ultrasound image analysis

Detailed image acquisition parameters in the two 
institutions are presented in Table S1. Two radiologists 
blinded to the pathological results reviewed the images 
using the Picture Archiving and Communication Systems 
(PACS). The lesion size (maximum diameter), location 
(quadrant and distance between the lesion and nipple), 
and BI-RADS category were estimated by radiologists in 
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Figure 1 Flowcharts of the patient selection (A), radiomic analysis (B), and feature selection (C). BI-RADS, Breast Imaging Reporting and 
Data System; ICC, intraclass correlation coefficient; RFE, recursive feature elimination; ROC, receiver operator characteristic; ROI, region 
of interest; US, ultrasound.
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consensus.

Lesion segmentation

An image showing the largest lesion area and an image 
showing normal parenchyma 10–20 mm from the lesion 
were identified as the lesion section and parenchymal 
section of each target lesion. Radiologist #1, blinded to 
the pathological results, manually segmented the region of 
interest (ROI) using the 3D Slicer (version 5.1.0) software. 
The radiologist delineated the intratumoral ROI along 
the nodule margin. A morphologic dilation operation for 
the intratumoral ROI was performed to capture regions 
of 3-mm outside lesions (20,27). The intratumoral mask 
was then subtracted from the dilated mask to obtain a 
ring mask around the lesion. The part beyond the pre-
mammary and retro-mammary fat was manually erased 
from each ring mask to get the peritumoral ROI. The strip-
shaped breast parenchymal region (including premammary 
fat, fibroglandular tissue, and retro-mammary fat) was 
delineated as the parenchymal ROI. Segmentation 
robustness of radiomic features was evaluated using 30 
randomly selected lesions. Radiologist #2 delineated the 
ROI twice within 2 weeks to evaluate the intra-observer 
agreement; meanwhile, the ROI was compared with that 
delineated by radiologist #1 to assess the inter-observer 
agreement. The agreement was assessed using the intraclass 
correlation coefficient (ICC).

Feature extraction

Radiomic features were calculated in 2-dimension because 
the study used a single-section ROI. All images were 
resampled to 2 mm × 2 m × 0 mm voxel size using linear 
interpolation, and voxel values were aggregated into bins 5 
wide to partially reduce the heterogeneous settings in image 
collection (28). Pyradiomics (version 3.0.1) extracted 464 
radiomic features from each intratumoral ROI, including 
shape-based (n=9), first-order statistics (n=18), textural 
(n=73), and wavelet-based features (n=364). Besides, 
455 peritumoral features and 455 parenchymal features 
were extracted, including first-order statistics, textural, 
and wavelet-based features (Appendix 1). Since different 
radiomic features have different value ranges, which makes 
it difficult to compare features with variable orders of 
magnitude, a preprocessing step (Z-score) was used to 
standardize the radiomic features (29). 

Feature selection and modeling

Feature selection was performed using lesions in the training 
cohort. To ensure the robustness of models, features with 
ICC values >0.80 were used for the following analysis. The 
Mann-Whitney U test was performed to test for differences 
in each radiomic feature of benign and malignant lesions, 
and features with P<0.05 were reserved. Features showing 
high pairwise Spearman correlation (r>0.80) and the highest 
mean correlation with all remaining features were removed. 
Then, the recursive feature elimination using the random 
forest as a based classifier and combing with a 5-fold cross-
validation algorithm was trained in 100 iterations. The top 
8 ranked features were selected for each iteration. Features 
selected 30 or more times were retained. Finally, Boruta (28) 
method was used to select features to train single-ROI (the 
intratumoral, peritumoral, and parenchymal) models. The 
correlation and Boruta steps were used to select integrated 
features of single-ROI models to train the intratumoral & 
peritumoral (In&Peri), intratumoral & parenchymal (In&P), 
and intratumoral & peritumoral & parenchymal (In&Peri&P; 
multiregional) models. The 6 radiomic models were 
developed using the random forest classifier (Figure 1B).

Model validation

Model performance was evaluated in the internal and external 
test cohorts. Discrimination was assessed using the receiver 
operating characteristic (ROC) analysis, sensitivity, specificity, 
and accuracy. The integrated discrimination improvement 
(IDI) test evaluated the performance improvement of 
radiomic models with added peritumoral and parenchymal 
features by summarizing the extent to which a new model 
increases risk in events and decreases risk in non-events (30). 
Calibration was assessed using the calibration curve and the 
Hosmer-Lemeshow test, which assesses whether or not the 
observed event rates match expected event rates in subgroups 
of the model population (31). 

Performance of the radiomic signature score

In this study, the malignant probability predicted by the 
best radiomic model is called the radiomic signature 
score (Rad-score). The optimal cutoff value of the Rad-
score was determined by maximizing the Youden index. 
Univariate and multivariate logistic regression analyses 
determined whether the Rad-score related to breast 

https://cdn.amegroups.cn/static/public/QIMS-22-939-supplementary.pdf
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cancer discrimination beyond clinical factors. We further 
constructed a combined (Rad-BI-RADS) category by 
downgrading and upgrading the BI-RADS according to 
the optimal Rad-score cutoff value: the BI-RADS category 
was downgraded when the Rad-score below the cutoff value 
and the BI-RADS category was upgraded when the Rad-
score higher the cutoff value. The sensitivity, specificity, and 
accuracy were used as performance metrics.

Statistical analysis

Statistical analysis was performed with R software (version 
4.0.1). R software packages used are presented in Table S2.  
Continuous data are expressed as the median with 
interquartile range (IQR) and compared using the Mann-
Whitney U and Kruskal-Wallis H tests. Categorical data 
are expressed as numbers with percentages and compared 
using the chi-square test or Fisher’s exact test. R codes 
are available at GitHub (https://github.com/feliciahz/

multiregional). All statistical tests were two-sided, the 
Holm-Bonferroni method (32) was applied to adjust 
for multiple comparisons, and P<0.05 was considered 
statistically significant. The validity of radiomic studies was 
assessed using the radiomics quality score, which is 55.6% 
(20 of 36) in this study (33).

Results

Patient clinicopathological characteristics

Baseline clinicopathological characteristics are presented 
in Table 1. Analysis showed no significant differences in 
clinicopathological characteristics between different cohorts. 
Breast cancer accounted for 54.9% (186/339), 54.1% 
(79/146), and 65.1% (69/106) of the training, internal test, 
and external test cohorts, respectively (Kruskal-Wallis H 
test, P=0.143). The characteristics of patients according to 
benign and malignant lesions are listed in Table 2. Older 

Table 1 Baseline clinical and pathological characteristics of study cohorts

Characteristics
Training cohort (patient 

n=301; lesion n=339)

Internal test cohort (patient 

n=131; lesion n=146)

External test cohort (patient 

n=94; lesion n=106)
P value

Age (years) 46 [38–52] 46 [40–53] 47 [42–53] 0.467

Conventional ultrasound

Lesion size (mm) 19 [12–30] 18 [13–29] 19 [13–26] 0.903

Tumor location 0.954

Inner quadrant 105 (31.0) 44 (30.1) 30 (28.3)

Outer quadrant 212 (62.5) 94 (64.4) 68 (64.2)

Subareolar 22 (6.5) 8 (5.5) 8 (7.5)

Distance from the nipple (mm) 24 [10–35] 25 [10–40] 25 [15–36] 0.414

BI-RADS category* 0.902

3 65 (19.2) 29 (19.9) 19 (17.9)

4a 105 (31.0) 44 (30.1) 28 (26.4)

4b 77 (22.7) 34 (23.3) 31 (29.2)

4c 45 (13.3) 15 (10.3) 12 (11.3)

5 47 (13.9) 24 (16.4) 16 (15.1)

Pathology 0.143

Benign 153 (45.1) 67 (45.9) 37 (34.9)

Malignant 186 (54.9) 79 (54.1) 69 (65.1)

Continuous data are presented as median [interquartile range]. Categorical data are presented as the number of lesions (percentage). *, 
BI-RADS category was referred for the senior radiologist. BI-RADS, Breast Imaging Reporting and Data System.

https://cdn.amegroups.cn/static/public/QIMS-22-939-supplementary.pdf
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Table 2 Characteristics of benign and malignant lesions in the entire cohort

Characteristics Benign (n=257) Malignant (n=334) P value

Age (years) 42 [32–48] 48 [44–56] <0.001

Conventional ultrasound

Lesion size (mm) 14 [10–23] 23 [16–33] <0.001

Tumor location 0.003

Inner quadrant 98 (38.1) 89 (26.6)

Outer quadrant/subareolar 159 (61.9) 245 (73.4)

Distance from the nipple (mm) 25 [12–40] 25 [10–35] 0.706

BI-RADS category* <0.001

3 105 (40.9) 8 (2.4)

4a 113 (44.0) 64 (19.2)

4b 24 (9.3) 118 (35.3)

4c 10 (3.9) 62 (18.6)

5 5 (1.9) 82 (24.6)

Pathology –

Invasive ductal carcinoma – 263 (78.7)

Invasive lobular carcinoma – 14 (4.2)

Ductal carcinoma in situ – 34 (10.2)

Metaplastic carcinoma – 10 (3.0)

Fibroadenoma 117 (45.5) –

Adenosis 77 (30.0) –

Intraductal papilloma 27 (10.5) –

Benign phyllodes tumor 6 (2.3) –

Mastitis 23 (8.9) –

Other 7 (2.7) 13 (3.9)

Continuous data are presented as median [interquartile range]. Categorical data are presented as the number of lesions (percentage). *, 
BI-RADS category was referred for the senior radiologist. BI-RADS, Breast Imaging Reporting and Data System.

age, larger size, non-inner quadrant location, and higher BI-
RADS category were associated with breast cancer (Mann-
Whitney U test, all P<0.01).

Feature selection

The mean ICCs of intratumoral, peritumoral, and 
parenchymal radiomic features were 0.895, 0.889, and 
0.961 for intra-observer agreement and 0.887, 0.882, and 
0.902 for inter-observer agreement (Figure S1). Thus, 403 
intratumoral, 383 peritumoral, and 393 parenchymal features 

with robustness in segmentation were reserved. Figure 1C 
shows the flowchart of feature selection. For the single-
ROI models, 10, 9, and 5 features were selected to train the 
intratumoral, peritumoral, and parenchymal models. For 
the multiple-ROIs models, 19, 14, and 23 features were 
selected to train the In&Peri, In&P, and In&Peri&P models.  
Figure S2 describes the selection frequency of features in 
the 100 iterations of recursive feature elimination. Selected 
features of models were described in Table S3. Figure 2 
shows representative heatmaps of radiomic features. The 
AUC values of models ranged from 0.689 to 0.921 in the 

https://cdn.amegroups.cn/static/public/QIMS-22-939-supplementary.pdf
https://cdn.amegroups.cn/static/public/QIMS-22-939-supplementary.pdf
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training cohort (Table S4).

Radiomic models performance

The intratumoral, peritumoral, and parenchymal models 
achieved AUC values of 0.849, 0.864, and 0.670 in the 
internal test cohort and 0.838, 0.847, and 0.676 in the 
external test cohort. AUC values of the In&Peri, In&P, 
and In&Peri&P models were 0.892, 0.866, and 0.929 in 
the internal test cohort and 0.866, 0.863, and 0.911 in the 
external test cohort. The In&P model had the highest 
sensitivity (89% and 86%), the In&Peri model had the 
highest specificity (88% and 78%), and the In&Peri&P 
model had the highest accuracy (82% and 80%) in the 
internal and external test cohort (Table 3). The intratumoral, 
In&Peri, and In&Peri&P models showed proper calibrations 

(Hosmer-Lemeshow test, all P>0.05) (Table S5). 

Performance comparison

AUC of the intratumoral model was indifferent to that of 
the peritumoral model (IDI test, P=0.529 and 0.435) and 
significantly better than that of the parenchymal model 
(IDI test, both P<0.05) in the internal and external test 
cohorts. The In&Peri and In&P models significantly 
improved the AUC of the intratumoral model (IDI test, 
all P<0.05). The In&Peri&P model significantly improved 
AUC values (range from 0.037 to 0.080) of the intratumoral 
model, In&Peri, and In&P models (IDI test, all P<0.05) 
(Table 4). Through performance comparison, the malignant 
probability predicted by the In&Peri&P model is the Rad-
score of this study. Figure S3 shows the important ranking 
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Figure 2 Radiomic patterns associated with malignant lesions. Radiomic feature heat maps of a fibroadenoma (A) represent a lower 
expression of wavelet.HL_glrlm_RunLengthNonUniformity in the intratumoral region, wavelet.LH_glrlm_RunLengthNonUniformity in 
the peritumoral region, and wavelet.LH_firstorder_Skewness in the parenchymal region compared with that of invasive ductal carcinoma (B).
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Table 3 Performance of radiomic models in the differentiation of malignant from benign breast lesions using the test cohorts

Model
Internal test cohort (n=146) External test cohort (n=106)

Sen (%) Spe (%) Acc (%) AUC Sen (%) Spe (%) Acc (%) AUC

Intratumoral 75 [64–84] 78 [66–87] 76 [68–83] 0.849 [0.787–0.911] 75 [64–85] 76 [59–88] 75 [66–83] 0.838 [0.762–0.914]

Peritumoral 68 [57–78] 88 [78–95] 77 [70–84] 0.864 [0.807–0.922] 74 [62–84] 76 [59–88] 75 [65–82] 0.847 [0.775–0.919]

Parenchymal 73 [62–83] 46 [34–59] 61 [53–69] 0.670 [0.582–0.758] 86 [75–93] 35 [20–53] 68 [58–77] 0.676 [0.570–0.783]

In&Peri 65 [53–75] 88 [78–95] 75 [68–82] 0.892 [0.842–0.942] 77 [65–86] 78 [62–90] 77 [68–85] 0.866 [0.800–0.933]

In&P 89 [79–95] 63 [50–74] 77 [69–83] 0.866 [0.810–0.923] 86 [75–93] 62 [45–78] 77 [68–85] 0.863 [0.795–0.932]

In&Peri&P 82 [72–90] 82 [71–90] 82 [75–88] 0.929 [0.891–0.967] 84 [73–92] 73 [56–86] 80 [71–87] 0.911 [0.860–0.963]

Data in parentheses are 95% CIs. In&Peri = intratumoral & peritumoral model; In&P = intratumoral & parenchymal model; In&Peri&P 
= intratumoral & peritumoral & parenchymal model. Acc, accuracy; AUC, area under the receiver operator characteristic curve; CI, 
confidence interval; Sen, sensitivity; Spe, specificity.

Table 4 Performance comparison of radiomic models using the test cohorts

Model

Internal test cohort (n=146) External test cohort (n=106)

Improved  
AUC

IDI (95% CI)
IDI test  
P value

Improved  
AUC

IDI (95% CI)
IDI test  
P value

Intratumoral vs. adding features model comparison 

Intratumoral vs. peritumoral 0.015 0.029 (−0.062 to 0.120) 0.529 0.009 0.017 (−0.026–0.056) 0.435 

Intratumoral vs. parenchymal −0.179 −0.265 (−0.350 to −0.181) <0.001 −0.162 −0.219 (−0.338 to −0.101) 0.002 

Intratumoral vs. In&Peri 0.043 0.080 (0.012–0.148) 0.036 0.028 0.048 (0.011–0.086) 0.019 

Intratumoral vs. In&P 0.017 0.029 (0.002–0.057) 0.047 0.025 0.030 (0.004–0.056) 0.032 

Intratumoral vs. In&Peri&P 0.080 0.200 (0.133–0.267) <0.001 0.073 0.143 (0.047–0.239) 0.009 

Multiregional model comparison 

In&Peri vs. In&Peri&P 0.037 0.120 (0.065–0.176) <0.001 0.045 0.095 (0–0.189) 0.049 

In&P vs. In&Peri&P 0.063 0.171 (0.107–0.234) <0.001 0.048 0.113 (0.017–0.210) 0.043 

Data in parentheses are 95% CIs. In&Peri = intratumoral & peritumoral model; In&P = intratumoral & parenchymal model; In&Peri&P = 
intratumoral & peritumoral & parenchymal model. AUC, area under the receiver operator characteristic curve; CI, confidence interval; IDI, 
integrated discrimination improvement.

of radiomic features of the In&Peri&P model.

Performance of the radiomic signature score

The Rad-score showed satisfying discrimination and 
calibration in the training and test cohorts (Figure 3). The 
Rad-score of malignant lesions was significantly higher than 
that of benign lesions (Mann-Whitney U test, all P<0.001). 
Univariate and multivariate analyses showed that the Rad-
score remained the strongest risk factor beyond the clinical 
data, whether in training or the test cohorts (Table S6). The 
optimal cutoff value of the Rad-score was set to be 0.5. The 

Rad-score had significantly higher specificity and accuracy 
while lower sensitivity than the BI-RADS category. The 
Rad-BI-RADS category significantly improved specificity 
and accuracy and maintained sensitivity of the BI-RADS 
category (Table S7). Figure 4 shows the risk classification of 
breast lesions for the Rad-BI-RADS category.

Discussion

In this study, we demonstrated the ability of ultrasound-
based radiomic features extracted from peritumoral and 
parenchymal regions to diagnose breast cancer. The 

https://cdn.amegroups.cn/static/public/QIMS-22-939-supplementary.pdf
https://cdn.amegroups.cn/static/public/QIMS-22-939-supplementary.pdf
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Figure 3 Performance of the Rad-score. (A) Calibration curves of Rad-score. (B) ROC curves of the Rad-score. (C) Boxplots of the Rad-
score. (D) Waterfall plot for distribution of Rad-score and benign and malignant lesions in the entire cohort. AUC, area under the ROC 
curve; CI, confidence interval; Rad-score, radiomic signature score; ROC, receiver operator characteristic.
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test cohort (n=252). BI-RADS, Breast Imaging Reporting and Data System.

multiregional (In&Peri&P) model showed an improved 
lesion classification performance compared with the 
intratumoral, In&Peri, and In&P models by integrating 
different regional radiomic information. The Rad-score 
can be considered a helpful tool in aiding breast cancer 
diagnosis.

Ultrasound-based radiomics can identify benign from 

malignant breast lesions (8,13). Discrimination of the 
intratumoral model (AUC values 0.849 and 0.838) in 
our study was comparable to that of previous studies 
(8,13,14). Our study improved the discrimination of the 
intratumoral model by adding peritumoral and ipsilateral 
parenchymal radiomic analyses. Breast cancer consists not 
only of neoplastic cells but also significant changes in the 
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surrounding stroma or tumor microenvironment (17). 
Associations between the heterogeneity of peritumoral 
radiomics and the immune response at the molecular and 
morphometric scales have also been reported, suggesting 
that peritumoral radiomics could reflect the tumor 
microenvironment (20,34,35). Recent studies (27,36) 
have demonstrated the potential of peritumoral radiomics 
in diagnosing breast cancer, identifying subtypes, and 
predicting neoadjuvant chemotherapy response. Niu  
et al. (36) demonstrated that digital breast tomosynthesis-
based peritumoral radiomic features could diagnose 
malignant breast lesions with an AUC of 0.851. In this 
study, the In&Peri model achieved higher classification 
performance (AUC values 0.892 and 0.866) than the 
intratumoral model. Therefore, radiomics within the 
peritumoral region may add value to breast lesion 
classification. The diagnostic ability of peritumoral 
radiomics may be that first-order (Maximum) and textural 
features (such as RunLengthNonUniformity and Busyness) 
reflected the cluttered and dense arrangement of various 
components of the breast cancer microenvironment (such as 
suppressive immune cells, soluble factors, and extracellular 
matrix) and morphological changes in medical imaging 
caused by the migration of tumor cells from primary to 
peritumoral regions.

The breast parenchyma may indicate a precancerous state 
since parenchyma stromal cells play an important role in 
breast tumor growth and development (18,24). The breast 
parenchymal pattern could assess the risk of breast cancer 
(22,23). Brisson et al. (37) found that parenchymal radiomic 
phenotype with higher complexity was breast cancer risk 
factors (25). Li et al. (24) demonstrated that mammography-
based parenchymal radiomic features had discrimination in 
breast cancer diagnosis (AUC value 0.67), and combined 
intratumoral features improved the performance (AUC 
value 0.84). These studies provide theoretical and 
practical support for the value of radiomic analysis in 
breast parenchyma. In this study, the In&P model (AUC 
values 0.866 and 0.863) improved the performance of the 
intratumoral model. Elevated expression of skewness and 
strength features were components of our multiregional 
models, capturing a higher degree of complexity in the 
parenchyma. We used a strip-shaped parenchymal region 
10–20 mm from the target lesion as the parenchymal ROI 
rather than a rectangular region behind the nipple, as 
reported in previous studies (24,25), since ultrasound can 
flexibly show the parenchymal sections according to the 
operation of radiologists.

Furthermore, the multiregional model was developed 
and validated with the best performance among our 
radiomic models. The In&Peri&P model yielded better 
performance (AUC values 0.929 and 0.911) than the 
intratumoral, In&Peri, and In&P models in distinguishing 
malignant breast lesions from benign lesions in the study. 
The improvement might be for the multiregional model 
integrating different discriminative data in different regions. 
Radiomics within the intratumoral region reflected the 
shape and texture of the tumor, those within the peritumoral 
region reflected the breast cancer microenvironment and 
the metastases around the tumor, and those within the 
parenchymal region reflected parenchymal complexity. 
Our correlation analysis showed that no feature of single-
ROI models was deleted through correlation analysis in 
the feature selection process of the multiple-ROIs models, 
suggesting different diagnostic information in the different 
regions. Therefore, the multiregional model may optimize 
diagnostic information from ultrasound images to improve 
diagnostic performance. 

The malignancy probability of the In&Peri&P model 
(Rad-score) was an independent risk factor in breast 
cancer diagnosis. The Rad-score improved the accuracy 
and specificity of the BI-RADS category in diagnosing 
malignant breast lesions. Although the Rad-score had 
a significantly lower false-positive rate, it resulted in a 
significantly higher false-negative rate. Therefore, this study 
provides a novel approach to combine risk classification 
guidelines and radiomics. Based on the cutoff value of the 
Rad-score (0.5), the BI-RADS category of each lesion was 
upgraded or downgraded, resulting in a novel category. 
The Rad-BI-RADS category improved the specificity and 
accuracy and maintained the sensitivity of the BI-RADS. 
Thus, combining the multiregional radiomic model with the 
risk stratification guideline may develop a breast screening 
tool with good sensitivity and little misdiagnose.

Our study had several limitations. First, this study was 
retrospective; thus, selection bias may be inevitable. A 
prospective study is needed to validate our models in the 
future. Second, the collection methods in our dataset were 
heterogeneous and utilized various ultrasound instruments, 
which may slightly impact the analysis of the results. Third, 
ultrasound has limitations in operator dependence and risk 
of interpretive error, which may impact the results. Fourth, 
the selection of peritumoral and parenchymal ROIs was 
based on breast size, lesion size, ultrasound operation, and 
references from previous studies (20,24,25,27); however, 
different ROIs, such as different ranges of the peritumoral 
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region and location of the parenchyma, may affect the 
result. Finally, many radiogenomics studies on breast cancer 
have already been published (11), but this study lacks direct 
links between radiomics and tumor biological factors. 

Conclusions

In conclusion, we show that ultrasound-based radiomic 
features extracted from peritumoral and parenchymal 
regions may improve diagnostic performance for breast 
cancer over intratumoral features alone. Breast cancer 
might be characterized by a round shape, dense and 
heterogeneous texture within and around the lesion, and 
ipsilateral complex parenchyma. The multiregional model 
may optimize radiomics in discriminating malignant 
from benign breast lesions, which suggests its potential in 
assisting the diagnosis of the risk stratification guideline.
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Supplementary

Appendix 1 The detailed description of the model architecture

The network architecture, including the encoder path and the decoder path, was automatically determined by the nnU-
Net framework via the data properties. In our case, for the T2-weighted images (T2WI), U-Net architecture consisted 
of 5 downsampling blocks and 5 upsampling blocks. In contrast, for the diffusion-weighted images (DWI) with a lower 
resolution, the model consisted of 3 downsampling blocks and 3 upsampling blocks. The detailed information is elaborated 
upon in Table S2.

Appendix 2 The detailed fine-tuning processes

The original training and fine-tuning cohorts were combined to train another 50 epochs, with a smaller initial learning rate 
of 0.0001. The parameters of the entire network were all updated. Similar to the original training procedure, the batch size 
of 2 was calculated with the nnU-Net framework based on the graphic processing unit (GPU) memory and the number of 
parameters of the model. The loss function was the combination of the Dice loss and the binary cross entropy (BCE) loss.

Appendix 3 Statistical analysis of the influencing factors for the Dice similarity coefficient on DWI 
images in the PXtest cohort without fine-tuning

A multivariate logistic regression analysis was performed to analyze the potential influencing factors in the decline of the 
DWI model’s performance in the external testing cohort. The candidate influencing factors were echo time, repetition time, 
MR scanner, echo train length, and slice thickness.
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Treatment-naive patients who
had undergone prostate MRI and

subsequent biopsy at our
institution between November 2014
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1. Poor image quality with

artifacts (n=5)
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the MR scan time
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androgen-deprivation treatment

from TJH
(n=45)

Patients who received
diagnosis of advanced prostate
cancer and were candidates for
androgen-deprivation treatment

from BJH
(n=33)

Excluded:
1. Poor image quality with

artifacts (n=2)
2. Prostate margin was
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Table S1 MRI acquisition parameters for the axial T2-weighted imaging and diffusion-weighted imaging sequences [median (range)]

Sequences Datasets Cases Scanner
MR field 

strength (T)
TR (msec) TE (msec) Matrix

Slice thickness 
(mm)

Pixel spacing

T2WI Training cohort Our institution 223 GE Discovery MR 750 3.0 4,422 (2,672–5,367) 108 (97–116) 512×512 3 (3–6) 0.51 (0.43–0.78)

Internal testing cohort Our institution 95 GE Discovery MR 750 3.0 4,424 (2,672–5,534) 108 (86–116) 512×512 3 (3–4) 0.51 (0.51–0.53)

External testing  
cohort 1

PXtest cohort 90 Siemens Magnetom Skyra 3.0 5,660 (5,660–8,624) 104 (101–104) 384×384–640×640 3 (3–3.5) 0.5 (0.3–0.5)

51 Siemens Magnetom TrioTim 3.0 4,494 (4,480–5,870) 103 (102–104) 256×256–320×320 3 (3–5) 0.56 (0.56–0.70)

External testing  
cohort 2

TJH cohort 29 Siemens Magnetom Skyra 3.0 6,750 (6,130–7,970) 104 384×384 3 (3–3.5) 0.47

1 Siemens Magnetom Aera 1.5 4,920 90 640×640 4 0.38

External testing  
cohort 3

BJH cohort 10 Siemens Magnetom Espree 1.5 4,650 (3,800–5,040) 115 (102–118) 256×256–320×320 4 (3–4) 0.75 (0.75–0.78)

3 GE Optima MR360 1.5 3,682 (3,660–3,682) 1101 (110–111) 512×512 4 0.47 (0.47–0.59)

1 GE Signa EXCITE 1.5 4,120 122 512×512 5 0.625

9 Philips Achieva 3.0 4,265 (2,500–5,183) 100 (80–100) 480×480–672×672 4 0.42 (0.30–0.5)

5 GE Discovery MR 750 3.0 4,525 (4,103–4,775) 87 (87–89) 512×512 4 0.47

1 GE SIGNA Pioneer 3.0 4,952 86 512×512 4 0.47

DWI Training cohort Our institution 223 GE Discovery MR 750 3.0 2,800 (2,000–4,000) 65 (62–70) 256×256 3 (3–6) 1.41 (0.94–1.56)

Internal testing cohort Our institution 95 GE Discovery MR 750 3.0 2,800 70 (69–70) 256×256 3 (3–4) 1.41

Fine-tuning cohort PXtrain cohort 203 Siemens Magnetom Skyra, and 
TrioTim

3.0 2,700 (2,500–3,300) 63 (63–81) 128×84–128×120 3 (3–4.5) 2

External testing cohort PXtest cohort 90 Siemens Magnetom Skyra 3.0 2,700 (2,700–3,200) 63 128×84–128×120 3 (3–5) 2

51 Siemens Magnetom TrioTim 3.0 2,800 (2,500–3,224) 70 (64–81) 106×128–128×88 3 (3–4) 2

T2WI, T2-weighted imaging; DWI, diffusion-weighted imaging; TR, repetition time; TE, echo time; PXtest cohort, testing group of the PROSTATEx Challenge dataset; TJH cohort, Tongji Hospital cohort; BJH 
cohort, Beijing Hospital cohort; PXtrain cohort, training group of the PROSTATEx Challenge dataset.

Figure S1 Flowchart of the selection process of the datasets in this study. PXtest cohort, testing group of the PROSTATEx Challenge dataset; TJH cohort, Tongji Hospital cohort; BJH cohort, Beijing Hospital 
cohort.
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Table S2 The architecture of the U-Net models for T2-weighted imaging and diffusion-weighted imaging

Block type
Model for T2WI Model for DWI

Conv kernel Pooling Conv kernel Pooling

Downsample 1 [1, 3, 3] ×2 [1, 2, 2] [1, 3, 3] ×2 [2, 1, 1]

Downsample 2 [1, 3, 3] ×2 [1, 2, 2] [1, 3, 3] ×2 [2, 1, 1]

Downsample 3 [3, 3, 3] ×2 [2, 2, 2] [3, 3, 3] ×2 [1, 2, 2]

Downsample 4 [3, 3, 3] ×2 [1, 2, 2] - -

Downsample 5 [3, 3, 3] ×2 [1, 2, 2] - -

Bridge [3, 3, 3] ×2 - [3, 3, 3] ×2 -

Upsample 1 [3, 3, 3] ×2 [1, 2, 2] - -

Upsample 2 [3, 3, 3] ×2 [1, 2, 2] - -

Upsample 3 [3, 3, 3] ×2 [2, 2, 2] [3, 3, 3] ×2 [1, 2, 2]

Upsample 4 [1, 3, 3] ×2 [1, 2, 2] [1, 3, 3] ×2 [2, 1, 1]

Upsample 5 [1, 3, 3] ×2 [1, 2, 2] [1, 3, 3] ×2 [2, 1, 1]

Output [1, 1, 1] - [1, 1, 1] -

T2WI, T2-weighted imaging; DWI, diffusion-weighted imaging.

Table S3 Multivariate regression analyses of factors affecting the Dice similarity coefficient on DWI images in the PXtest cohort without fine-
tuning

Factors Coefficients Lower (2.5%) Upper (97.5%) P value

Echo time 0.004 –0.021 0.029 0.7633

Repetition time 0.001 0.001 0.002 <0.001

MR scanner –0.729 –1.323 –0.136 0.016

Echo train length –0.028 –0.041 –0.015 <0.001

Slice thickness –0.273 –0.405 –0.140 <0.001

DWI, diffusion-weighted imaging; PXtest cohort, testing group of the PROSTATEx Challenge dataset.


