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Background: Functional adrenal tumors (FATs) are mainly diagnosed by biochemical analysis. Traditional 
imaging tests have limitations and cannot be used alone to diagnose FATs. In this study, we aimed to establish 
an artificially intelligent diagnostic model based on computed tomography (CT) images to distinguish 
different types of FATs.
Methods: A cohort study of 375 patients diagnosed with hyperaldosteronism (HA), Cushing’s syndrome 
(CS), and pheochromocytoma in our center between March 2015 and June 2020 was conducted. 
Retrospectively, patients were randomly divided into three data sets: the training set (270 cases), the testing 
set (60 cases), and the retrospective trial set (45 cases). An artificially intelligent diagnostic model based on 
CT images was established by transferring data from the training set into the deep learning network. The 
testing set was then used to evaluate the accuracy of the model compared to that of physicians’ judgments. 
The retrospective trial set was used to evaluate the quantification and distinction performance.
Results: The deep learning model achieved an average area under the receiver operating characteristic 
(ROC) curve (AUC) of 0.915, and the AUCs in all three FAT types were greater than 0.882. The AUC of 
the model tested on the retrospective dataset reached above 0.849. In the quantitative evaluation of tumor 
lesion area recognition, the diagnostic model also obtained a segmentation Dice coefficient of 0.69. With the 
help of the proposed model, clinicians reached 92.5% accuracy in distinguishing FATs, compared to 80.6% 
accuracy when using only their judgment (P<0.05).
Conclusions: The result of our study shows that the diagnostic model based on a deep learning network 
can distinguish and quantify three common FAT types based on texture features of contrast-enhanced CT 
images. The model can quantify and distinguish functional tumors without any endocrine tests and can assist 
clinicians in the diagnostic procedure.
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Introduction

The incidence of adrenal incidentaloma has increased 
due to the advancement of imaging techniques and the 
popularization of chest computed tomography (CT) scans 
for physical examination (1,2). Although up to 80% of 
these lesions are benign and inert, there are still many 
functional tumors that cause hormonal overproduction 
of cortisol, aldosterone, catecholamine, or metanephrine. 
Histologically, adrenal adenoma is the most common 
type of adrenal incidentaloma (accounting for 41–52% of 
cases), followed by metastatic tumor (19%), myelolipoma 
(9%), and pheochromocytoma (PC; 8%) (1,3). Although 
their incidence rates are higher than that of PC, metastatic 
tumors and myelolipoma are rarely characterized by 
the overproduction of hormones, so consider from the 
functionality of adrenal tumor the Hyperaldosteronism 
(HA), Cushing’s syndrome (CS), and PC are the most 
common types among adrenal mass (4). Excessive hormone 
production results in various clinical symptoms, such as 
hypertension, electrolyte disorder, obesity, and harm to 
the human body. In some cases, excessive hormones may 
even result in mortality. Therefore, for these functional 
adrenal tumors (FATs), timely intervention is necessary. 
However, limited medical resources and a lack of clinical 
experience can lead to misdiagnosis of FATs. Furthermore, 
inappropriate preoperative evaluation may cause serious 
intraoperative and postoperative complications, such 
as adrenergic storm, cortisol deficiency, and related 
cardiovascular complications.

To diagnose FATs, image analysis and a detailed 
endocrine hormone workup combined with the assessment 
of clinical symptoms are required in every case (4). However, 
the assessment of hormones, such as adrenocorticotropic 
hormone, aldosterone, renin, the aldosterone/renin ratio, 
normetanephrine, and metanephrine, is expensive and 
time-consuming. Moreover, it needs to be performed by 
a professional doctor, requires special preparation and 
equipment, and can be easily affected by other factors, 
such as some foods and medicines (3,5). However, to our 
knowledge, different types of adrenal tumors have specific 
imaging characteristics that can be used to assist in the 
preliminary diagnosis and treatment. A method that can 

determine the functionality of adrenal lesions by CT texture 
analysis would assist physicians in the preliminary diagnosis 
and timely and accurate treatment of FATs.

Researchers have evaluated the reliability of radiological 
parameters of CT images in predicting the functionality of 
hormonally active tumors. Previous studies have assessed 
the function of these tumors through different parameters, 
such as the native attenuation value in Hounsfield units 
(HU), maximum diameter, absolute percentage washout 
(which refers to the characteristics of contrast media 
enhancement and de-enhancement), and heterogeneity 
(2,6,7). Recent developments in artificial intelligence (AI), 
especially deep learning, have been promoted extensively for 
application in a various quantification and distinction tasks 
of lesions in contrast CT imaging. Great progress has been 
achieved in applying deep convolutional neural networks 
(DCNNs) in the field of medicine (8-11), especially in CT 
imaging. These networks are widely used in the diagnosis 
of pulmonary diseases. Various diagnostic models have been 
developed that use CT in combination with deep learning 
networks, including for the diagnosis of COVID-19 (12,13). 
Xie et al. (14) proposed a multiview knowledge-based 
collaborative deep model to separate malignant from benign 
nodules using limited chest CT data.

In this study, we developed an automated framework for 
image-level FATs distinction and pixel-level tumor lesion 
quantification based on enhanced CT images. The purpose 
of the model is to assist physicians in the primary diagnosis 
of FATs and in selecting further tests for the final diagnosis. 
The proposed AI-based model with a deep learning network 
was trained on a dataset consisting of HA, CS, and PC 
cases.  We validated its diagnostic performance with that 
of clinical diagnosis by physicians in extensive experiments. 
We present the following article in accordance with the 
TRIPOD reporting checklist (available at https://qims.
amegroups.com/article/view/10.21037/qims-22-539/rc).

Methods

The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013). The study 
was approved by the institutional ethics board of Ruijin 
Hospital, Shanghai Jiao Tong University, School of 
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Medicine, Shanghai, China, and informed consent was 
obtained from all the patients.

Dataset and annotations

In this study, we screened the clinical and imaging data 
of patients who underwent adrenalectomy in our clinical 
center within the year from March 2015 to June 2020. The 
CT imaging data of 375 useful HA, CS, and PC cases were 
selected and randomly divided into three data sets: the 
training set (270 cases), the testing set (60 cases), and the 
retrospective trial set (45 cases). The specific information 
of the cases and the three data sets is listed in Table 1 and  
Table 2, respectively. Patients who did not undergo enhanced 
CT perioperatively or whose tumors were not diagnosed 
as HA, CS, or PC by endocrine tests and postoperative 
pathology were excluded. In this study, the adrenal lesions 
in the CT scans of the patients were observed, and all 
of them showed excessive hormone secretion. For the 
diagnosis of HA, patients were tested for aldosterone, renin, 
angiotensin, and blood potassium, and screened by the 
aldosterone–renin ratio (ARR). If the ARR was greater than 
30, the patient underwent a further confirmatory test, such 
as a saline infusion test, and then adrenal venous sampling 
to identify the dominant side. Patients with CS showed 

high cortisol, low adreno-cortico-tropic-hormone (ACTH) 
levels, and a disappeared circadian rhythm of cortisol. The 
final diagnosis was made with the help of a dexamethasone 
suppression test combined with CT image and clinical 
symptoms assessments. For the diagnosis of PC, patients’ 
levels of normetanephrine and metanephrine were tested. 
All selected cases were confirmed by postoperative biology.

Each CT scan consisted of three phases: the arterial 
phase, venous phase, and unenhanced phase. For the 
unenhanced and contrast-enhanced CT examinations, 
a slice thickness of 2.5–5 mm was used, iodine contrast 
material was injected intravenously using a power injector 
for 40 s at a rate of 3.0 mL/s, and arterial and venous phase 
scans were performed 25–30 and 60–70 s respectively after 
the injection of the contrast material. All adrenal tumors 
in the training data set were labeled on the CT images 
manually. The model recognized and learned the CT image 
texture characteristics of adrenal tumors for quantification 
and distinction through the deep learning network.

Annotations for model training were first acquired by a 
junior physician who labeled along the outer contours of 
the tumor and the adrenal regions in all slices of the CT 
images. The coordinates (x, y) of the outer contours were 
saved as EXtensible Markup Language (XML) format 
files with an ordered list. These annotations were then 

Table 1 Characteristics of 375 patients with adrenal tumors

HA PC CS

Median age (years) (IQR) 43 [36–51] 49 [40–57] 47 [37–57]

Male, n (%) 65 (59.6) 68 (47.9) 43 (34.7)

Female, n (%) 44 (40.3) 74 (52.1) 81 (65.3)

No. of patients (%) 109 (29.1) 142 (37.9) 124 (33.0)

Median largest diameter of tumor (cm) (IQR) 1.8 (1.4–2.3) 4.1 (3.2–4.7) 2.8 (2.1–3.2)

IQR, interquartile range; BMI, body mass index; HA, hyperaldosteronism; CS, Cushing’s syndrome; PC, pheochromocytoma.

Table 2 Data distribution in the training, testing, and retrospective trial datasets

HA PC CS

All 109 (29.1%) 142 (37.9%) 124 (33.0%)

Training 75 108 87

Testing 19 18 23

Retrospective trial 15 16 14

HA, hyperaldosteronism; CS, Cushing’s syndrome; PC, pheochromocytoma.
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confirmed and modified by a senior physician.

Algorithm development and implementation

The input images had to be preprocessed before being 
fed into the network. To ensure the same shape and voxel 
spacing of each phase, the arterial phase and nonenhanced 
phase were registered to the venous phase. Moreover, voxel 
values were normalized (z score normalization) to the mean 
and standard deviation of all voxels.

The workflow of our algorithm is presented in Figure 1 
and contains three stages: kidney segmentation, adrenal 
and tumor segmentation, and refined segmentation and 

classification.
In stage one, a three-dimensional (3D) U-Net, consisting 

of an encoder and a decoder, is employed to obtain the 
location of the kidneys and is further used as guidance to 
locate the adrenals and tumors. The encoder contains four 
down-sampling operations and constructs four feature 
maps, which are later used in the decoder part via skip 
connections. The decoder up-samples from the latent 
variables (the deepest feature maps in the network) and 
concatenates them with previous encoder feature maps. In 
stage two, the concatenation of the segmented kidney masks 
and original CT series are fed into another 3D U-Net for 
rough segmentation of the adrenals and tumor. The loss 

Figure 1 Workflow of the proposed algorithm. The workflow contains three stages: kidney segmentation, tumor and adrenal segmentation, 
and refined segmentation and classification. MSE, mean square error; CS, Cushing’s syndrome; PC, pheochromocytoma; HA, 
hyperaldosteronism.
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function of the models in the first two stages is as follows:
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where Lce is the cross entropy loss function and Ldc is the 
dice loss function of the multiclass (15); x and y represent 
the one-hot encoding segmentation map of model’s output 
and ground truth, respectively; I represents the pixel set of 
the segmentation map; and C is the class set.

The input of the third stage is a bounding box, consisting 
of the adrenals and tumors cropped from each whole CT 
scan. We selected the same encoder architecture as that used 
in the first two stages for feature extraction. The decoder 
part consists of a classification branch and a segmentation 
branch to identify the tumor types and refine tumor 
segmentation. A variational autoencoder (VAE) branch 
was adopted to improve the segmentation accuracy. A VAE 
can perform efficient approximate inferences and can learn 
with directed probabilistic models whose continuous latent 
variables have intractable posterior distributions (16). In 
the VAE branch, the latent variables are assumed to follow 
a probability distribution. Through a fully connected layer, 
the latent variables construct a mean vector (1024-d) and a 
standard deviation vector (1024-d). These two vectors are 
compared to the mean and the standard deviation of the 
normal distribution. Kullback-Leibler (KL) divergence is 
used in this comparison. In stage three, the loss function is 
divided into three parts:

nnUnet vae nnUnet cls vaeL L L L− += +  [3]

vae KL MSEL L L+=  [4]
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where Lcls represents the cross-entropy loss function for the 
classification branch, and Lvae represents the loss function for 
the VAE branch. LKL is the KL divergence, which is defined 
as the difference between two probability distributions. 
Since the probability distribution of latent variables in the 
VAE is assumed to be a Gaussian distribution, μI and σI are 
the parameters of the Gaussian distribution. LMSE represents 
the mean-squared loss between the input image and the 
output of the VAE branch.

In our research, all CT images were acquired in the 
arterial phase, venous phase, and nonenhanced phase. The 
data distribution of the training set, which was used to 
optimize network parameters, is shown in Table 2. We used 
the Adam optimizer with a learning rate of 0.001 to update 
the parameters of the network. The deep learning model 
was trained on an NVIDIA Tesla V100 GPU. To prevent 
network overfitting, early stopping was performed, and 
we chose the model in which loss did not decrease over 50 
iterations as the final model.

Model performance assessment

For image-level FAT distinction, a testing set of 60 CT 
images from 60 patients was used to compare our the 
performance of our model with the diagnostic results 
of a detailed endocrine hormone assessment. Then, to 
assess the robustness of the proposed model, a further 45 
independently collected cases were tested in a retrospective 
dataset. The dataset consisted of 14 CS cases (31.1%), 15 
HA cases (33.3%), and 16 PC cases (35.6%). The evaluation 
indices were receiver operating characteristic (ROC) curves 
and a confusion matrix.

For pixel-level tumor lesion quantification, we considered 
the results of adrenal tumor segmentation as quantitative 
representation and evaluated the segmentation performance 
in terms of the Dice score. The venous phase was regarded 
as the template during registration, so the annotated masks 
were obtained from venous-phase images.

Finally, we selected 40 CT scans from 60 patients in 
the testing group to assess how the AI model improved 
the diagnostic accuracy of physicians. The assistance 
of AI was provided with image-level functional FAT 
distinction and pixel-level tumor lesion segmentation. 
Four physicians (with 10, 4, 2, and 1 years of experience, 
respectively) were involved in the study. Forty CT scans 
were randomly divided into two groups of 20 scans: group 
A and group B. To remove observer bias, group A used AI 
model assistance, while group B was without assistance in 
the first round of reviews. In the second round of reviews, 
the AI assistance was switched between group A and group 
B. There was an interval of 4 weeks between the two 
rounds of reviewing to eliminate the interference of the 
first review. We get two groups of data, one is the result of 
diagnostic accuracy that the physician quantifies the tumor 
without AI assistance, the other group is the diagnostic 
accuracy with AI assistance. We called this experiment an 
observer study.



Alimu et al. AI for the distinction of adrenal tumors2680

© Quantitative Imaging in Medicine and Surgery. All rights reserved.   Quant Imaging Med Surg 2023;13(4):2675-2687 | https://dx.doi.org/10.21037/qims-22-539

Results

Assessment of the model distinction performance

The ROC curves and confusion matrices for image-
level FAT distinction in the testing set are illustrated in  
Figure 2A. The area under the ROC curve (AUC) is 

one of the most common evaluation indicators of model 
performance. The proposed deep learning model achieved 
an average AUC of 0.915, and all the AUCs for the three 
types of FAT were greater than 0.882. As presented in the 
confusion matrix, almost all cases of CS were identified, and 
the results for PC and HA were also satisfactory. The AUC 

Figure 2 The performance of the model in distinguishing three types of functional adrenal tumor. Receiver operating characteristic curves 
and confusion matrices (A) in the test dataset and (B) in the retrospective dataset. (C) The diameter distribution of CS in the training 
dataset and the retrospective dataset. ROC, receiver operating characteristic; HA, hyperaldosteronism; AUC, area under the curve; PC, 
pheochromocytoma; CS, Cushing’s syndrome.

1.0

0.8

0.6

0.4

0.2

0.0

1.0

0.8

0.6

0.4

0.2

0.0

0.96

0.11

0.0

0.71

0.0

0.07

0.0

0.83

0.21

0.0

0.88

0.13

0.04

0.06

0.79

0.29

0.12

0.8

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0
0.0 0.2 0.4 0.6 0.8 1.0

0.0 0.2 0.4 0.6 0.8 1.0

Tr
ue

 p
os

iti
ve

 r
at

e
Tr

ue
 p

os
iti

ve
 r

at
e

False positive rate

False positive rate

G
ro

un
d 

tr
ut

h
G

ro
un

d 
tr

ut
h

P
C

P
C

PC

PC

Predict

Predict

Confusion matrix

C
S

C
S

CS

CS

H
A

H
A

HA

HA (AUC=0.909)

HA (AUC=0.849)

PC (AUC=0.882)

PC (AUC=0.951)

CS (AUC=0.954)

CS (AUC=0.866)

HA

20
18
16
14
12
10
8
6
4
2
0

CS’s diameter, cm

C
as

e 
nu

m
be

r

Train True in trial False in trial

0.0 0.6 1.2 1.8 2.4 3.0 3.6 4.2 4.8

A

B

C



Quantitative Imaging in Medicine and Surgery, Vol 13, No 4 April 2023 2681

© Quantitative Imaging in Medicine and Surgery. All rights reserved.   Quant Imaging Med Surg 2023;13(4):2675-2687 | https://dx.doi.org/10.21037/qims-22-539

of the model tested on the retrospective dataset reached 
above 0.849 (Figure 2B). More specifically, the distinction 
performance for HA and PC was similar to that of the 
testing data, and the distinction performance for CS was 
significantly reduced (Figure 2C).

To visually explain the relationship between the 
proposed model and the distinction results, heatmaps were 
used to show which part of the input images had played a 
role in the final distinction outputs. These heatmaps are 
presented in Figure 3. The region of interest highlighted 
in a heatmap was the region predicted by the model to be a 
potential tumor lesion. The regions of interest were mainly 
concentrated in the tumor lesions, which indicated that the 
proposed model could distinguish the type of FAT in an 
explainable way and facilitate tumor segmentation.

Assessment of model quantification performance

The model’s quantification performance was assessed in the 
testing dataset, and it achieved a mean Dice coefficient of 
0.69. Although this result indicated that there was room to 
improve the segmentation accuracy, Figure 4, which presents 
the detailed segmentation results for the three types of 
FAT, shows that the tumor lesion regions segmented by the 
proposed model were generally accurate. 

Observer study

To evaluate whether our proposed model could assist in 
the diagnosis of FATs by physicians, four physicians with 
different levels of experience and 40 CT scans with three 
phases from the test dataset were involved in the next part 
of the study. The results of the physicians’ diagnoses with 
and without AI assistance are depicted in Figure 5. The 
diagnostic accuracies for all four physicians were higher 
with AI assistance than without. The average number of 
cases correctly diagnosed without AI was 32.3 (average 
accuracy rate: 80.6%), while the average number of cases 
diagnosed with the assistance of AI was 37.0 (average 
accuracy rate: 92.5%). The difference was statistically 
significant (P<0.05). The confusion matrices in Figure 2 
are presented to demonstrate the diagnostic performance 
for the three types of FAT in detail. Figure 5B shows the 
relationship between diagnostic accuracy and the diameter 
and average CT value of the tumor.

Discussion

The quantification and distinction of adrenal tumors are 
key to their treatment, especially for FATs, which can cause 
overproduction of various endocrine hormones. Failure to 
differentiate FATs may cause various crises. For example, 

Figure 3 The performance of the model in segmenting tumor regions in three types of functional adrenal tumor. (A) Raw CT slices with a 
tumor, (B) ground-truth labels, (C) segmentation results from the proposed model, and (D) heatmaps of tumor regions.
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Figure 4 The performance of the model in quantifying tumor regions in three types of functional adrenal tumor. (A) Input CT images of a 
tumor, (B) ground-truth labels, and (C) results from the proposed model. HA is indicated by a red mask. CS is indicated by a blue mask; PC 
is indicated by a green mask. HA, hyperaldosteronism; CS, Cushing’s syndrome; PC, pheochromocytoma.

A B C
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Figure 5 The diagnostic results of the four physicians in the observer study. (A) Histogram and confusion matrices of physicians’ diagnostic 
performance with and without the help of AI. (B) The number of cases correctly predicted by the physicians (the average results of the 
four physicians) and by AI in tumors with different average CT values and diameters in the test dataset. HA, hyperaldosteronism; PC, 
pheochromocytoma; CS, Cushing’s syndrome; AI, artificial intelligence.

misdiagnosis of PC during preoperative examination can 
lead to unexpected blood pressure fluctuations, which can 
cause serious cardiovascular complications during surgery. 
In some cases, the surgical intervention may stimulate the 
tumor, resulting in excessive secretion of catecholamine, 
which poses a threat to the patient’s life. For HA and CS, 
timely monitoring of cortical hormones and electrolytes 
may be delayed, leading to corticosteroid deficiency or 
other serious complications. In some cases, patients with 
nonfunctional adrenal lesions can be wrongly diagnosed and 
exposed to unnecessary surgery (17). Therefore, accurate 
diagnosis and timely intervention are vital. In this study, we 
established a novel diagnostic model with a deep learning 
network to quantify and distinguish common FATs based on 
enhanced CT.

Computed tomography is one of the most common tools 
for diagnosing adrenal tumors with different radiological 
features (18). In the field of adrenal tumors, several methods 
have been proposed to assess the benignity and functionality 

of adrenal lesions using different CT parameters, such 
as the tumor maximum diameter, attenuation value in 
HU, regular margins, and absolute percentage washout 
(3,17,19,20). Most adrenal adenomas are rich in lipids, 
which results in them having low attenuation values on 
plain CT images; a threshold attenuation value lower than 
10 HU has been shown to distinguish adrenal adenomas 
with high accuracy (17). Siegal et al. reported that most 
(79%) cortisol-producing adrenal incidentalomas had an 
HU value of greater than 10 (21). Another study showed 
that the patients with CS had an HU value of greater than 
18.5. The authors explained that the reason for this high 
HU value was reduced levels of intracytoplasmic fat, which 
caused a change in the structure of cortisol-producing 
cells from lipid-rich cells to lipid-poor cells (6). Korobkin 
et al. (22) reported that using a threshold value of 18 HU 
correctly diagnosed all nonadenomas, including PCs, in 124 
patients who underwent contrast-enhanced CT. Computed 
tomography has high sensitivity for adrenal adenomas of 
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less than 3 cm in size; however, its sensitivity is poor for 
large adenomas due to the broad overlap of the tumor size, 
cystic or necrotic change, and tumor margin (20,23,24).

In the observer study, results showed that our proposed 
model improved the physicians’ diagnoses by an average 
of 11.9%. The two groups of data showed statistical 
differences, which demonstrates the effectiveness of the 
model in assisting physicians. Physicians mainly diagnose 
the type of adrenal tumor based on the attenuation value and 
diameter of the tumor area. To find the internal relationship 
between images and adrenal tumor classifications, the 
AI-based system proposed in this paper uses multiple 
levels of features extracted from the deep learning model 
architecture. These features include apparent features, such 
as textures, and many uninterpretable potential features, 
which will help physicians to make an accurate diagnosis.

Some previous studies have attempted to correlate 
the radiological features and functionality of adrenal 
incidentalomas. Yi et al. (3) reported that machine learning-
based unenhanced CT texture analysis could effectively 
differentiate subclinical PCs from lipid-poor adrenal 
adenomas. They analyzed unenhanced CT images of 80 
lipid-poor adrenal adenomas and classified subclinical 
PCs with an accuracy of 80%. In recent years, many 
studies in the field of CT have achieved promising results 
based on deep learning networks (25). For example,  
Wang et al. (26) proposed a data-driven model, the central 
focused convolutional neural network, to segment lung 
nodules from heterogeneous CT images. Another effective 
model-based approach was used for computer-aided kidney 
segmentation of abdominal CT images (27). In addition, 
Chilamkurthy et al. (28) developed a set of deep learning 
algorithms for the automated detection of key lesions in CT 
scans, and Man et al. (29) introduced a deep Q network-
driven approach with a deformable U-Net to accurately 
segment the pancreas. Nevertheless, studies on the use of 
deep learning networks for CT-based FAT quantification 
are rare. The main approach for FAT distinction mentioned 
in previous studies is machine learning-based radiomics 
analysis, which requires human participation in feature 
selection.

The algorithm described in this study uses nnU-Net as a 
backbone and combines a VAE branch to extract more useful 
information to improve segmentation and classification 
results. Compared to prior art network configurations, 
nnU-Net encodes precise spatial information into high-
resolution low-level features and builds hierarchical object 
concepts at multiple scales. Furthermore, the VAE branch 

ensures that our proposed model is very efficient, by 
creating information-rich latent variables and improving 
generalization. These operations provide efficient guidance 
for classification and segmentation. Currently, our model 
can analyze different image characteristics through the deep 
learning network. The model segments the CT images of 
adrenal tumors and extracts the image characteristics of 
each part in each phase. Unlike those in previous studies, 
our model extracts some image features that cannot be 
directly recognized by radiologists and surgeons. As shown 
in Figure 4B, the accuracy of the model is significantly 
higher than distinction by physicians alone for FATs with 
a diameter of 1.8–4.6 cm and an average CT value of  
0–70 HU. We have attributed this finding to the fact that 
the model can extract a greater abundance of features as 
well as the average CT value and diameter.

In the retrospective dataset, the distinction performance 
of the model for CS was relatively lower than that in the 
testing group. Figure 2C demonstrates the difference in 
the CS tumor diameter distribution between the training 
dataset and the retrospective trial dataset. The CS tumor 
diameter in the trainset was 2.1–5.1 cm, while that in the 
retrospective trial dataset was 1.0–5.1 cm. Previous study  
has shown that the mean size of most adrenal adenomas is 
2.1–2.4 cm, with only a small number of adenomas having a 
diameter of 4.1–6.0 cm (20). In this study, the median tumor 
diameter was 1.8 [interquartile range (IQR), 1.4–2.3 cm] 
and 2.8 (IQR, 2.1–3.2 cm) for HA and CS, respectively. 
Previous studies and our experience show that when in 
the diameter range of 1–3 cm, HA and CS have more 
overlapping imaging features than other diameter sections 
of these two types of tumors (18,20,24). In addition, as 
shown in Figure 2C, tumors with sizes ranging from 1.0 to 
2.4 cm hardly appeared in the training set, which resulted in 
a poor performance of the model in this group.

Compared with adrenal adenoma, PC is a hypervascular 
tumor that results in an increased attenuation value on 
unenhanced CT. If an adrenal lesion has an attenuation 
value of less than 10 HU and rapid washout of more 
than 50%, the tumor is likely to be a benign adenoma. In 
contrast, a lesion with an HU value of more than 20 and 
with rapid washout of less than 50% is considered to be 
PC, adrenal carcinoma, or metastasis (1,30). Studies have 
reported that 87% to 100% of patients with PC have a 
CT value of more than 10 HU and an absolute percentage 
washout of less than 60% (1,6,31). Al-Waeli et al. (6) 
analyzed the CT characteristics of 38 patients with adrenal 
incidentaloma. They mentioned that native HU was the 
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most significant radiological parameter for predicting 
the functionality of CS and PC, and that the maximum 
diameter was significant for the differentiation of PC  
and HA.

In this study, the accuracy of the model for CS in 
the testing data set was 83.3%. Two cases of PC were 
misdiagnosed as CS, and one was misdiagnosed as HA. 
The diameter of these tumors was less than 3.0 cm, and 
the average CT value in the plain scan was less than  
20 HU. After enhancement, tumors showed mild uniform 
enhancement. These characteristics are similar to those of 
adrenal adenoma. Currently, the model is in the preliminary 
stage of learning the image characteristics of tumors. Some 
tumors have CT characteristics that overlap with those 
of other types of tumors and can easily be misdiagnosed. 
However, patients with CS have specific clinical signs 
and symptoms, such as moon face, buffalo hump, and 
hypertension; patients with HA may have hypokalemia 
and hypertension; and patients with PC may experience 
palpitations, sweating, and hypertension. In the follow-
up study, we will include these parameters to provide more 
assistance and improve the diagnostic accuracy of our 
model.

In terms of its practical value, the diagnostic model with 
a deep learning network cannot replace endocrine tests and 
experiments, which are essential for a definitive diagnosis of 
the functionality of adrenal tumors. We aimed to establish 
a complete model for the distinction and quantification 
of adrenal tumors that could assist physicians in making a 
primary diagnosis of the functionality of these lesions and 
improve the value of adrenal CT imaging. However, there 
are still some limitations to our study. First, the amount of 
data used to train the model was limited, and there were 
many features of adrenal tumors that were not learned. 
More abundant data, such as clinical symptoms, are still 
needed to improve the diagnostic accuracy and robustness 
of the model. Second, our system can only analyze and 
differentiate the three common types of FATs. However, 
other types of adrenal tumors have high incidence rates, 
such as nonfunctional adrenal adenoma. In the follow-
up research, we will increase the numbers of cases of 
nonfunctional tumors and adrenal cortical carcinoma to 
make the model more complete.

Conclusions

In this study, we established an AI-based model for 
differentiating the three most common types of FAT by 

analyzing contrast CT images. Our model demonstrated a 
satisfactory performance in quantifying and distinguishing 
the three common types of FAT. It could automatically 
locate the tumor and analyze the tumor functionality. The 
model assisted the diagnosis of surgeons by providing AI 
analysis. This is the initial stage of our work; in the future, 
we will be working to develop a more complete AI-based 
model that can diagnose more types of adrenal tumor 
without endocrine tests. In the meantime, the model we 
have developed can be used to quantify and distinguish 
adrenal tumors under the conditions of limited clinical 
resources and experience, and can assist physicians in the 
diagnostic process.
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