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Background: This study investigated the value of a deep learning (DL) model based on computed 
tomography (CT) enhancement for predicting human epidermal growth factor receptor 2 (HER2) expression 
in patients with liver metastasis from breast cancer.
Methods: Data were collected for 151 female patients with liver metastasis from breast cancer who 
underwent abdominal enhanced CT examination in the Department of Radiology at the Affiliated Hospital 
of Hebei University between January 2017 and March 2022. Liver metastases were confirmed in all patients 
by pathology. The HER2 status of the liver metastases was assessed and enhanced CT examinations were 
performed before treatment. Of the 151 patients, 93 were HER2 negative and 58 were HER2 positive. 
Liver metastases were manually labeled with rectangular frames, layer by layer, and the labeled data were 
processed. Five basic networks (ResNet34, ResNet50, ResNet101, ResNeXt50, and Swim Transformer) were 
used for training and optimization, and the model’s performance was tested. Receiver operating characteristic 
(ROC) curves were used to analyze the area under the curve (AUC), as well as the accuracy, sensitivity, and 
specificity of the networks in predicting HER2 expression in breast cancer liver metastases.
Results: Overall, ResNet34 demonstrated the best prediction efficiency. The accuracy of the validation and 
test set models in predicting HER2 expression in liver metastases was 87.4% and 80.5%, respectively. The 
AUC, sensitivity, and specificity of the test set model in predicting HER2 expression in liver metastases were 
0.778, 77.0%, and 84.0%, respectively. 
Conclusions: Our DL model based on CT enhancement has good stability and diagnostic efficacy, and is a 
potential non-invasive method for identifying HER2 expression in liver metastases from breast cancer.
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Introduction

Breast cancer has the highest incidence rate of all malignant 
tumors in women, surpassing both lung and colon cancer, 
and is the fifth highest cause of cancer mortality overall (1). 
The leading cause of death in patients with breast cancer 
is distant metastases (2). Breast cancer is one of the most 
common primary cancers to metastasize to the liver (3). Due 
to the heterogeneity of breast cancer, there are differences 
in the expression of hormone receptors (HRs) and human 
epidermal growth factor receptor 2 (HER2) between 
primary and metastatic lesions in patients. These differences 
directly affect the treatment strategies and prognoses of 
patients, and are the main cause of treatment failure in 
patients with advanced breast cancer (4). At present, clinical 
precision treatment of advanced breast cancer is still guided 
by invasive procedures.

Deep learning (DL) algorithms can automatically learn 
from a large amount of data to obtain effective features, 
thus improving the performance of various machine 
learning tasks, and this technology has been widely used in 
the medical field (5,6). In recent years, DL methods have 
been applied to breast cancer lesion segmentation, imaging 
diagnosis, and molecular prediction; however, few studies 
have been conducted on metastatic lesions in patients with 
this malignancy (7-10). Currently, neural networks are used 
to process medical images to help with medical treatment. 
For example, Razmjooy et al. proposed a method to detect 
melanoma through image detection that eliminates additional 
information through morphological manipulation and 
is used to focus on areas where there may be melanoma 
boundaries (11). Xu et al. proposed an automatic computer-
aided method for the early diagnosis of skin cancer that 
used the optimization features of the Satin Bowerbird 
optimization algorithm to trim excessive information (12).  
Cai et al. used image processing techniques and duct structures 
to analyze mammogram images to diagnose cancerous masses, 
thereby improving the quality of mammogram images and the 
contrast of abnormal areas in the images (13). However, these 
methods are traditional machine learning methods that require 
manual marking of some features and, as a result, some higher-
order features may be missed. 

With the rise of DL, its powerful feature extraction 
and differentiation capabilities have seen its application in 
the classification of breast cancer. For example, the Faster 
R-CNN (convolutional neural network) has been used to 
detect and classify tumors in single images from dynamic 
contrast-enhanced magnetic resonance imaging (MRI) (14),  
and the You Only Look Once (YOLO) network based on 

Darknet has been used to detect benign and malignant 
tumors on 600 mammograms (15). However, such 
technologies have rarely been used in the case of metastatic 
tumors. Therefore, in the present study, we wanted to use 
a deep neural network to determine the HER2 category 
of liver metastases from breast cancer so as to provide a 
reasonable basis for the selection of specific treatments for 
patients. Our proposed method makes use of the strong 
learning ability of deep neural networks. Unlike machine 
learning, our method does not require manually marking of 
some features, and it simplifies the heavy work process. In 
this study, we compared results using our method with those 
of some mainstream networks using the same batch of data.

In the past, breast cancer metastases could only be 
identified by invasive puncture biopsy, but prediction 
models represent a non-invasive technique. This study 
specifically investigated whether a DL model could be 
used to predict the HER2 expression status in breast 
cancer liver metastases on contrast-enhanced computed 
tomography (CT)-enhanced images to non-invasively 
guide clinical precision treatment and improve the curative 
effect. The new predictive model was established and 
validated internally to confirm its reliability. We present the 
following article in accordance with the TRIPOD reporting 
checklist (available at https://qims.amegroups.com/article/
view/10.21037/qims-22-967/rc).

Methods 

Participants

Patients with breast cancer liver metastases who, between 
January 2017 and March 2022, underwent contrast-
enhanced CT imaging and for whom clinical and 
pathological data were available were enrolled in the present 
study. All patients were recruited from Affiliated Hospital of 
Hebei University.

This study was conducted with approval from the Ethics 
Committee of the Affiliated Hospital of Hebei University 
(No. HDFY-LL-2022-203) and was carried out in accordance 
with the Declaration of Helsinki (as revised in 2013). Written 
informed consent was obtained from all participants.

The inclusion criteria were as follows: (I) female patient 
with breast cancer who had liver metastases, (II) primary 
tumor and liver metastases had been pathologically 
confirmed via surgery or puncture, (III) the HER2 
status had been confirmed via immunohistochemistry or 
fluorescence in situ hybridization (FISH), and (IV) patient 
had undergone contrast-enhanced CT examination prior 

https://qims.amegroups.com/article/view/10.21037/qims-22-967/rc
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to treatment of their liver metastases. Patients with a 
history of malignancies other than breast cancer, those 
who had undergone contrast-enhanced CT examination 
after treatment, and those for whom only poor-quality CT 
images were available were excluded from the study. 

Based  on  the  gu ide l ines  for  HER2 tes t ing  in 
patients with breast cancer (16), the HER2 results from 
immunohistochemical tests were divided into four 
categories: 0, +, ++, and +++. If the HER2 result was 
negative, it was recorded as 0 or +. If the HER2 result was 
positive, it was recorded as +++. If the HER2 result was ++ 
and amplification was detected by FISH, it was deemed to 
be HER2 positive; in the absence of amplification, it was 
deemed to be HER2 negative.

CT examination

Contrast-enhanced CT imaging was performed on all 

patients using CT scanners (GE Discovery HD750 64 and 
Optima CT680). All patients had fasted for 6–8 h prior to 
the examination. For CT imaging, the contrast agent iohexol  
(0.5 mL/kg) was injected through the cubital vein at a flow rate 
of 3.0–3.5 mL/s. The scanning parameters were as follows: 
thickness, 5 mm; pitch, 0.992; field of view, 350 mm × 350 mm; 
matrix, 512×512; tube voltage, 100–120 kV; and tube current, 
160–300 mA. Images of the liver in the arterial, portal venous, 
and delayed phases were obtained at 30–35, 50–60, and 180 s,  
respectively, after injection of the contrast agent. Contrast-
enhanced CT images from the portal venous phase were 
selected to establish the model given that the liver metastases 
were best displayed in this phase. The procedure used for data 
processing and constructing the DL model is shown in Figure 1.

Data preprocessing

Digital Imaging and Communications in Medicine 

Cases of liver metastasis from
breast cancer (n=151)

Test set 
• 100 HER2-negative images
• 100 HER2-positive images

Training set 
• HER2 negative 2,696 images
• HER2 positive 1,594 images

Training part 
• HER2 negative 13,041 images
• HER2 positive 8,453 images

Verification part 
• HER2 negative 1,449 images
• HER2 positive 939 images

After clipping and cleaning the
labeled data, there are a total of
4,490 pictures (2,796 HER2-negative
and 1,694 HER2-positive)

HER2-positive
(n=58)

Building deep learning model to
predict HER2 expression

HER2-negative
(n=93)

Test model
performance

Augmentor
amplified 9:1 ratio

Figure 1 Flowchart of the technique used to create the deep learning model. HER2, human epidermal growth factor receptor 2.
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(DICOM) images were converted into a bitmap image file. 
The image is converted from DICOM format image to bmp 
format using RadiAnt DICOM Viewer software. Then, 
the region of interest (ROI) in the tumor was manually 
contoured by two radiologists (one with 8 years’ experience 
and the other with 13 years’ experience). Anaconda software 
for Windows (www.anaconda.com/products/individual) was 
used to analyze the tumors on the contrast-enhanced CT 
images in the portal venous phase. As shown in Figure 2,  
the regions were marked with rectangular boxes, layer by 
layer. Finally, a rectangular box was drawn outward by 
0.5–1.0 cm, and JavaScript Object Notation files were saved 
based on the tumor’s maximum transverse and longitudinal 
diameters.

First, the annotated data were tailored to obtain small 
image blocks containing only tumors. At the same time, 
the data were cleaned to delete non-standard images. 
The 4,490 images that were obtained were divided into a 
training set (2,696 HER2 negative, 1,594 HER2 positive) 
and test set (100 HER2 negative, 100 HER2 positive). 
Data enhancement using Augmentor included seven image 
amplification methods: image counterclockwise random 
rotation of 90°, image clockwise random rotation of 90°, 
unfixed Angle microrotation, perspective deformation/
vertical deformation, perspective deformation/oblique 
quadrangle deformation, cross-cut transformation, and 
random region erasure (17). These methods were used 
to increase the number of HER2-negative samples in the 
training set to 14,490 pieces and the number of HER2-
positive samples to 9,392. The samples were then randomly 

divided at a 9:1 ratio into a training set (13,041 HER2-
negative samples, 8,453 HER2-positive samples) and a 
validation set (1,449 HER2-negative samples, 939 HER2-
positive samples).

Building the DL model

The training set data were verified using five basic networks: 
ResNet34, ResNet50, ResNet101, ResNeXt50, and Swim 
Transformer. The parameters were optimized on the better 
model by comparing the training loss value (Train Loss), 
validation accuracy, and test accuracy of the different basic 
networks (PseudoCode in the Appendix 1). The model’s 
performance was improved using the method of weight decay 
(wd) to solve the problem of overfitting, and the model’s 
performance was finally determined using the test set.

The gradient-weighted class activation mapping (Grad-
CAM) visualization method was used to generate a heat 
map, visualize the ROI, reasonably explain the decision 
logic of the DL network, and intuitively view the ROI area 
that the model pays attention to (18).

Statistical analysis

Statistical analyses were performed using SPSS 25.0, with 
P<0.05 considered to be statistically significant. Measurement 
data are presented as the mean ± standard deviation (SD), 
and were compared using independent samples t-tests. 
Categorical data are presented as numbers and percentages 
(%), and were compared using the Chi-squared test. Receiver 

A B

Figure 2 Rectangular boxes are used to mark regions of interest on contrast-enhanced computed tomography images in the portal venous 
phase. (A) Image from a 35-year-old woman with HER2-positive liver metastases. (B) Image from a 43-year-old woman with HER2-
negative liver metastases. HER2, human epidermal growth factor receptor 2.

https://cdn.amegroups.cn/static/public/QIMS-22-967-supplementary.pdf
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operating characteristic (ROC) curves were used to calculate 
the area under the curve (AUC), accuracy, sensitivity, 
specificity, and other parameters to comprehensively evaluate 
the performance of the model in predicting HER2 expression 
in patients with breast cancer liver metastasis.

Results

Patient characteristics

Samples from 151 female patients with breast cancer liver 
metastasis were collected in this study. Of the 151 patients,  
58 had HER2-positive liver metastases (age range,  
29–75 years; mean 54.97±9.96 years) and 93 were HER2 
negative (age range, 32–78 years; mean 52.97±11.54 years). 
There was no significant difference in age or the number of 
liver metastases between the two groups (P>0.05; Table 1).

Classification performance of the DL model

Comparison of the five basic network models showed that 
the ResNet34 network performed best. On this basis, the 
learning rate (lr) and wd were adjusted. The ROC curve 
indicated that the performance of the model based on 
the ResNet34 network was the best when the parameters 
were lr =1e-4, wd =1e-3, and epoch (e) =350. The model’s 
accuracy in the validation and test sets was 87.4% and 
80.5%, respectively. The prediction results of each model 
indicated that the AUC of the best model for predicting 
the expression of HER2 in breast cancer liver metastasis 
in the test set was 0.778, with a sensitivity of 77.0% and a 
specificity of 84.0% (Tables 2,3; Figure 3). 

Results of ROI visualization

Figure 4 shows the ROI visualization results. It was clear 
that most of the edges of the liver metastases in the contrast-

Table 1 Comparison of clinical data between HER2-negative and HER2-positive breast cancer groups

Characteristic HER2-negative group (n=93) HER2-positive group (n=58) t/χ
2

P value

Age (years) 52.97±11.54 54.97±9.96 1.089 0.278

No. of liver metastases 0.001 0.969

Single lesion 19 (20.4) 12 (20.7)

Multiple lesions 74 (79.6) 46 (79.3)

Unless indicated otherwise, data are given as the mean ± SD or n (%). HER2, human epidermal growth factor receptor 2; SD, standard 
deviation. 

Table 2 Training results for the five basic networks

Network Train loss Validation accuracy Test accuracy

ResNet34 0.237 0.934 0.765

ResNet50 0.252 0.927 0.775

ResNet101 0.246 0.923 0.750

ResNeXt50 0.377 0.850 0.690

Swim 
Transformer

0.592 0.684 0.670

The table shows the classification performance of the different 
base models, which provides a basis for the subsequent selection 
of base models.

Table 3 Comprehensive evaluation indicators of the different 
models

Model Sensitivity Specificity AUC

ResNet34 0.69 0.84 0.767

ResNet50 0.76 0.79 0.774

ResNet101 0.71 0.79 0.778

ResNeXt50 0.60 0.78 0.800

Swim-Transformer 0.54 0.80 0.745

ResNet34 (lr =1e-4) 0.69 0.84 0.767

ResNet34 (lr =3e-4) 0.67 0.79 0.793

ResNet34 (lr =7e-4) 0.64 0.79 0.768

ResNet34 (lr =1e-4, wd =1e-3) 0.74 0.73 0.793

ResNet34 (lr =3e-4, wd =1e-3) 0.73 0.71 0.756

ResNet34 (lr =7e-4, wd =1e-3) 0.66 0.73 0.737

ResNet34 (lr =1e-4, wd =1e-3,  
e=350)

0.77 0.84 0.778

The table shows the sensitivity, specificity, and AUC of the 
different models, which were used to evaluate the performance 
of the models. AUC, area under the curve; lr, learning rate; wd, 
weight decay; e, epoch.
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enhanced CT images in the portal venous phase images 
were enhanced and that the corresponding ROIs were 
mainly concentrated on the edge of the liver metastases. 
The model could accurately focus on the tumor location. A 
heat map was generated using the Grad-CAM visualization 
method and comprised mainly three colors, blue, yellow, 
and red. Blue indicated that the network model paid less 
attention to this area during the classification task; yellow 

indicated that the network model paid more attention to 
this area during the classification task; red indicated that the 
network model paid the greatest amount of attention to this 
area during the classification task.

Discussion

Expression of HER2 is one of the most important 
molecular targets in breast cancer and is key to determining 
the molecular type. The characteristics of HER2-positive 
breast cancer include its strong invasiveness, high mortality, 
and insensitivity to traditional chemotherapy (19,20). 
Multiple studies (21,22) have demonstrated differences 
in HER2 expression between primary breast cancers and 
metastatic lesions, with changes in HER2 expression 
prompting changes in treatment strategies (23). Experts 
suggest that patients with recurrent and metastatic breast 
cancer are retested for HER2 expression to help clarify 
the HER2 status of any recurrent and metastatic lesions 
(24,25). Currently, only invasive immunohistochemistry or 
FISH testing can be used to determine the HER2 status 
of primary breast cancers and metastatic lesions. However, 
these methods cannot be used in some patients because of 
their physical condition does not tolerate invasive puncture 
examination or because the location of the lesion makes 
it unsuitable for biopsy. Therefore, developing a non-
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Figure 3 ROC curves for the different models tested in the study. 
FPR, false positive rate; TPR, true positive rate; ROC, receiver 
operating characteristic. 

Figure 4 ROI visualization results. (A) Images of liver metastases after annotation data processing of contrast-enhanced computed 
tomography images in the portal venous phase. (B) Heat map generated by the gradient-weighted class activation mapping visualization 
method under the best network model. The image primarily comprises three colors: blue, yellow and red. Blue areas are those to which 
the network model pays low attention to during classification tasks; yellow areas are those to which the network model pays high attention 
during classification tasks; red areas are those to which the network model pays the highest attention during classification tasks. ROI, region 
of interest. 
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invasive and accurate method for assessing the HER2 status 
of metastases in patients with breast cancer is of critical 
importance.

In recent years, many studies have investigated the use 
of traditional machine learning and DL methods based on 
images for the prediction of HER2 expression in primary 
breast cancers. Zhang et al. (26) divided patients with breast 
cancer into three subtypes according to HR and HER2 
expression (i.e., HR+/HER2−, HER2+, and triple negative), 
and devised a model to predict classification. Based on 
DCE sequence images, the traditional convolutional 
neural network and convolutional long and short time 
memory were used to establish the prediction models, 
and the accuracy of the two models in the verification set 
reached 0.91 and 0.83, respectively in the validation set. In 
another study, Xue et al. (27) constructed models based on 
MRI radiomic features and achieved a strong diagnostic 
performance. Zhou et al. (28) used multiparametric MRI 
radiomic labels to predict HER2 expression in breast 
cancer to distinguish HER2-positive from HER2-negative 
breast cancers, with an AUC of 0.70 in the validation set. 
However, few studies have focused on HER2 expression in 
breast cancer metastases based on imaging.

In the present study, a model to predict HER2 expression 
in breast cancer liver metastases was constructed based on 
a contrast-enhanced CT DL method. The results indicated 
that the best model predicted HER2 expression with 
an accuracy of 80.5%, an AUC of 0.778, a sensitivity of 
77.0%, and a specificity of 84.0% in the test set. The model 
demonstrated good stability and diagnostic performance. 
For most of the models, the accuracy was generally higher 
for the negative samples than it was for the positive samples. 
We speculate that this difference in accuracy was due to 
the data imbalance caused by the 5:3 ratio of negative to 
positive training samples in the training set.

A previous study (29) found that the central area of liver 
metastases primarily consists of necrotic tissue and a small 
number of tumor cells, with mainly tumor cells and new 
capillaries at the periphery; as a result, most liver metastases 
show ring enhancement on contrast-enhanced CT images. 
ROI visualization results showed that the model’s decision 
basis for predicting HER2 status was mostly located at the 
tumor margin, which is consistent with previous reports 
that metastatic tumor cells are primarily located at the edge 
of the lesion. However, there were a few cases in which 
the model could not correctly focus on the tumor location, 
which affected the accuracy of the model’s judgment. 

Conducting further in-depth research and improving the 
model’s recognition of the tumor area could improve the 
accuracy of the model. 

The present study has a number of limitations. First, 
it was a single-center, small-sample, retrospective study 
involving a single data source and similar scanning 
parameters. As a result, the generalization of the model 
constructed in this study needs to be further improved 
and its general application in clinical practice is limited. In 
future research, a multicenter, large-sample, prospective 
study is required to establish a more objective and accurate 
prediction model. Furthermore, the data for the two sample 
types were unbalanced, which may have contributed to 
differences in the accuracy rate. In addition, the model 
requires human-labeled ROIs as inputs, making it expensive 
and introducing potential for error; therefore, a model 
that works with the entire CT image rather than requiring 
radiologists to crop out cancerous regions needs to be 
created.

In conclusion, the DL model established in this study can 
be used as a non-invasive tool for predicting the expression 
of HER2 in breast cancer liver metastases.
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Supplementary

Appendix 1

PseudoCode

Algorithm: training & prediction
Input: Images & Labels & Images for Testing
Output: Class & probability of test image
1.	 Build data loader  //load data
2.	 Image normalization  //Centralized processing by de-averaging
3.	 Create Category Labels   //HER2+&HER2-
4.	 Build the network   // define different networks such as resnet or transformer
5.	 Define loss  //cross entropy loss is used here
6.	 Define the optimizer  //The adam optimizer is used here
7.	 For epoch in range  //iterate over each epoch
8.	  Net.train  // Adjust the network to training mode
9.	  Define running loss  //Average loss of statistical training process
10.	  For step, data in enumerate(train_bar)  // Iterate over the training dataset
11.	    Divide data into labels and images
12.	    Clear gradient information
13.	    Forward Propagation
14.	    Calculate prediction vs true loss
15.	    Backpropagation
16.	    Update each node parameter 
17.	  Net.val  // Adjust the network to verify mode
18.	  For step, data in enumerate(train_bar)  // Iterate over the validation dataset
19.	    Divide data into labels and images
20.	    .Pass the image into the network, and forward the output to get the output
21.	    The category corresponding to the output maximum value
22.	    Accumulate the correct number of samples
23.	    Calculate the correct rate
24.	 If now > before
25.	  update parameters
26.	  Else keep the previous parameters
27.	 Save optimal model
28.	 Pass in the test image
29.	 Image Normalization
30.	 Expand the image dimension to [B,C,H,W]
31.	 Load category name
32.	 Initialize the network
33.	 Load Weights
34.	 Invoke val mode
35.	 Call softmax to scale the network output into probabilities
36.	 Get the index value at the maximum
37.	 Return Category Name & Predicted Probability
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Python code for training
import os
import sys
import json

import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import transforms, datasets
from tqdm import tqdm

from model import resnet34

def main():
  device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
  print("using {} device.".format(device))

  data_transform = {
    "train": transforms.Compose([transforms.RandomResizedCrop(224),
                  transforms.RandomHorizontalFlip(),
                  transforms.ToTensor(),
                  transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])]),
    "val": transforms.Compose([transforms.Resize(256),
                 transforms.CenterCrop(224),
                 transforms.ToTensor(),
                 transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])])}

  data_root = os.path.abspath(os.path.join(os.getcwd(), "../..")) # get data root path
  image_path = os.path.join(data_root, "data_set", "flower_data") # flower data set path
  assert os.path.exists(image_path), "{} path does not exist.".format(image_path)
  train_dataset = datasets.ImageFolder(root=os.path.join(image_path, "train"),
                    transform=data_transform["train"])
  train_num = len(train_dataset)

  list = train_dataset.class_to_idx
  cla_dict = dict((val, key) for key, val in flower_list.items())
  # write dict into json file
  json_str = json.dumps(cla_dict, indent=4)
  with open('class_indices.json', 'w') as json_file:
    json_file.write(json_str)

  batch_size = 16
  nw = min([os.cpu_count(), batch_size if batch_size > 1 else 0, 8]) # number of workers
  print('Using {} dataloader workers every process'.format(nw))
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  train_loader = torch.utils.data.DataLoader(train_dataset,
                       batch_size=batch_size, shuffle=True,
                       num_workers=nw)

  validate_dataset = datasets.ImageFolder(root=os.path.join(image_path, "val"),
                      transform=data_transform["val"])
  val_num = len(validate_dataset)
  validate_loader = torch.utils.data.DataLoader(validate_dataset,
                         batch_size=batch_size, shuffle=False,
                         num_workers=nw)

  print("using {} images for training, {} images for validation.".format(train_num,
                                     val_num))
  
  net = resnet34()
  # load pretrain weights
  # download url: https://download.pytorch.org/models/resnet34-333f7ec4.pth
  model_weight_path = "./resnet34-pre.pth"
  assert os.path.exists(model_weight_path), "file {} does not exist.".format(model_weight_path)
  net.load_state_dict(torch.load(model_weight_path, map_location='cpu'))
  # for param in net.parameters():
  #  param.requires_grad = False

  # change fc layer structure
  in_channel = net.fc.in_features
  net.fc = nn.Linear(in_channel, 5)
  net.to(device)

  # define loss function
  loss_function = nn.CrossEntropyLoss()

  # construct an optimizer
  params = [p for p in net.parameters() if p.requires_grad]
  optimizer = optim.Adam(params, lr=0.0001)

  epochs = 3
  best_acc = 0.0
  save_path = './resNet34.pth'
  train_steps = len(train_loader)
  for epoch in range(epochs):
    # train
    net.train()
    running_loss = 0.0
    train_bar = tqdm(train_loader, file=sys.stdout)
    for step, data in enumerate(train_bar):
      images, labels = data
      optimizer.zero_grad()
      logits = net(images.to(device))
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      loss = loss_function(logits, labels.to(device))
      loss.backward()
      optimizer.step()

      # print statistics
      running_loss += loss.item()

      train_bar.desc = "train epoch[{}/{}] loss:{:.3f}".format(epoch + 1,
                                  epochs,
                                  loss)

    # validate
    net.eval()
    acc = 0.0 # accumulate accurate number / epoch
    with torch.no_grad():
      val_bar = tqdm(validate_loader, file=sys.stdout)
      for val_data in val_bar:
        val_images, val_labels = val_data
        outputs = net(val_images.to(device))
        # loss = loss_function(outputs, test_labels)
        predict_y = torch.max(outputs, dim=1)[1]
        acc += torch.eq(predict_y, val_labels.to(device)).sum().item()

        val_bar.desc = "valid epoch[{}/{}]".format(epoch + 1,
                             epochs)

    val_accurate = acc / val_num
    print('[epoch %d] train_loss: %.3f val_accuracy: %.3f' %
       (epoch + 1, running_loss / train_steps, val_accurate))

    if val_accurate > best_acc:
      best_acc = val_accurate
      torch.save(net.state_dict(), save_path)

  print('Finished Training')

if __name__ == '__main__':
  main()


