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Background: Alzheimer disease (AD) is a progressive neurodegenerative disease closely related to genes 
and characterized by the atrophy of the cerebral cortex. Correlations between imaging phenotypes and the 
susceptibility genes for AD, as demonstrated in the findings of genome-wide association studies (GWASs), 
still need to be addressed due to the complicated structure of the human cortex.
Methods: In our study, an improved GWAS method, whole cortex characteristics GWAS (WCC-GWAS), 
was proposed. The WCC-GWAS uses multiple cortex characteristics of gray-matter volume (GMV), cortical 
thickness (CT), cortical surface area (CSA), and local gyrification index (LGI). A cohort of 496 participants 
was enrolled and divided into 4 groups: normal control (NC; n=122), early mild cognitive impairment (EMCI; 
n=196), late mild cognitive impairment (LMCI; n=62), and AD (n=116). Based on the Desikan-Killiany 
atlas, the brain was parcellated into 68 brain regions, and the WCC of each brain region was individually 
calculated. Four cortex characteristics of GMV, CT, CSA, and LGI across the 4 groups optimized with 
multiple comparisons and the ReliefF algorithm were taken as magnetic resonance imaging (MRI) brain 
phenotypes. Under the model of multiple linear additive genetic regression, the correlations between the 
MRI brain phenotypes and single-nucleotide polymorphisms (SNPs) were deduced.
Results: The findings identified 2 prominent correlations. First, rs7309929 of neuron navigator 3 (NAV3) 
located on chromosome 12 correlated with the decreased GMV for the left middle temporal gyrus (P=0.0074). 
Second, rs11250992 of long intergenic non-protein-coding RNA 700 (LINC00700) located on chromosome 
10 correlated with the decreased CT for the left supramarginal gyrus (P=0.0019).
Conclusions: The findings suggested that the correlations between phenotypes and genotypes could 
be effectively evaluated. The strategy of extracting MRI phenotypes as endophenotypes provided valuable 
indications in AD GWAS.
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Introduction

Alzheimer disease (AD) is an age-related neurodegenerative 
disorder mostly accompanied by progressive memory loss, 
impaired executive function, and other related clinical 
symptoms (1). The incidence of AD increases with age, and 
the total number of affected people worldwide will exceed 
100 million by 2030 (2). AD seriously affects the quality 
of life of patients and leverages a heavy burden on society 
and families. The occurrence of AD is closely related to 
genetic factors and is characterized by atrophy of the brain  
cortex (3). The imaging genomics of AD has recently 
become a research hotspot.

Imaging genomics is a promising research field that 
could not only help to discover the biomarkers of AD but 
also investigate the impact of human genetic variation on 
the structure, chemistry, and function of neural systems at 
the genome-wide level. Imaging genomics can even reveal 
the complex interaction between genetic variants and 
phenotypic imaging features. Thus, imaging genomics has 
aroused the interest of many researchers. Unlike the two 
other approaches of imaging genomics, hybrid algorithms 
have a greater capacity to exploit the statistical power and 
biological interpretation in formulating a decisive diagnosis 
and prognosis for AD (4,5).

As AD progresses, the topological changes in brain 
structure can be detected using a variety of imaging 
techniques. Since structural magnetic resonance imaging 
(sMRI) possesses the preponderant capability of accurately 
reflecting the morphological changes of the cortex, whole 
cortex characteristics (WCC) is regarded as a critical 
phenotype in imaging genomics (6-8). Notably, the WCC 
of gray-matter volume (GMV), cortical thickness (CT), 
cortical surface area (CSA), and local gyrification index 
(LGI) has been measured to investigate the brain cortical 
changes of AD (9-11). It was reported that the changes in 
CT and CSA in the bilateral hemispheres demonstrated a 
significant decrease in the AD group compared with those 
in the mild cognitive impairment (MCI) and normal control 
(NC) groups (12). Moreover, the cortex characteristics of 
CT and CSA at the frontal, temporal, and occipital lobes 
show significant reduction starting at the temporal lobe and 
gradually expanding to the whole brain as AD progresses. 

Another study, reported there to be an obvious decrease in 
the global GMV in an AD group compared with an MCI 
group (13). In general, the WCC can demonstrate specific 
indications of cortical changes, and those characteristics 
could be used as potential imaging markers or phenotypes 
to predict AD (14).

In order to search for causative genes or genotypes, the 
genomic approaches proceed through stages of candidate 
gene-based association studies, genome-wide association 
studies (GWASs), and next-generation sequencing. 
Unlike the limited effect sizes of single quantitative 
trait associations, the GWAS possesses the ability to 
simultaneously identify genetic variant polymorphisms 
across the genome at the population level  of AD 
(15,16). Earlier studies found that the single-nucleotide 
polymorphism (SNP) rs4420638 on chromosome 19, 
located 14 kilobase pairs distal to apolipoprotein E (APOE) 
ε4, could significantly differentiate AD cases from controls 
and was more strongly associated with the risk of AD than 
any other SNPs of those tested (17). A large 2-stage meta-
analysis of GWAS revealed that the gene ZCWPW1 had 
the strongest association with the 11 new AD-related 
susceptibility loci as the corresponding proteins of the 
introns modulated epigenetic regulation (18). Further 
studies discovered 29 more susceptibility genes in data 
sets with large samples (19,20). Among them, the most 
prominent genes, ADAM10, BCKDK/KAT8, and ACE, 
were connected with the deposition of amyloid beta, the 
increased risk of AD, and the atrophy of the hippocampus 
and amygdala, respectively. Although GWAS has been used 
to identify many risk genes, the biological mechanisms and 
function of genetic variants remain to be elucidated (21,22).

A variety of GWAS strategies have been proposed to 
reveal the correlations between imaging phenotypes and 
genotypes for AD (23,24). CT, one of the most sensitive 
imaging biomarkers of structural brain atrophy in AD, 
was selected as an endophenotype and was found to be 
strongly correlated with 4 genes (B4GALNT1, RAB44, 
LOC101927583, and SLC26A10) related to protein 
degradation, neuronal deletion, and apoptosis (25,26). 
Another GWAS study showed that the medial temporal 
circuit (MTC) could be used as another imaging phenotype 
and that the SNP rs34173062 in the SHARPIN gene had a 
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genetic modifying effect on MTC atrophy (27). Recently, 
it was demonstrated that the SNP rs661526 modulated the 
expression of NFIA in the substantia nigra and the frontal 
cortex (FCTX), and the SNP rs10109716 modulated the 
expression of ST18 in the thalamus, which were significantly 
associated with increased CT in the left parahippocampal 
gyrus and left inferior frontal gyrus, respectively (28). 
Moreover, multiple imaging phenotypes acquired by MRI 
and positron emission tomography (PET), including 
increased cortical amyloid burden and bilateral hippocampal 
volume atrophy, were determined to be associated with the 
rs6850306 in AD and other neurodegenerative diseases (29).

However, the existing studies did not fully consider the 
WCC as imaging phenotypes in the GWAS studies. Failing 
to do so neglects some of the potential phenotypes which 
could reflect the complicated cortical changes in the human 
brain (30). Therefore, correlations between WCC and 
susceptibility genes should be investigated to deepen the 
understanding of the pathogenesis and heritability of AD.

In our study, we proposed an imaging genomics 
approach, WCC-GWAS, to reveal the relationships between 
imaging phenotypes and SNP genotypes for the detection 
of biological markers in AD. In our method, the WCC of 
GMV, CT, CSA, and LGI were implemented to investigate 
the effect of the susceptibility genes on cortical changes. 
The novelty of our study is as follows: (I) we are the first to 
use the WCC of GMV, CT, CSA, and LGI for the selection 
of imaging phenotypes via the hybrid algorithms of 1-way 
analysis of variance (ANOVA) and ReliefF; and (II) the 
correlations of imaging genomics were verified using the 
evaluation of expression quantitative trait loci (eQTL), 
and the functional effect of genetic variants on the gene 
expression were identified for the public gene database. 
We present the following article in accordance with the 
STREGA reporting checklist (available at https://qims.
amegroups.com/article/view/10.21037/qims-22-602/rc).

Methods

Study design

In our experimental setup, 4 experiments were conducted to 
validate the robustness of WCC-GWAS. First, the WCC 
of 4 groups was chosen as the MRI phenotype across the  
4 groups. Second, Pearson correlation analyses were used to 
evaluate the relationships between MRI cortex phenotypes 
and cognitive scales of mini-mental state examination 
(MMSE), clinical dementia rating sum of boxes (CDR-

SB), and functional activities questionnaire (FAQ) scores, 
respectively. Third, the correlation analyses of GWAS were 
conducted to reveal the relationships of imaging genomics. 
Finally, eQTL analysis was used to verify the expected 
results for the GWAS correlations.

Participants

Data used in this article were obtained from the database of 
the Alzheimer’s Disease Neuroimaging Initiative (ADNI) 
(http://adni.loni.usc.edu) (31). Specifically, information 
including age, sex, years of education, the number of APOE 
ε4 carriers (2 or 1 or no copies of allele 4), SNP genotype 
data, sMRI, cognitive scores of the MMSE), CDR-SB, and 
FAQ were measured at the baseline. In this study, a cohort 
of 526 participants was recruited from the 2016 ADNI 
GO/2 for retrospective analysis. The enrollment criteria 
for participants were as follows: age range, 55–90 years old; 
visual and auditory capabilities with adequate acuity for 
neuropsychological testing; no severe medical, neurological, 
or psychiatric disease; no history of significant head trauma; 
no non-AD-related pharmaceuticals known to affect brain 
function, and alcohol or drug addiction; not pregnant, 
lactating, or with the potential for childbearing; completed 
6 grades of education or had a good work history; spoke 
English or Spanish fluently; agreed to have blood samples 
collected for GWAS, APOE testing, and DNA and RNA 
banking; and agreed to have blood samples collected 
for biomarker testing and at least 1 lumbar puncture for 
cerebrospinal fluid. This retrospective study was conducted 
in accordance with the Declaration of Helsinki (as revised 
in 2013) and was approved by the ethics committee of 
Shanghai University of Medicine and Health Sciences. 
Individual consent for this retrospective analysis was waived.

Gene sequencing and image acquisition

The image and gene data were acquired with MRI scanning 
and gene sequencing. The genotyping was performed 
using the Illumina HumanOmniExpress BeadChip in 
ADNI GO/2, and intensity data were processed with 
GenomeStudio v. 2009.1. This approach enabled versatile 
custom genotyping, flexible content design, and high 
throughput capabilities with high data quality. There were 
709,358 SNPs left for the 526 cases after gene testing. All 
MRI examinations were conducted using 3-Tesla (3T) MRI 
scanners. The standard sequence of 3-dimensional high-
resolution T1-weighted imaging (T1WI) protocols were 
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acquired using the standard head phased-array coils with at 
least 16 channels. The scanning parameters were as follows: 
time of repetition (TR), 2,300 ms; time of echo (TE), 2.98 
ms; field of view (FOV), 240×240 mm2; slice thickness, 1.2 
mm; and acquisition matrix, 256×256.

WCC-GWAS approach

In our study, an imaging genomics approach, WCC-GWAS, 
was proposed for correlation analyses between imaging 
phenotypes and genotypes. This approach consisted of 5 
steps: quality control of genetic and MRI data, grouping 
description, phenotypic computation, correlations of 
phenotypes and genotypes, and eQTL analysis.

Quality control of genetic and MRI data

The standard quality control of genotype data included 
the following: sample deletion rate <95%, minimum 
response rate >95%, Hardy-Weinberg equilibrium (HWE) 
of P>1×10−6, minor allele frequency (MAF) >0.05, gender 
testing, linkage disequilibrium analysis, and population 

stratification with principal component analysis (PCA). 
Finally, the 244,456 SNPs of 496 participants were chosen 
as genotypic SNPs. Figure 1 shows the screening process 
of participants. The quality control of genetic data was 
conducted with the PLINK 1.9 software (https://www.
cog-genomics.org/plink/1.9) (32). Additionally, the MRI 
data of enrolled participants were visually inspected for 
the details of image quality. This process guaranteed the 
integrity and consistency of the genetic and MRI data for 
the retrospective study.

Grouping description

According to the National Institute of Neurological and 
Communicative Disorders and Stroke-Alzheimer’s Disease 
and Related Disorders Association (NINCDS-ADRDA) 
criteria (33), the 496 participants were divided into 4 
groups: NC (122 cases), early mind cognition impairment 
(EMCI; 196 cases), late mind cognition impairment (LMCI; 
62 cases), and AD (116 cases).

Phenotypic computation

The MRI phenotypic characteristics were obtained by 
phenotypic computation across the 4 groups. This process 
mainly contained 3 steps: measurement of WCC, statistical 
optimization, and ReliefF sorting.

First, the measurement of WCC consisted of the 
following: normalization, nonuniform field correction, 
removal of nonbrain tissues, segmentation of GM and 
white matter, topological correction, surface construction, 
expansion filling of cerebrospinal fluid, atlas registration, 
and computation of WCC. According to the Desikan-
Killiany atlas, the WCC of GMV, CT, CSA, and LGI were 
calculated for 68 brain regions. These data were processed 
with Freesurfer 5.1.0 software (https://surfer.nmr.mgh.
harvard.edu/pub/dist/freesurfer/5.1.0) (34).

Second, statistical optimization was used to extract 
significant cortex characteristics from WCC. To ensure the 
normal distribution and homogeneity of MRI phenotypic 
characteristics, the Shapiro-Wilk test and histograms for 
the normal distribution and the variance homogeneity test 
for the variance homogeneity were performed, respectively. 
Then, the analysis of 1-way ANOVA was used to compare 
the GMV, CT, CSA, and LGI of 68 brain regions among 
all groups. A total of 125 significant cortex characteristics 
were chosen from the 272 cortex characteristics, as listed in 
Table S1 (P<0.001).

Figure 1 Participant recruitment flow diagram. ADNI, 
Alzheimer’s Disease Neuroimaging Initiative; SNP, single-
nucleotide polymorphism; MAF, minor allele frequency; 
HWE, Hardy-Weinberg equilibrium; NC, normal control; 
EMCI, early mild cognitive impairment; LMCI, late mild 
cognitive impairment; AD, Alzheimer disease.

Participants from ADNI GO/2

(n=526, 709,358 SNPs)

Excluded (total=30, 464,902 SNPs)

• Sample deletion rate >95%

• Population stratification

• Gender testing mismatch

• Phylogenetic analysis

• Minimum response rate <95%

• MAF <0.05

• HWE of P<1×10−6

• Linkage disequilibrium analysis

Total recruited

(n=496, 244,456 SNPs)

Data available for analysis:

• NC (n=122)

• EMCI (n=196)

• LMCI (n=62)

• AD (n=116)
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Third, the algorithm of ReliefF was applied to determine 
the most critical cortex characteristics from the significant 
cortex characteristics mentioned above (35). This process 
was performed because the ReliefF could detect the context 
information among features, and the weights of WCC were 
sorted according to the relevance between features and 
categories (36). In total, a set of 14 cortex characteristics 
was chosen as MRI phenotypes at the threshold of 0.015.

Correlations of phenotypes and genotypes

The correlations between the 14 MRI phenotypes and 
244,456 genotypic SNPs were analyzed using additive 
genetic linear regression with PLINK 1.9 software. Here, 
the variables of age, sex, years of education, the top 10 
weights of PCA, and the number of APOE ε4 carriers were 
taken as covariates. Two thresholds were chosen: P<1×10−5 
for the suggestive association threshold and P<5×10−8 for the 
genome-wide significance. To verify the multiple hypothesis 
testing, the Benjamini-Hochberg (BH) procedure was used, 
and the false discovery rate (FDR) control was implemented 
using the “p.adjust()” function, a base package that comes 
with R 4.2 software (The R Foundation for Statistical 
Computing; https://www.r-project.org) to guarantee the 
accuracy of the results (P*<0.05) (37). The potential SNPs 
were required to pass the FDR control threshold (P*<0.05), 
while the top SNPs were required to pass the genome-wide 
significance threshold (P<5×10−8). Moreover, the significant 
correlations of phenotypes and genotypes were visualized 
with Manhattan and quantile-quantile (Q-Q) plots drawn 
with the “qqman” package in R 4.2 software. Accordingly, 
the adjacent regions and genetic information of significant 

SNPs were drawn with LocusZoom Python application. 

eQTL analysis

In our experiment, the eQTL analysis was used to study the 
correlation between genetic mutation and gene expression 
by using gene expression as a trait. To identify the 
functional effect of genetic variants on the gene expression, 
the correlations between genotypes and gene expression in 
10 brain tissues were verified on the Brain eQTL Almanac 
(Braineac) database (the FDR correction was performed as 
described in the Correlations of phenotypes and genotypes 
section; P<0.05) (38). The Braineac database is a public 
database consisting of 134 people of European descent who 
do not have neurodegenerative diseases. The genotypes and 
gene expression levels in 10 brain regions could be used 
to verify the SNPs in genes associated with neurological 
disorders.

Results

Demographic and clinical characteristics

The demographic details and clinical scores of the 4 groups 
are displayed in Table 1. The statistical analyses of 1-way 
ANOVA and the chi-squared test were performed to 
compare the demographic differences among the 4 groups 
(P<0.05) (39).

Results of MRI cortex phenotypes

The details of the 14 MRI phenotypes of AD are listed 
in Table 2. There were 12 MRI cortex phenotypes of CT, 

Table 1 Demographics and clinical scores of enrolled participants (mean ± SD)

Variables NC (n=122) EMCI (n=196) LMCI (n=62) AD (n=116) P value

Age (years) 74.54±5.60 71.33±7.35 72.64±7.71 74.81±8.19 <0.05*

Sex (female/male) 61/61 86/110 24/38 46/70 >0.05

Education (years) 16.43±2.53 15.83±2.62 16.63±2.54 15.70±2.68 <0.05*

APOE ε4 (0/1/2) 90/28/4 117/66/13 30/25/7 39/56/21 <0.05*

CDR-SB 0.04±0.15 1.25±0.78 1.78±1.05 5.25±2.10 <0.05*

MMSE 28.98±1.29 28.32±1.54 27.65±1.95 22.19±3.26 <0.05*

FAQ 0.16±0.63 1.89±3.15 4.53±5.09 16.16±7.09 <0.05*

*, significant statistical level of P<0.05. SD, standard deviation; NC, normal control; EMCI, early mild cognitive impairment; 
LMCI, late mild cognitive impairment; AD, Alzheimer disease; APOE ε4, apolipoprotein E ε4; CDR-SB, clinical dementia rating 
sum of boxes; MMSE, mini-mental state examination; FAQ, functional activities questionnaire. 
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Table 2 Details of the14 MRI phenotypes (mean ± SD)

Phenotypes NC EMCI LMCI AD

CT (mm)

Left entorhinal 3.3159±0.2947 3.2374±0.4231 3.0066±0.4965 2.6428±0.4535

Right entorhinal 3.4922±0.3335 3.4044±0.5123 3.1768±0.5631 2.8315±0.5293

Left superior temporal gyrus 2.6017±0.1386 2.6066±0.1900 2.5123±0.0456 2.4081±0.1691

Right superior temporal gyrus 2.6087±0.1415 2.6149±0.1788 2.5631±0.1626 2.4582±0.1612

Left middle temporal gyrus 2.7050±0.1313 2.7036±0.1483 2.6558±0.1964 2.5343±0.1963

Right middle temporal gyrus 2.7425±0.1254 2.7246±0.1713 2.7177±0.1640 2.5737±0.1971

Left precuneus 2.2057±0.1295 2.2122±0.1445 2.1631±0.1509 2.0783±0.1587

Right precuneus 2.2407±0.1248 2.2627±0.1289 2.2083±0.1273 2.0994±0.1635

Left inferior parietal gyrus 2.2683± 0.1214 2.2786±0.1312 2.2357±0.1498 2.1332±0.1825

Right fusiform gyrus 2.6121±0.1409 2.6160±0.1651 2.5689±0.2044 2.4537±0.2015

Left supramarginal gyrus 2.3761±0.1236 2.3934±0.1334 2.3560±0.1508 2.2517±0.1584

Right isthmus of cingulate gyrus 2.2966±0.2122 2.3203±0.2076 2.2333±0.2599 2.1409±0.2136

GMV (mm3)

Left middle temporal gyrus 9,508.5±1,166.9 9,837.2±1,446.7 8,987.6±1,472.1 8,295.6±1,576.7

Left entorhinal 1,751.2±358.00 1,776.2±429.45 1,554.9±390.53 1,341.4±443.78

MRI, magnetic resonance imaging; SD, standard deviation; NC, normal control; EMCI, early mild cognitive impairment; LMCI, 
late mild cognitive impairment; AD, Alzheimer disease; CT, cortical thickness; GMV, gray-matter volume.

left entorhinal, right entorhinal, left superior temporal 
gyrus, right superior temporal gyrus, left middle temporal 
gyrus, right middle temporal gyrus, left precuneus, right 
precuneus, left inferior parietal gyrus, left supramarginal 
gyrus, right fusiform gyrus, and right isthmus of the 
cingulate gyrus. The CT gradually decreased from NC 
to AD, and there was an especially obvious decrease from 
LMCI to AD (P<0.001). The 2 MRI cortex phenotypes of 
GMV (left entorhinal and left middle temporal gyrus) first 
had a marginal increase from NC to EMCI and then slowly 
decreased from EMCI to AD (P<0.001). 

Pearson correlation analyses

The results shown in Table 3 demonstrated that the 14 
MRI phenotypes were significantly correlated with the 
neuropsychological scale scores (0.2 < |r| < 0.6; P<0.001). 
These results suggested that these phenotypes did have 
strong specificity with the cognitive scales across the 4 
groups.

Results of GWAS correlations

With the suggestive association threshold (P<1×10−5), 31 
SNPs were reserved. Moreover, 2 top SNPs (rs7309929 
and rs11250992) passed the genome-wide significance 
threshold (P<5×10−8). After FDR correction on the 31 
SNPs, 4 SNPs passed the FDR control threshold (P*<0.05), 
including 2 top SNPs (rs7309929 and rs11250992) and 2 
potential SNPs (rs2803433 and rs17669844), as shown in 
Table 4. The top SNP of rs7309929 was strongly associated 
with the reduction of GMV in the left middle temporal 
gyrus (P=3.04×10−8). The top SNP of rs11250992 was 
strongly associated with the reduction of CT in the left 
supramarginal gyrus (P=7.90×10−9) and weakly correlated 
with the reduction of CT in the left superior temporal 
gyrus. The 2 potential SNPs of rs2803433 and rs17669844 
had weak associations with CT reduction in the left 
supramarginal gyrus and right isthmus of the cingulate 
gyrus, respectively.

Figure 2A shows that 3 SNPs (rs7579742, rs7048339, 
and rs7309929) passed the suggestive association threshold 
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(the blue line). Only 1 top SNP of rs7309929 located at the 
NAV3 gene on chromosome 12 passed the genome-wide 
significance threshold (the red line), and the 2 other SNPs 
(rs7579742 and rs7048339) did not pass the FDR control. 
Figure 2B shows that 4 SNPs (rs2803433, rs11952661, 
rs503422, and rs11250992) passed the suggestive 

association threshold (the blue line). Furthermore, 1 top 
SNP (rs11250992) located at the gene LINC00700 on 
chromosome 10 passed the genome-wide significance 
threshold (the red line), 1 potential SNP (rs2803433) passed 
FDR control, and 2 other SNPs (rs11952661 and rs503422) 
did not pass the FDR control. Here, the blue line represents 

Table 3 Relationships between CT of specific brain regions and the scores of the cognitive scales MMSE, CDR-SB, and FAQ

Phenotypes
MMSE CDR-SB FAQ

r P value r P value r P value

CT

Left entorhinal 0.481 <0.001 −0.466 <0.001 −0.500 <0.001

Right entorhinal 0.389 <0.001 −0.417 <0.001 −0.460 <0.001

Left superior temporal gyrus 0.429 <0.001 −0.369 <0.001 −0.429 <0.001

Right superior temporal gyrus 0.342 <0.001 −0.318 <0.001 −0.375 <0.001

Left middle temporal gyrus 0.366 <0.001 −0.352 <0.001 −0.417 <0.001

Right middle temporal gyrus 0.318 <0.001 −0.331 <0.001 −0.374 <0.001

Left precuneus 0.312 <0.001 −0.316 <0.001 −0.343 <0.001

Right precuneus 0.350 <0.001 −0.350 <0.001 −0.405 <0.001

Left inferior parietal gyrus 0.346 <0.001 −0.330 <0.001 −0.383 <0.001

Right fusiform gyrus 0.316 <0.001 −0.306 <0.001 −0.387 <0.001

Left supramarginal gyrus 0.331 <0.001 −0.308 <0.001 −0.364 <0.001

Right isthmus of cingulate gyrus 0.254 <0.001 −0.274 <0.001 −0.342 <0.001

GMV

Left middle temporal gyrus 0.356 <0.001 −0.316 <0.001 −0.340 <0.001

Left entorhinal 0.376 <0.001 −0.367 <0.001 −0.375 <0.001

r, Pearson correlation coefficient. CT, cortical thickness; MMSE, mini-mental state examination; CDR-SB, clinical dementia 
rating sum of boxes; FAQ, functional activities questionnaire; GMV, gray-matter volume. 

Table 4 Results of GWAS correlations

Significant SNPs CHR Gene SNP location MAF P P* Regions-phenotypes

rs7309929 12 NAV3 Intronic variant 0.286 3.04×10−8 0.0074 Left middle temporal gyrus-GMV

rs11250992 10 LINC00700 Upstream 
transcript variant

0.483 7.90×10−9 0.0019 Left supramarginal gyrus-CT

6.43×10−8 0.0157 Left superior temporal gyrus-CT

rs2803433 9 PCSK5 Intronic variant 0.123 1.39×10−7 0.0169 Left supramarginal gyrus-CT

rs17669844 7 CREB5 Intronic variant 0.289 1.79×10−7 0.0438 Right isthmus of cingulate gyrus-CT

P, P value for GWAS level; P*, P value after FDR correction. GWAS, genome-wide association study; SNP, single-nucleotide 
polymorphism; CHR, chromosome; MAF, minor allele frequency; NAV3, neuron navigator 3; GMV, gray-matter volume; 
LINC00700, long intergenic non-protein-coding RNA 700; CT, cortical thickness; PCSK5, proprotein convertase subtilisin/
Kexin type 5; CREB5, CAMP responsive element binding protein 5; FDR, false discovery rate. 
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Figure 2 Interpretation of GWAS correlations. (A,B) Manhattan maps of the results of the GWAS in the GMV of the left 
middle temporal gyrus and the CT of the left supramarginal gyrus, respectively. (C,D) Q-Q plots of comparison of the observed 
and expected values of the GMV of the left middle temporal gyrus and the CT of the left supramarginal gyrus, respectively. (E,F) 
Regional association maps of the regional linkage imbalance for rs7309929 (±400 kB) and rs11250992 (±400 kB), respectively. 
SNP, single-nucleotide polymorphism; GWAS, genome-wide association study; GMV, gray-matter volume; CT, cortical 
thickness; Q-Q plots, quantile-quantile plots. 

8

6

4

2

0

8

6

4

2

0

−
lo

g 1
0(P

)

−
lo

g 1
0(P

)

1 2 3 4 5 6 7 8 9 10 11 12 13 15 17 19 22
Chromosome

1 2 3 4 5 6 7 8 9 10 11 12 13 15 17 19 22
Chromosome

rs7309929
rs11250992

rs2803433

rs11952661
rs503422

rs7048339

rs7579742

0 1 2 3 4 5 6
Expected –log10(P)

77.8 78 78.2 78.4
Position chr12, Mb

 1.8 2 2.2 2.4
Position chr10, Mb

r2 r2

0.8
0.6
0.4
0.2

0.8
0.6
0.4
0.2

NAV3

LINC00701LINC00700ADARB2

MIR6072

–l
og

10
(P

 v
al

ue
)

–l
og

10
(P

 v
al

ue
)

R
ecom

bination rate, cM
/M

b

R
ecom

bination rate, cM
/M

b

Plotted SNPs Plotted SNPs

rs7309929
rs11250992

λ =1.009 λ =0.993

0 1 2 3 4 5 6
Expected –log10(P)

8

6

4

2

0

10

8

6

4

2

0

10

8

6

4

2

0

100

80

60

40

20

0

100

80

60

40

20

0

8

6

4

2

0

O
bs

er
ve

d 
–l

og
10

(P
)

O
bs

er
ve

d 
–l

og
10

(P
)

B

D

F

A

C

E



Quantitative Imaging in Medicine and Surgery, Vol 13, No 4 April 2023 2459

© Quantitative Imaging in Medicine and Surgery. All rights reserved.   Quant Imaging Med Surg 2023;13(4):2451-2465 | https://dx.doi.org/10.21037/qims-22-602

the suggestive association threshold (1×10−5), and the red 
line represents the genome-wide association threshold 
(5×10−8). The Q-Q plots of the left middle temporal gyrus 
and the left supramarginal gyrus were used to compare 
the observed and expected P values (Figure 2C,2D).  
The genomic inflation factor of the 2 top SNPs were 
1.009 and 0.993, respectively. The results indicated there 
to be no remarkable inflation of the observed P value or 
population stratification phenomenon. Furthermore, the 
regional association maps showed that there was no SNP 
in high linkage disequilibrium between the 2 top SNPs  
(Figure 2E,2F).

The correlations between significant SNPs and MR 
brain phenotypes are shown in Figure 3. rs7309929 (C/
T) was significantly correlated with the GMV of the left 
middle temporal gyrus (P=0.007), the C allele carriers of the 
rs7309929 demonstrated a decreased tendency of GMV (CT 
> TT > CC), rs11250992 (G/T) was significantly correlated 
with the CT of the left supramarginal gyrus (P=0.002) and 
left superior temporal gyrus (P=0.02), the G allele carriers 
of the rs11250992 (G/T) gradually decreased for CT (TT 
> GT > GG), rs2803433 (C/T) was significantly correlated 
with the CT of the left supramarginal gyrus (P=0.02), the 
CT became thinner in the C allele carriers (TT > CT > 
CC), rs17669844 (A/G) was significantly correlated with 
the CT of the right isthmus of the cingulate gyrus (P=0.04), 
and the A allele carriers of the rs17669844 had a decreased 
CT (GG > AG > AA).

Results of eQTL analysis

Since  there  were  no  ca se s  o f  expres s ion  o f  the 
LINC00700 gene in the Braineac database, 3 candidate 
loci (NAV3, PCSK5, and CREB5) were selected, and 
their corresponding SNPs (rs7309929, rs2803433, and 
rs17669844) were used for the eQTL analysis. It was 
clear that there were 4 increased expressions, including 
the T allele of rs7309929 for NAV3 in the substantia 
nigra (SNIG; P=0.002, probe set 3423384), the A allele 
of rs2803433 for PCSK5 in the cerebellar cortex (CRBL; 
P=0.006, probe set 3175293), the G allele for PCSK5 in 
the prefrontal cortex (P=0.03, probe set 3175293), and the 
T allele in rs17669844 for CREB5 in the FCTX (P=0.02, 
probe set 2994646), as shown in Figure 4.

Discussion

AD is the most common type of dementia, but the 

pathological mechanism remains unclear. In our study, 
we proposed an improved WCC-GWAS to analyze the 
correlations between imaging phenotypes and genotypes. 
This approach can deepen the understanding of the 
pathophysiological mechanism of AD by revealing the effect 
of genetic loci on cortex characteristics.

In our study, the WCC of GMV, CT, CSA, and LGI 
were used to accurately reflect the cortical alternations. 
A previous study showed that AD classification via 
multiparameter combination (i.e., GMV, CT, and CSA) 
obtained the optimal accuracy of 90.76% for the support 
vector machine classifier (40). Pronounced brain regions for 
CT decline were located in the temporal and limbic lobes, 
whereas those for GMV and CSA were distributed in more 
diffuse regions of the brain (11). Except for the GMV, CT, 
and CSA, the LGI also demonstrated obvious changes in 
the measurement of the brain cortex for AD progression. 
Furthermore, in subjective cognitive impairment, the 
left lingual gyrus showed a significant reduction of  
LGI (41). The multiple phenotypes could provide detailed 
information about complex morphological changes in 
cortical structures.

Our experiments pointed to 4 loci ,  rs7309929, 
rs11250992, rs2803433, and rs17669844, as potential 
genetic risk loci for AD. The rs11250992 in LINC00700 
influenced not only the CT of the left supramarginal gyrus 
but also the CT of the left superior temporal gyrus. This 
finding suggests that the single locus produces complicated 
effects on multiple imaging phenotypes. However, the 
possible role of this gene has not been reported in GWAS 
studies. These findings show that the vital role of SNPs can 
be explained by regional specificity and are not limited to an 
individual region in relation to AD pathogenesis (42).

Another locus, rs7309929, was labeled as one of the 
hotspot SNPs. It was located on chromosome 12 and 
belonged to the intronic variant region of the NAV3 gene. 
Similar to how UNC-53 regulates T-cell production of 
interleukin-2 (IL2), NAV3 is a protein-coding gene that 
is mainly expressed in the nervous system and involved 
in neuronal regeneration (43). Other studies have found 
that, during the neurodegenerative process of AD, the 
expression of NAV3 was predominantly enhanced in the 
degenerated pyramidal neurons of the cerebral cortex (44). 
This is consistent with our findings, which showed that 
the rs7309929 of NAV3 was correlated with the GMV for 
the left middle temporal gyrus. The collateral homolog 
of NAV3, NAV2, was identified as a new risk gene and 
correlated with the episodical memory rating scale for 
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Figure 3 Correlations between significant SNPs and MRI brain phenotypes. (A) Correlation between GMV of the left middle 
temporal gyrus and rs7309929. (B) Correlation between CT of the left supramarginal gyrus and rs11250992. (C) Correlation 
between CT of the left supramarginal gyrus and rs2803433. (D) Correlation between CT of the right isthmus of cingulate 
gyrus and rs17669844. (E) Correlation between CT of the left superior temporal gyrus and rs11250992. SNP, single-nucleotide 
polymorphism; MRI, magnetic resonance imaging; GMV, gray-matter volume; CT, cortical thickness.
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AD (45,46). Overall, these results point to NAV3 as likely 
having a specific role in neurite growth and cell migration, 
which should be investigated further in studies of AD.

One of the hotspot SNPs was rs2803433, located in 
the proprotein convertase subtilisin/Kexin type 5 (PCSK5) 
gene on chromosome 9. It is well-known that the PSCK 

family plays a major physiological role during development 
and adulthood. The PCSK5 gene regulates the levels of 
endothelial lipases, lipoprotein lipases, and low-density 
lipoprotein receptors by regulating the breakdown of 
PCSK9, thereby affecting lipoprotein metabolism (47). The 
polymorphisms of the PCSK5 gene have been associated 
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Figure 4 The effect of the top SNPs on genetic expression. (A) The T allele of rs7309929. (B) The A allele of rs2803433. 
(C) The T allele in rs17669844. ID, identity document; chr, chromosome; eQTL, expression quantitative trait loci; HIPP, 
hippocampus; TCTX, temporal cortex; FCTX, frontal cortex; OCTX, occipital cortex; WHMT, white matter; THAL, 
thalamus; MEDU, medulla; PUTM, putamen; SNIG, substantia nigra, CRBL, cerebellum; BRAINEAC, Brain eQTL 
Almanac; SNP, single-nucleotide polymorphism. 

with phenotypes for humans and mutations in a variety of 
diseases, such as hypercholesterolemia and hypotension 
(48,49). Other research reported that the expression of the 
PCSK enzyme was regulated by genetic factors and could be 
used as a potential genetic risk locus of AD (42).

In addition, rs17669844 located on chromosome 7 
belonged to the intronic region of the CAMP responsive 

element binding protein 5 (CREB5) and impaired the 
signaling routes in diseases, such as cognitive deficits of 
Parkinson disease and AD. For DNA methylation, CREB5-
hypomethylated changes may accelerate neuronal death and 
are closely related to AD (50,51).

The eQTL analysis could identify the loci that expressed 
quantitative traits. In the Braineac database, the loci 
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rs7309929, rs2803433, and rs17669844 were found to 
affect the gene expressions of NAV3, PCSK5, and CREB5, 
respectively. These results indicate that the polymorphism 
of susceptibility genes might influence gene expression 
and accelerate the occurrence of AD. To date, traditional 
machine learning approaches, including deep learning, 
have been used to distinguish AD in gene expression 
data (52,53). The findings demonstrated the potential of 
susceptibility genes being used as biomarkers for predicting 
AD progression. The use of eQTL database allowed us to 
better understand the relationship between human gene 
expression and genetic variation. In doing so, this study 
provides an opportunity to explain the candidate genes for 
AD.

This study had several limitations. First, the results 
were obtained from a variety of MRI scanner types across 
multiple centers. The sMRI cortical measurements can 
be easily affected by minor differences in MRI hardware, 
scanning sequences, and processing details. The consistency 
of sMRI sequences of MRI vendors is difficult to evaluate 
due to a lack of a gold standard. More exhaustive studies 
on different MRI scanners may be needed to form more 
convincing conclusions. Second, we restricted the analysis 
to participants who were only of European ancestry. The 
composition of our samples makes it difficult to generalize 
our findings to other populations. However, to the best 
of our knowledge, there are no other public AD databases 
comprising adequate and comprehensive image and gene 
data, and a systematic study on this issue is not currently 
feasible.

Conclusions

The proposed WCC-GWAS could be used effectively to 
investigate the correlations of imaging genomics. The genes 
identified in this study play a critical role in sMRI-based 
alteration in WCC, and studying them will provide further 
insights into the genetic mechanism of AD.
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Table S1 Significant cortical characteristics chosen from the 272 measured WCC

Cortical characteristics Brain regions

CT lh_bankssts lh_caudalmiddlefrontal lh_entorhinal

lh_fusiform lh_inferiorparietal lh_inferiortemporal

lh_isthmuscingulate lh_lateraloccipital lh_middletemporal

lh_parahippocampal lh_postcentral lh_precentral

lh_precuneus lh_superiorfrontal lh_superiorparietal

lh_superiortemporal lh_supramarginal lh_temporalpole

lh_insula rh_bankssts rh_caudalmiddlefrontal

rh_entorhinal rh_fusiform rh_inferiorparietal

rh_inferiortemporal rh_isthmuscingulate rh_lateraloccipital

rh_lingual rh_middletemporal rh_parahippocampal

rh_postcentral rh_precuneus rh_superiorfrontal

rh_superiorparietal rh_superiortemporal rh_supramarginal

rh_temporalpole rh_insula

GMV lh_bankssts lh_entorhinal lh_fusiform

lh_inferiorparietal lh_inferiortemporal lh_isthmuscingulate

lh_lateraloccipital lh_lateralorbitofrontal lh_middletemporal

lh_parahippocampal lh_postcentral lh_posteriorcingulate

lh_precuneus lh_rostralmiddlefrontal lh_superiorfrontal

lh_superiorparietal lh_superiortemporal lh_supramarginal

rh_bankssts rh_entorhinal rh_fusiform

rh_inferiorparietal rh_inferiortemporal rh_isthmuscingulate

rh_lateraloccipital rh_lingual rh_middletemporal

rh_parahippocampal rh_parsorbitalis rh_posteriorcingulate

rh_precuneus rh_rostralmiddlefrontal rh_superiorfrontal

rh_superiorparietal rh_superiortemporal rh_supramarginal

rh_temporalpole

CSA lh_bankssts lh_fusiform lh_inferiorparietal

lh_inferiortemporal lh_lateraloccipital lh_lateralorbitofrontal

lh_middletemporal lh_parsorbitalis lh_precuneus

lh_rostralmiddlefrontal lh_superiorfrontal lh_superiortemporal

lh_temporalpole rh_bankssts rh_fusiform

rh_inferiorparietal rh_inferiortemporal rh_lateraloccipital

rh_lateralorbitofrontal rh_middletemporal rh_parsorbitalis

rh_rostralmiddlefrontal rh_temporalpole

LGI lh_caudalanteriorcingulate lh_caudalmiddlefrontal lh_entorhinal

lh_fusiform lh_inferiortemporal lh_isthmuscingulate

lh_medialorbitofrontal lh_parstriangularis lh_posteriorcingulate

lh_precuneus lh_rostralanteriorcingulate lh_rostralmiddlefrontal

lh_superiorfrontal lh_superiortemporal lh_frontalpole

rh_caudalanteriorcingulate rh_entorhinal rh_fusiform

rh_inferiortemporal rh_lateraloccipital rh_posteriorcingulate

rh_precuneus rh_rostralanteriorcingulate rh_rostralmiddlefrontal

rh_superiorfrontal rh_superiorparietal rh_supramarginal

WCC, whole cortex characteristics; CT, cortical thickness; GMV, gray-matter volume; CSA, cortical surface area; LGI, local 
gyrification index; lh, left hemisphere; rh, right hemisphere.
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