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Deep learning-assisted knee osteoarthritis automatic grading on 
plain radiographs: the value of multiview X-ray images and prior 
knowledge
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Background: Knee osteoarthritis (OA) is harmful to people’s health. Effective treatment depends on 
accurate diagnosis and grading. This study aimed to assess the performance of a deep learning (DL) 
algorithm based on plain radiographs in detecting knee OA and to investigate the effect of multiview images 
and prior knowledge on diagnostic performance.
Methods: In total, 4,200 paired knee joint X-ray images from 1,846 patients (July 2017 to July 2020) were 
retrospectively analyzed. Kellgren-Lawrence (K-L) grading was used as the gold standard for knee OA 
evaluation by expert radiologists. The DL method was used to analyze the performance of anteroposterior 
and lateral plain radiographs combined with prior zonal segmentation to diagnose knee OA. Four groups 
of DL models were established according to whether they adopted multiview images and automatic zonal 
segmentation as the DL prior knowledge. Receiver operating curve analysis was used to assess the diagnostic 
performance of 4 different DL models.
Results: The DL model with multiview images and prior knowledge obtained the best classification 
performance among the 4 DL models in the testing cohort, with a microaverage area under the receiver 
operating curve (AUC) and macroaverage AUC of 0.96 and 0.95, respectively. The overall accuracy of 
the DL model with multiview images and prior knowledge was 0.96 compared to 0.86 for an experienced 
radiologist. The combined use of anteroposterior and lateral images and prior zonal segmentation affected 
diagnostic performance.
Conclusions: The DL model accurately detected and classified the K-L grading of knee OA. Additionally, 
multiview X-ray images and prior knowledge improved classification efficacy.
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Introduction

Knee osteoarthritis (OA) is one of the most common types 
of degenerative OA in the world, with a significant incidence 
in middle-aged and older adult individuals (1). Knee OA 
is characterized by articular cartilage degeneration, joint 
inflammation, and secondary bone hyperplasia (2). Knee 
OA has a range of clinical manifestations, including knee 
joint discomfort, tenderness, stiffness with a functional 
disorder, and even disability (3), which have a considerably 
negative impact on individuals, families, and society. In 
China, the overall prevalence of knee OA is about 13.8%, 
and the incidence is significantly higher in people over 
40 years of age (4). The intensification of global aging 
requires that greater attention be paid to the occurrence 
and development of knee OA (5). Currently, the diagnosis 
of this disease is mainly based on the judgment of clinicians 
and radiologists, which is highly subjective and cannot be 
quantified. Subtle changes are challenging to observe in 
plain radiographs of the knee, resulting in the loss of crucial 
information which might indicate the earliest knee OA 
progression.

X-ray imaging is a safe, cost-effective, and widely 
available examination method, in which the gold standard 
for evaluating the degree of knee OA degeneration—the 
Kellgren-Lawrence (K-L) grading system—is made (6).  
Despite these advantages, ordinary radiography is 
notoriously insensitive when trying to detect early changes 
in OA. Making an early diagnosis of knee OA using an 
X-ray is difficult for a number of reasons. First, the best 
site for viewing early signs of OA and its progression is 
articular cartilage tissue that cannot be directly seen on 
plain radiographs. Second, the imaging modality uses 
only 2-dimensional (2D) projections, and much critical 
information is obscured. Finally, an experienced practitioner 
is needed to interpret the final image (7).

The development of deep learning (DL) has made 
it possible to establish accurate and rapid diagnostic  
methods (8). DL can allow the learning of features 
directly from the data, and it has recently revolutionized 
the field of medical image analysis by surpassing the 

conventional computer vision techniques that require the 
manual engineering of data representation methods (9). 
DL can undertake tasks such as image alignment, image 
recognition, image detection, image segmentation, and 
image classification and prediction, among others (10-16). 
These DL models include the well-known U-Net network 
and Residual Net (ResNet) network (9,17). In terms of 
medical image processing, the DL model can automatically 
extract the features of X-ray images through the learning of 
neural networks and classify the images to assist clinicians in 
diagnosis and treatment. Recently, DL has been extensively 
used in the analysis of imaging data from a variety of 
diseases (18), such as pulmonary nodules, degenerative OA, 
tumors, and nervous system diseases (19-25). In the field of 
OA research, several studies have shown that the use of X-ray 
images and magnetic resonance imaging (MRI) data can 
evaluate the progression of knee OA well by establishing 
DL models which can not only classify and grade knee OA 
but predict its future development to assist clinical diagnosis 
and treatment (10,26-28). These studies have improved 
the diagnostic accuracy of knee OA using medical images, 
but there is still room for improvement in the DL methods 
for knee X-rays. The information of the relevant anatomy 
and typical pathologies typically visualized on the lateral 
radiograph of the knee can also provide better information 
concerning the disease process as compared to the use of 
anteroposterior images (29). Unfortunately, there are few 
studies on lateral knee radiographs. Minciullo et al. (30)  
presented a fully automated method based on a random 
forest regression voting constrained local model (RFCLM) 
to interpret knee OA radiographs, which showed that 
automated analysis of the lateral view achieves classification 
performance comparable if not better than that of similar 
techniques applied to the frontal view. Therefore, the 
information contained in lateral knee radiographs should 
not be discarded. Furthermore, the use of prior knowledge 
has been shown to be useful in improving DL model 
performance in knee segmentation (31). However, the 
application of prior knowledge on X-ray images is relatively 
uncommon. It is necessary to study the effect of prior zonal 
knowledge on the performance of DL models in grading 
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knee OA.
In this study, 4 groups of DL models were established 

according to whether they adopted multiview images and 
automatic zonal segmentation as the DL prior knowledge. 
We assessed and compared the performance of 4 DL models 
of knee OA grading. The effects of multiview images and 
zonal segmentation as prior knowledge in the diagnostic 
capabilities of DL models were explored. We present 
this article in accordance with the STARD reporting 
checklist (available at https://qims.amegroups.com/article/
view/10.21037/qims-22-1250/rc).

Methods

Image data set

The study was conducted in accordance with the Declaration 
of Helsinki (as revised in 2013). The study was approved 
by the institutional review board of the Fifth Affiliated 
Hospital of Sun Yat-sen University (No. K163-1), and 
individual consent for this retrospective analysis was waived. 
The data set of this research was retrospectively collected 
in the Fifth Affiliated Hospital of Sun Yat-sen University 
(Zhuhai, China) and included patients who underwent 
knee radiography with both anteroposterior and lateral 
images between July 2017 and July 2020. The inclusion 
criteria were as follows: (I) adults over 18 years old with 

closed epiphysis, and (II) those with both anteroposterior 
and lateral images available for each examination. The 
exclusion criteria were as follows: (I) tumors that destroyed 
the bone in the knee; (II) other inflammatory arthritis; (III) 
fractures occurring in the knee area, including the lower 
femur, upper tibia, patella, and fibular head; (IV) congenital 
deformity of knee joint development and other bone and 
joint diseases; and (V) insufficient quality of the X-ray 
images. A total of 1,846 patients were included. For these 
patients, we used a single knee joint as a sample because 
the severity of the left and right knees may be inconsistent 
in the same patient. Furthermore, some patients had more 
than one X-ray scan, and the knee OA grade may not be the 
same in 2 or more scans. Data were randomly grouped at a 
ratio of 8:2 for training and testing. The intensity of images 
was normalized before the analysis. The size of the Digital 
Imaging and Communications in Medicine (DICOM) 
images was not fixed and ranged from approximately 
1,726×2,158 to 1,942×2,431 pixels.

Definition

During model training, the original DICOM format 
X-ray images needed to be processed and converted into a 
common JPG format for subsequent processing. Due to the 
differences in patient volume and radiographic machines, 
the size of the images was inconsistent, so we adjusted the 
size of the images and resized them into a uniform size 
of 512×512 pixels. The knee joint regions were labeled 
(Figure 1) with rectangular boxes by 2 radiologists (JF 
and JL), who had 3 and 6 years of diagnostic experience, 
respectively, using an image labeling tool developed by 
Radcloud software (v.1.2, Huiying Medical Technology 
Co., Ltd.), which provided segmentation labels for the 
subsequent segmentation model. In addition, all the plain 
radiographs were assessed by 2 musculoskeletal radiologists 
(WL and YF) with 4 and 8 years of diagnostic experience, 
respectively, and were divided into 5 levels according to the 
K-L grading scheme (6). Each grade was labeled as class 0, 
class 1, class 2, class 3, or class 4, according to the increasing 
severity of OA, with class 0 signifying no presence of OA 
and class 4 signifying severe OA. These labels were used 
as the classification labels for the subsequent classification 
model. Due to the class imbalance caused by the limitation 
of the data, we performed data augmentation on minority 
images, such as random rotation, to increase the data in the 
training cohort. Images were rotated 45°, 90°, 135°, and 
180° so that the number of images in each category did not 

Figure 1 The knee joint regions were labeled with rectangular 
boxes by 2 radiologists using Radcloud software (left). The pixels 
inside and outside the marked the region of interest were set to 1 
(white) and 0 (black), respectively, as position information labels 
(right). 
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differ significantly.

DL framework

The proposed DL framework is illustrated in Figure 2. In 
this paper, we did not cut out the knee joint region or send 
it into the network separately for classification. Instead, we 
fused the prior knowledge of the location of the knee region 
with the original image and sent this information into the 
classification network. We developed a 2-stage cascaded 
framework to determine the severity of knee arthritis: (I) 
U-Net architecture (32) focused on extracting the knee 
joint region from the original X-ray images and provided 
zonal prior knowledge; (II) zonal prior knowledge was then 
incorporated into the ResNet-50 (33) for the classification 
of severity in knee OA. Since the X-ray images came from 
different devices, they needed to be preprocessed before 
being sent to the network. Preprocessing included the 
normalization of the original image using the max-min 
method and contrast enhancement to adjust the Hounsfield 
unit of the X-ray images to highlight the target area. The 
preprocessed images were then fed into the U-Net network 
for extraction of the knee joint region.

U-Net was used as the first biomedical image segmentation 
network. The network structure is shown in Figure 3A. 
The network structure of the U-Net model consisted of 
an encoder, decoder, and skip connection. The encoder 
performed convolution, batch normalization (BN), 
activation, and maximum pooling operations in sequence to 
implement feature extraction. Symmetrically, the decoding 
path used 4 upsampling operations to restore the feature 
maps to the original input size and interpreted the extracted 
features from the encoding path to restore the segmentation 
results. The U-Net used skip connections to strengthen 
the learning of the features because the encoder feature 

information was transferred to the decoder, which showed 
comparable performance in medical image segmentation. 
The training data process had 3 steps. First, multiview 
images were fed into U-Net, and the knee joint regions 
labeled with rectangular boxes provided segmentation labels 
for the segmentation model. Second, a U-Net segmentation 
network was used to perform image segmentation training 
on the labeled knee joint regions in the training data, and 
the trained U-Net for automatic identification of knee joint 
regions was obtained. Third, to verify the performance of 
the U-Net segmentation model, the testing data were used 
for segmentation evaluation. In addition, 2 radiologists 
(JF and JL) with 3 and 6 years of diagnostic experience, 
respectively, were invited to conduct a double-blind review 
of the segmentation results and to modify the initial 
findings to obtain the final segmentation results.

In the second step, we used zonal segmentation as 
extra channels to incorporate zonal prior knowledge into 
the classification model. We combined X-ray images of 
different views and zonal prior knowledge with early fusion. 
Specifically, we used X-ray images from 2 angles of view to 
generate 2D images of 2 channels, and zonal segmentation 
provided the other 2D images of 2 channels. Finally, they 
ended up with an input region of interest (ROI) size of 
512×512×4 and were fed into the ResNet-50 network. 
ResNet-50 networks (named for their 50 network layers 
with learnable parameters) are widely used in the field of 
target classification, often as part of the classical neural 
network of the computer vision task backbone. ResNet-50 
used the pretrained parameters on the ImageNet data set. 
Then, for weight transfer, the pretrained convolutional 
neural network (CNN) structure was further fine-tuned 
with our own data set, which guided the network to learn 
the general shallow information quickly. In this work, 
ResNet-50 was used for the classification of the severity 
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Figure 2 An illustration of the DL framework. First, U-Net was used to exact knee joint region from original X-ray images and provided 
zonal prior knowledge. Second, ResNet-50 was used to incorporate zonal prior knowledge to classify the severity of knee OA. KOA, knee 
osteoarthritis; DL, deep learning; OA, osteoarthritis. 
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of arthritis in the knee. The network structure is shown 
in Figure 3B. A residual network was designed to directly 
introduce the data output of one layer of the earlier layer 
to the input part of the later data layer, implying that 
the content of the later feature layer was partially and 
linearly contributed to by the previous layer. This residual 
learning strategy achieved state-of-the-art performances 
on established benchmark data sets for medical image 
classification tasks. Next, several convolutional layers 
followed by BN and rectified linear unit (ReLU) as the 
activation functions were used. Multiple convolutions 
and pooling operations were performed. The final feature 
vector was input to a fully connected layer of 5 nodes and 
a SoftMax function, yielding the probability of prediction. 
For selecting the output node, the node with the maximum 

probability could be selected as the prediction target.

Experiments

To verify the effectiveness of the proposed method, we 
conducted comparative experiments to assess the effect 
of multiview images and zonal prior knowledge on the 
classification of knee OA. For the model without prior 
knowledge, we used ResNet-50 to classify X-ray images 
directly. Model 1 used ResNet-50 to directly classify the 
K-L grading of anteroposterior knee joint images, with 
512×512 as the input size. Model 2 used ResNet-50 to 
directly classify the K-L grading of multiview X-ray images 
(including anteroposterior and lateral knee joint images), 
with 512×512×2 as the input size. Models 1 and 2 belonged 

Conv 3×3, ReLU

Max pool 2×2

Trans Conv 3×3

Conv 1×1, ReLU

Copy, Connect

Stage 1

Stage 2

Stage 3

Stage 4

×3

×4

×6

×3

Conv block, 1×1, n

Conv block, 3×3, n

Conv block, 1×1, m

Residual block 1, 64, 256

Residual block 2, 128, 512

Residual block 3, 256, 1,024

Residual block 4, 512, 2,048

Average pooling

Fc 5

Max pooling 3×3

7×7 Conv block + Bn + ReLu

Residual block, n, m

Stage 0

Output
segmentation
512×512

Input image
512×512

Input image
512×512×4

2D U-Net

ResNet-50

1   32  32

64    64

128     128

256        256

256       128

128      64

64    32  32   1

256512

512

A

B
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to the category of weak classification, in which the sample 
category is known but the lesion area is not. To demonstrate 
the inference process of the DL model in a visual manner, 
we used the gradient-weighted class activation map (Grad-
CAM) technique (33) to extract features from the final 
convolutional layer of ResNet-50, which generated a 
weighted activation map for each image for displaying the 
areas of focus of the model.

To investigate the effect of knee zonal information as 
prior knowledge, we used the U-Net network to obtain 
zonal segmentation as extra channels for the input of the 
ResNet-50 model to incorporate zonal prior knowledge 
into the model. Model 3 provided additional zonal prior 
knowledge for the anteroposterior knee partition based on 
model 1, which combined the original images with zonal 
segmentation to produce a 2-channel 2D image with an 
input size of 512×512×2. Model 4 was built on models 2 and 
3 and incorporated both anteroposterior knee images and a 
priori partitioning knowledge into the analysis, producing 
a 4-channel 2D image with an input size of 512×512×4. 
Models 3 and 4 used prior knowledge and focused on 
the knee joint region, so we did not use the Grad-CAM 
technique. Furthermore, to validate the effectiveness of 
models 3 and 4, we implemented the t-distributed stochastic 
neighbor embedding (t-SNE) visualization (34) of the 
model on all data. T-SNE is a dimensionality reduction 
technique that maps high-dimensional data to 2 or more 
dimensions suitable for human observation.

Finally, we compared the radiologist-DL diagnosis 
capability based on the testing cohort by evaluating the 
accuracy between the experienced radiologist and the best-
performing DL model. We enlisted 1 radiologist (WY) with 
4 years of musculoskeletal diagnostic experience who was 
not involved in annotating the training cohort.

Training process optimization

There were 2 steps included in the entire process: forward 
computation and backward propagation. In the training 
stage, anteroposterior and lateral knee joint images and 
zonal segmentation were fed into the network to update 
model parameters by backward propagation. The outputs 
of the network were used as the classification results, 
and the cross-entropy of the outputs and the labels were 
calculated as the loss function. We used a fixed learning 
rate of 0.0001 and applied the Adam optimizer to update 
the model parameters with a batch size of 64. All data were 
run in Python version 3.6.12. To reduce the likelihood of 

overfitting, strategies included L2 regularization (with a 
weight decay of 0.0005) and early stopping. The PyTorch 
framework was used to train and test the model on 2 
NVIDIA RTX 1080 Ti graphics processing units for up to 
1,500 epochs, and the model with the lowest validation loss 
was selected.

Statistical analysis

All statistical analyses were performed using SPSS 25.0 (IBM 
Corp.) and R software version 4.1.2 (The R Foundation 
of Statistical Computing). A P value <0.05 was considered 
statistically significant. The performance of the 4 DL 
models was evaluated by precision, recall, F1 score, and 
accuracy. Receiver operating characteristic (ROC) analysis 
was used to further evaluate the diagnostic performance of 
the knee OA lesion detection system. For the ROC analysis, 
the area under the ROC curve (AUC) was calculated for 
the discrimination performance of established models. The 
AUC obtained was compared between models using the 
DeLong nonparametric approach. The McNemar test was 
used to compare the accuracy of the DL model with that of 
experienced radiologists.

Results

Characteristics of images

A total of 4,200 knee joint images (including 4,200 
anteroposterior images and 4,200 lateral images paired) from 
1,846 patients (864 males and 982 females) were available 
for analysis. Each sample contained paired anteroposterior 
and lateral images. The ages of patients ranged from 18 
to 92 years (mean 51.13±15.11 years). K-L grades of all 
data were as follows: grade 0, 1994 anteroposterior and 
lateral images; grade 1, 1063 images; grade 2, 630 images;  
grade 3, 360 images; and grade 4, 153 images. We randomly 
selected 80% of each grade to form the training cohort 
(n=3,359), and the remaining data were used for the testing 
cohort (n=841). The distribution of the knee X-ray images 
conditioned on the K-L grading scheme is shown in Table 1.

Multiview images-based results

The overall performance of the different models based on 
the training cohort is summarized in Table 2. Compared 
to models 1 and 3, models 2 and 4 with lateral images 
combined achieved an overall accuracy of 0.92 and 0.96, 
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respectively (Table 3). As shown in Table 4 and Figure 4, 
models 2 and 4 with lateral images combined achieved 
a higher microaverage AUC and macroaverage AUC of 
0.92/0.91 and 0.96/0.95, respectively, compared to models 
1 and 3 without lateral images combined in the testing 
cohort (the microaverage is concerned with the study 
of individual classes and the macroaverage is concerned 
with aggregations or totals). With or without the addition 
of prior knowledge, models 2 and 4 trained with lateral 
images combined performed better than did the models 
trained using only anteroposterior images. By comparing 
the AUC at each grade for the 4 models with and without 
lateral images, we observed an increased performance of 
the lateral images with AUCs of 0.94, 0.91, 0.89, 0.90, and 
0.92 for model 2 and 0.99, 0.96, 0.92, 0.92 and 0.99 for 
model 4 in the testing cohort from knee OA class 0 to class 
4, respectively. This finding suggests that the DL models 
based on anteroposterior and lateral knee joint images had a 
better diagnostic performance.

Prior knowledge-based results

The U-Net used an end-to-end prediction procedure. 
The input was the X-ray image, and the output was the 
segmentation mask. The Dice similarity coefficient (Dice) 

was selected as a segmentation evaluation metric. Then, 
we used the U-Net to test all samples. The Dice was 
above 0.98, and all results were reviewed by experienced 
radiologists. The results of knee region segmentation were 
good, so experts made no modifications. By comparing the 
overall accuracy for both experiments with and without 
zonal segmentation as prior knowledge, we observed an 
increased performance using prior zonal segmentation in 
the testing cohort (Table 3). In the same position level, the 
overall accuracy was significantly higher after adding the 
zonal segmentation as prior knowledge for model 3 (overall 
accuracy 0.94) and model 4 (overall accuracy 0.96). On the 
anteroposterior view, addition of a prior segmentation could 
improve the microaverage AUC and macroaverage AUC 
to 0.94 and 0.93, respectively, and when the lateral images 
were added, the microaverage and macroaverage AUCs 
were as high as 0.96 and 0.95, respectively (Figure 4C,4D, 
respectively). DL models trained using prior zonal of 
interest performed better than those without this addition.

The multiview matrices of the 4 models were plotted to 
determine whether the devised modules could intuitively 
improve the classification (Figure 5). Model 4 achieved 
the best diagnostic performance, with accuracy values of 
0.99, 0.91, 0.94, 0.93, and 0.94 for knee OA grades 0 to 4, 
respectively. The probability that the model predicted that 
the sample was the real label was statistically summarized, 
and then a pairwise comparison between the models was 
performed. The final DeLong test results are shown in 
Table 5.

Visual analysis of model performance

The Grad-CAM tool can identify the regions that the 
network considers important. Figure 6 illustrates an example 
of the different treatments of the knee X-ray images for the 
5 K-L grades in models 1 and 2. These class activation maps 
were used to describe each model’s receptive field in the case 

Table 1 Description of image data sets used in this study

Cohort K-L 0 K-L 1 K-L 2 K-L 3 K-L 4

All data (n=4,200) 1,994 1,063 630 360 153

Training cohort (n=3,359) 1,595 850 504 288 122

Testing cohort (n=841) 399 213 126 72 31

Percentage (%) 47 25 15 9 4

The data are the number of knees used in each cohort. The ratio 
between the training and testing cohort is 8 to 2. K-L, Kellgren-
Lawrence. 

Table 2 Overall performance of different models based on the training cohort

Model Multiview Prior knowledge Precision (m/M) Recall (m/M) F1 score (m/M) AUC (95% CI) (m/M) Accuracy

Model 1 0.88/0.84 0.88/0.85 0.88/0.84 0.89 (0.86–0.92)/0.88 (0.85–0.91) 0.88

Model 2 √ 0.93/0.92 0.93/0.92 0.93/0.92 0.93 (0.90–0.96)/0.92 (0.89–0.95) 0.93

Model 3 √ 0.96/0.95 0.96/0.95 0.96/0.95 0.96 (0.93–0.99)/0.95 (0.92–0.98) 0.96

Model 4 √ √ 0.97/0.96 0.97/0.97 0.97/0.96 0.97 (0.96–0.98)/0.96 (0.95–0.97) 0.97

m, microaverage; M, macroaverage; AUC, area under the curve; CI, confidence interval. 
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of given classes, with the results being shown Figure 6, where 
the blue represents low attention and red represents high 
attention. The CAM activation region was more obvious 
in the knee area, which was reasonable. However, for some 
images, the study found that the CAM activation region also 
appeared in other tissues outside the knee joint with models 
1 and 2, which may indicate that some extra-articular tissues 
were also important for diagnosing knee OA.

We visualized models 3 and 4 according to the features 
learned from the last feature extraction layer of the network 
and performed t-SNE diagrams for all images from classes 
0 to 4 based on our model, as displayed in Figure 7. The 
relatively clear boundaries in Figure 7 indicate that images 
belonging to the same grade were clustered together, and 
the different grades of knee OA were well separated.

Comparison of radiologist and DL diagnosis capability

In the testing cohort, the performance of model 4 was better 
than that of an experienced radiologist, with accuracies of 
0.96 and 0.86 (McNemar test, P<0.05), respectively. The 
final knee OA diagnostic DL model established in this study 
performed better than did the experienced radiologists.

Discussion

This work is the first attempt to assess the effect of 
multiview images and prior knowledge on the diagnostic 
performance of knee OA classification. The DL model with 
multiview images and prior knowledge obtained the best 
classification performance among the 4 DL models in the 
testing cohort, with a microaverage AUC and macroaverage 
AUC of 0.96 and 0.95, respectively. An accurate reading 
of knee X-ray images is crucial but strongly depends on 
expertise, which is closely related to the experience level 
of the radiologist. Many studies have demonstrated that 
DL models have better diagnostic precision than do  
radiologists (35). This finding is consistent with the results 
of our study, which found that the overall accuracy of the 
DL model with multiview images and prior knowledge was 
better compared to that of an experienced radiologist.

In this study, we developed a DL-based method to 
perform automatic K-L grading from knee radiographs. 
In early studies, such as those by Oka et al. (36,37), knee 
osteoarthritis computer-aided diagnosis (KOACAD) was 
conducted to measure joint space narrowing at medial and 
lateral sides, osteophyte formation, and joint angulation. 
Although KOACAD was shown to be useful for objective, 
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Table 4 AUC based on the testing cohort

Class Model 1 Model 2 Model 3 Model 4

Class 0 (AUC) (95% CI) 0.91 (0.88–0.94) 0.94 (0.92–0.96) 0.98 (0.97–0.99) 0.99 (0.99–1.00)

Class 1 (AUC) (95% CI) 0.89 (0.86–0.92) 0.91 (0.88–0.94) 0.92 (0.88–0.96) 0.96 (0.93–0.99)

Class 2 (AUC) (95% CI) 0.82 (0.79–0.85) 0.89 (0.84–0.94) 0.89 (0.85–0.93) 0.92 (0.88–0.96)

Class 3 (AUC) (95% CI) 0.85 (0.81–0.89) 0.90 (0.87–0.93) 0.92 (0.87–0.97) 0.92 (0.87–0.97)

Class 4 (AUC) (95% CI) 0.89 (0.83–0.95) 0.92 (0.88–0.96) 0.92 (0.88–0.96) 0.99 (0.99–1.00)

mAUC (95% CI) 0.88 (0.84–0.92) 0.92 (0.88–0.96) 0.94 (0.92–0.96) 0.96 (0.93–0.99)

MAUC (95% CI) 0.87 (0.83–0.91) 0.91 (0.88–0.94) 0.93 (0.90–0.96) 0.95 (0.92–0.98)

AUC, area under the curve; CI, confidence interval; m, microaverage; M, macroaverage. 
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Figure 4 Five-class (one vs. the rest) ROC curve of the testing cohort of 4 different models. Classes 0 to 4 are based on the severity of knee 
OA according to the K-L grading, with class 0 signifying no presence of OA and class 4 signifying severe OA. The 2 dashed lines show the 
ROC curves of the microaverage and macroaverage, indicating the overall distinguishing ability of the 5-class classification based on (A) 
model 1, (B) model 2, (C) model 3, and (D) model 4. ROC, receiver operating characteristic; AUC, area under the curve; OA, osteoarthritis; 
K-L, Kellgren-Lawrence. 
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accurate, and easy evaluation of the radiographic knee OA 
severity compared with these conventional categorical 
grading systems, these studies had limitations of few 
quantitative indicators and relatively small test set sizes. In 

a later study, Hirvasniemi et al. (38) used advanced image 
analysis methods to quantify differences in bone texture 
between participants with different stages of knee OA, but 
their sample size was only 203 knee joints.

In recent years, there has been an increasing amount of 
big data analysis based on public data sets, such as those 
performed by the Osteoarthritis Initiative (OAI) and 
Multicenter Osteoarthritis Study (MOST), and relatively 
good results have been achieved. Suresha et al. (39) 
collected 7,549 knee radiographs and used a DL model to 
automatically grade the severity of knee OA. The object-
classification network predicted K-L scores of 4 with 87% 
accuracy, but the accuracy of the K-L scores of 1 was only 
23%. Although our study did not have as much data, the 
results showed that the 4 models we established also had an 
accuracy of 0.87 to 0.96. These results may be related to our 
accurate annotation and use of segmented images as prior 
knowledge. Swiecicki et al. (40) used a data set of 9,739 exams  
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Figure 5 Confusion matrices of the compared network models on the testing cohort. The numbers in the confusion matrices denote the 
percentage of the predicted class. (A-D) The results of the methods for model 1, model 2, model 3, and model 4, respectively. 

Table 5 DeLong test results based on the testing cohort

Model P value

Model 1 vs. model 2 0.242

Model 3 vs. model 4 0.436

Model 1 vs. model 3 0.143

Model 2 vs. model 4 0.211

The multicategory DeLong test was used to compare the 
microaverage AUC and macroaverage AUC of the different 
models; additionally, statistical analysis was used to summarize 
the probability that the model could predict that the sample was 
the real label, after which a pairwise comparison of the 4 models 
was performed. AUC, area under the curve. 
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from 2,802 patients from MOST and obtained a multiclass 
accuracy of 71.90% on the entire test set using a multi-input 
CNN architecture. The lowest accuracy in our study was 
0.87, but this only occurred when anteroposterior images 
were used. In addition, many researchers found using the 

ResNet network framework for grading knee OA to be 
highly effective, with the overall AUC value reaching more 
than 90% and the highest accuracy rate reaching 98.90% 
(41-43). These results are in good agreement with our 
experimental results, as we obtained an overall accuracy of 

Class 0
Class 1
Class 2
Class 3
Class 4

LabelA B

Class 0 Class 1 Class 2 Class 3 Class 4

Figure 6 An example of the different treatments of the knee X-ray images for the 5 K-L grades in model 1 and model 2. K-L, Kellgren-
Lawrence. 

Figure 7 The t-SNE visualization of the compared networks for all images from classes 0 to 4 based on (A) model 3 and (B) model 4. t-SNE, 
t-distributed stochastic neighbor embedding. 
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0.94 using the ResNet-50 network on the anteroposterior 
images. Posteroanterior images in knee OA studies are 
recommended by OAI and MOST, but this does not mean 
lateral images are useless. Lateral radiographs were included 
in our study because the DL model was believed to reveal 
some features that we did not observe, and these features 
may be helpful for the judgment of knee OA. Our final 
results also confirmed that the addition of lateral images 
improves the diagnostic performance of the DL model.

DL models require the collection of a sufficient amount 
of data, but the effect of different body positions of 
plain radiographs should be taken into account (18,29). 
Lateral radiographs have been proven to be useful for 
the detection of knee OA (30). To compare the effect of 
different body positions on the study results, our study 
included a large number of samples, and each image 
included anteroposterior and lateral radiographs of the 
knee joint. In the first part of the study, our results showed 
a significant effect on the performance when the lateral 
images were added to the training cohort (micro-average 
AUCs: 0.88 of model 1 to 0.92 of model 2 and 0.94 of 
model 3 to 0.96 of model 4; macro-average AUCs: 0.87 
of model 1 to 0.91 of model 2 and 0.93 of model 3 to 0.95 
of model 4). The overall accuracy increased from 0.87 of 
model 1 to 0.92 of model 2 and 0.94 of model 3 to 0.96 
model 4, respectively, when lateral images were added. The 
results showed that the addition of lateral images could 
improve the performance of the model. To the best of our 
knowledge, this may be the first study to report a DL study 
on knee OA using a combination of anteroposterior and 
lateral radiographs. The performance of this model cannot 
be directly compared with previous models, as other studies 
almost always used anteroposterior images.

To prove that narrowing the detection range of the 
model also improved the detection efficacy of the DL 
model, we designed the following experimental steps to 
examine 2 crucial aspects: (I) we used ResNet 50 to directly 
identify and classify the K-L grading of knee joint images, 
and (II) we used a rectangular zonal segmentation as prior 
knowledge and then U-Net for detection and classification. 
This part  of  the study showed that  adding zonal 
segmentation as prior knowledge improved the performance 
of DL models significantly. The AUC value increased from 
0.87 to 0.94 and 0.92 to 0.96 for detection and classification, 
respectively, suggesting that prenarrowing the detection 
range of lesions can significantly improve the performance 
of the DL model in these areas. Manual segmentation of 
all images is generally used in radiomics studies, especially 

in MRI scans (44). The segmentation of prior knowledge 
regions we applied to knee OA DL models was influenced 
by the work of Hosseinzadeh et al. and Xie et al. (19,45), 
who concluded that prior zonal knowledge significantly 
affected the performance of DL models. Finally, we proved 
that the DL model established in this study performed 
better than did experienced radiologists, which indicates 
that the model could be a tool to help clinicians make 
accurate diagnoses and treatment decisions.

In summary, our research has several advantages. First, 
we used both anteroposterior and lateral radiographs and 
conducted a comparative study, providing more information 
and details of knee OA. We also narrowed the range of ROI 
by prior segmentation and improved the detection efficacy.

Our study had some limitations that should be 
considered. First, this was a retrospective study, and 
all data came from a single hospital. Although we used 
normalization methods to compensate for scanner and 
scanner setting variations, we cannot generalize our 
conclusions to all X-ray images from other centers. 
Extending the training to include more data from other 
providers is necessary to make generalizations. To create a 
more comprehensive DL model in the future, we intend to 
increase our data set by gathering multicenter data. Second, 
there was a difference in the number of images collected in 
each K-L grading. Since this difference in the number of 
grades was determined by the incidence of the disease itself, 
this difference was difficult to resolve. Third, in this study, 
some patients had more than 1 knee included, so part of 
the correlated (not independent) data were used in the DL 
algorithm analyses, which might have resulted in skewed 
results in the statistical analyses. Finally, our study only 
used X-ray data, and we did not have access to clinical data, 
laboratory test information, or follow-up data. The use of 
more information will lead to additional improvements to 
our model, such as a greater predictive ability (46).

To conclude, this study evaluated 4 DL models which 
could detect and classify knee OA on plain radiographs of 
the knee. Our study demonstrated that the performance of 
the DL model for the detection and classification of knee 
OA can be improved by using prior segmentation on plain 
radiographs and additional body positions including lateral 
knee images. These results can support further research 
to improve the use of DL algorithms as a noninvasive 
predictive method in the diagnosis and classification of knee 
OA. The DL grading model can help clinicians make a 
preliminary diagnosis and, to a certain extent, assist them in 
making treatment decisions.
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