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Background: This study created a predictive preoperative nomogram dependent on multimodal ultrasound 
characteristics and primary lesion biopsy results for various pathologic response assessment systems following 
neoadjuvant chemotherapy (NAC).
Methods: This retrospective study included 145 breast cancer patients treated at Gansu Cancer Hospital 
between January 2021 and June 2022 who underwent shear wave elastography (SWE) prior to completing 
NAC. Intra- and peritumoral SWE features, including maximum (Emax), mean (Emean), minimum (Emin), and 
standard deviation (Esd) elasticity, were measured individually and linked with the Miller-Payne grading 
system and residual cancer burden (RCB) class. Univariate analysis was used for conventional ultrasound and 
puncture pathology. Binary logistic regression analysis was used to screen for independent risk factors and to 
develop a prediction model. 
Results: Intratumor Emean and peritumoral Esd differed significantly from the Miller-Payne grade [intratumor 
Emean: r=0.129, 95% confidence interval (CI): −0.002 to 0.260; P=0.042; peritumoral Esd: r=0.126, 95% CI: 
−0.010 to 0.254; P=0.047], RCB class (intratumor Emean: r=−0.184, 95% CI: −0.318 to −0.047; P=0.004; 
peritumoral Esd: r=−0.139, 95% CI: −0.265 to 0.000; P=0.029) and RCB score components (r=−0.277 to 
−0.139; P=0.001–0.041). Two prediction model nomograms—pathologic complete response (pCR)/non-
pCR and good responder/nonresponder—for the RCB class were developed using binary logistic regression 
analysis for all significant variables in SWE, conventional ultrasound, and puncture results. The area under 
the receiver operating characteristic curve for the pCR/non-pCR and good responder/nonresponder models 
was 0.855 (95% CI: 0.787–0.922) and 0.845 (95% CI: 0.780–0.910), respectively. According to the calibration 
curve, the nomogram had excellent internal consistency between estimated and actual values.
Conclusions: The preoperative nomogram can effectively guide clinicians to predict pathological response 
of breast cancer after NAC and has the potential to guide individualized treatment.
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Introduction

Neoadjuvant chemotherapy (NAC) permits less extensive 
breast and axillary surgery by downstaging the tumor and 
allows monitoring of the treatment response, has been 
the standard therapeutic option for patients with locally 
advanced breast cancer over the past 10 years (1,2). The 
advantages of NAC are a reduction in tumor burden, 
increased possibility of breast and axillary conservation 
surgery, and improved survival of patients as indicated 
by pathologic complete response (pCR) of the breast or 
axilla (3). Increasingly, the presence or absence of residual 
disease is being used to guide decisions in adjuvant therapy 
following NAC. However, some patients with breast 
cancer harbor residual tumor after NAC. Currently, there 
are various pathologic classification methods to evaluate 
therapy efficacy and residual breast cancer. The Miller-
Payne grading (MPG) system is widely accepted, frequently 
used, and is an independent predictor of disease-free 
survival (DFS) or overall survival (OS). The MPG assesses 
the relative treatment response by comparing the cellularity 
of tumors before and after NAC (4). In contrast to the 
MPG, which does not take into account tumor size and 
nodal status, the residual tumor can be quantified using 
the residual cancer burden (RCB) calculation. The RCB 
was first described in 2007 and provides a set of standard 
techniques to assess and quantify the degree of residual 
cancer in the breast and axillary lymph nodes after NAC (5).

Shear wave elastography (SWE) is an imaging technique 
for visualizing and quantifying tissue stiffness (6). In 
addition to conventional ultrasound features, SWE provides 
an easily repeatable, real-time, in vivo assessment of tissue 
elasticity (7). Studies exploiting the association between 
tumor stiffness, carcinogenesis, and disease progression 
have reported high mean stiffness values in breast cancer to 
be significantly associated with lymph node involvement, 
large invasive size, aggressive subtypes, and high histologic 
grade (8-10). In addition, it has been found that increasing 
extracellular matrix stiffness activates and/or inactivates 
specific transcription factors in cancer and stromal cells 
to regulate cancer progression and chemotherapeutic 
resistance (11,12).

Several studies have related SWE characteristics to the 
MPG system (13) or RCB (14,15), but fewer studies have 

compared SWE characteristics with various pathological 
response assessment systems. Moreover, no studies have 
evaluated the additional diagnostic utility of SWE in 
conjunction with conventional ultrasound. Therefore, 
the aims of this study were to compare SWE features 
before NAC with the MPG system and RCB, to analyze 
the relationships between these features and pathological 
response assessment systems, and to assess the predictive 
performance of multimodal models for different pathological 
response assessment systems after NAC in combination with 
conventional ultrasound and puncture pathology results. We 
present the following article in accordance with the TRIPOD 
reporting checklist (available at https://qims.amegroups.com/
article/view/10.21037/qims-22-910/rc).

Methods

Study design and patient cohort

The study was conducted in accordance with the Declaration 
of Helsinki (as revised in 2013) and was approved by the 
institutional review board of Gansu Cancer Hospital. Due 
retrospective nature of the study, the written informed 
consent was waived.

Eligible patients (n=161), namely those treated with 
NAC and subsequent surgical resection of primary invasive 
breast cancer at Gansu Cancer Hospital between January 
2021 and June 2022 were identified from clinical records. 
The specific inclusion criteria were as follows: (I) breast 
cancer diagnosed with histopathology of core needle biopsy 
(CNB) before chemotherapy with routine ultrasound and 
SWE examinations of the lesion; (II) clinical stage IIa–IIIc; 
(III) normal results on routine examinations (routine blood, 
liver, kidney, heart, and lung function) before chemotherapy, 
excluding distant metastases; and (IV) no history of local 
radiotherapy or systemic chemotherapy. Patients with 
breast lesions >5 cm in diameter or who were unable 
to undergo SWE were excluded from the study. Of the  
161 patients initially identified from the clinical records, 16 
were excluded (14 with masses >5 cm in diameter and 2 who 
were unable to undergo ultrasound examination due to skin 
breakdown). Thus, 145 patients (mean age 49.6±9.0 years; 
age range 26–74 years) were included in the study. The 
pretreatment tumor size ranged from 13 to 50 mm (mean 
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size 27.08±9.6 mm). All patients underwent conventional 
ultrasound and SWE before NAC, and the pathological 
response was assessed with postoperative results after NAC 
(Figure 1).

Conventional ultrasound and SWE

Conventional ultrasound pictures of the breast and axilla 
were obtained using the Resona 7 Premium Ultrasound 
System (Mindray, Shenzhen, China). The ultrasound 
examinations were performed by 2 radiologists (X. M. Song, 
W. L. Wang), with a combined experience of >5 years in 
breast examination and at least 1 year of specialized training 

in breast radiology. Conventional ultrasound images were 
acquired by thoroughly scanning the bilateral breast and 
axillary both transversely and longitudinally. Based on the 
fifth edition of the American College of Radiology (ACR) 
Breast Imaging-Reporting and Data System (BI-RADS) 
classification (16), the size (the largest of 3 diameters), 
echogenicity, microcalcification, shape, and blood flow of 
the primary breast tumor were recorded. In addition, the 
number of suspected ipsilateral axillary lymph nodes was 
recorded.

We have provided a detailed description of the method 
of SWE examination of breast lesions elsewhere (17). Using 
grayscale velocity dual mode, the outer edge of the lesion 

Retrospective analysis of 161 patients undergoing NAC with 
subsequent surgical excision of primary invasive breast cancer

Pre-NAC conventional ultrasound 
examination of the breast and axilla

Breast ultrasound measures: tumor size, 
echogenicity, microcalcification, shape, 

blood flow degree, multifocality

Pre-NAC breast SWE examination

Intratumoral and peritumoral elasticity 
parameters: Emax, Emean, Emin and Esd

Post-NAC pathological assessment 
system: MPG, RCB class and RCB 

score components

Axillary ultrasound measures: 
number of suspected 

ipsilateral ALNs

Univariate and multivariate analyses of conventional 
ultrasound, SWE and CNB were performed in 145 breast 

cancer patients according to the efficacy of NAC

16 patients were excluded 
• 14 masses >5 cm in diameter 
• 2 unable to undergo ultrasound due to skin breakdown

Immunohistochemical results after CNB in 145 cases 
(ER, PR, HER2, Ki-67, histologic grade)

Two prediction model nomograms: 
• pCR/non-pCR group 
• Good responder/nonresponder group for the RCB class

Figure 1 Study flowchart. NAC, neoadjuvant chemotherapy; SWE, shear wave elastography; ALN, axillary lymph node; CNB, core needle 
biopsy; ER, estrogen receptor; PR, progesterone receptor; HER2, human epidermal growth factor receptor 2; MPG, Miller-Payne grade; 
RCB, residual cancer burden; pCR, pathologic complete response.
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was tracked on grayscale images, and internal elasticity 
parameters were automatically calculated, including 
maximum (Emax), mean (Emean), minimum (Emin), and 
standard deviation (Esd) elasticity. Then, Emax, Emean, Emin, 
and Esd values at shells of 2 mm from the edge of the lesion 
were measured (18,19). In the case of multiple ipsilateral 
breast tumors, only the largest lesion was evaluated.

Treatment

Indications for NAC were based on the opinion of 
breast surgeons, and NAC was performed according to 
national guidelines (20). All patients received 6–8 cycles of 
anthracycline- and/or taxane-based chemotherapy. Patients 
with human epidermal growth factor receptor 2 (HER2)–
positive disease also received trastuzumab + pertuzumab. 
All patients underwent breast-conserving therapy or 
mastectomy after NAC.

Reference test: pathology 

Pathological examinations and immunohistochemistry 
(IHC) of the CNB specimen before and the surgical 
specimen after NAC were performed by dedicated breast 
pathologists. The MPG system, the RCB scores, and RCB 
score components, which was evaluated from the resection 
specimens by a specialized breast pathologist (Y. Q. Kang) 
were compared with the elasticity values from SWE of 
breast lesions obtained prior to NAC. The pathologist 
was blinded to the SWE findings. In this study, pCR was 
defined as the absence of residual invasive tumor cells 
(ductal carcinoma in situ may have been present) in the 
breast. The measurement of residual tumor size included 
both invasive and noninvasive components. By comparing 
cancer cellularity in the pretreatment CNB with that in 
the posttreatment resected tumor, the MPG system was 
used to evaluate tumor response based on the reduction in 
tumor cellularity, with results graded from 1 (no reduction 
in overall cellularity) to 5 (no invasive malignant cells 
identifiable in sections from the site of the tumor) (4). 
To calculate the RCB, the percentage of invasive cancer 
cellularity, residual tumor size, the size of the largest axillary 
metastasis, and the number of positive lymph nodes were 
evaluated. On a continuous scale, RCB was quantified and 
further divided into categories 0 (=pCR), I (minimal residual 
disease), II (moderate residual disease), and III (extensive 
residual disease).

All masses underwent IHC, which included detection 

of estrogen (ER) and progesterone (PR) receptors, 
HER2 overexpression and/or amplification, and the Ki-
67 labeling index, allowing for the classification of the 
tumor subtypes. For HER2-positive masses, HER2 gene 
amplification was detected with strong staining (3+) of an 
intact membrane and/or fluorescence in situ hybridization 
(FISH) in more than 10% of cells detected with IHC. 
The intrinsic molecular subtypes of breast cancer were 
classified as luminal A, luminal B (HER2−), HER2 
positive (HR+), HER2 positive (HR−), and TNBC (21).  
The ER- and/or PR-positive, HER2-negative, and low–
Ki-67 (<20%) masses were categorized as luminal A. ER- 
and/or PR-positive, HER2-negative, and high (≥20%) Ki-
67 masses were categorized as luminal B (HER2−). ER- 
and/or PR-positive, HER2-overexpressing/amplified, 
and any Ki-67 were categorized as HR+. The HER2-
overexpressing/amplified and ER- and PR-negative masses 
were categorized as HR−. ER-, PR-, and HER2-negative 
masses were categorized as TNBC. 

Statistical analysis 

The MPG, age, postoperative pathological characteristics, 
and RCB scores (and components thereof) were correlated 
with pretreatment stiffness readings using Pearson’s 
correlation coefficient (r). All elasticity results were used for 
the statistical analysis. Prior to analysis, tests to determine 
the normality of distribution of the outcome variable were 
conducted.

In the analysis of the reactions to NAC, pathologic 
responses were categorized as pCR or non-pCR, MPG good 
responders or nonresponders, and RCB good responders 
or nonresponders. MPG good responders were defined as 
patients with grades 3, 4, and 5, whereas nonresponders 
were def ined as  those with grades 1 and 2.  RCB 
nonresponders were defined as classes II and III, whereas 
RCB good responders were defined as classes 0 and I. 
These 3 dichotomizations and the chi-squared test, Mann-
Whitney test, and Fisher exact test were used to compare 
baseline patient, pathological, and ultrasound characteristics 
of the study population. Variables that showed a univariate 
significance with a pCR or good response were entered into 
a binary logistic regression analysis using a forward stepwise 
method to ascertain independent risk factors and establish 
prediction models. Receiver operating characteristic 
(ROC) curves obtained with MedCalc (MedCalc Software 
Ltd., Ostend, Belgium) were used to evaluate the models’ 
performance. The corresponding area under the curve 
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(AUC), sensitivity, and specificity were calculated at the 
optimal cutoff values.

All statistical analyses were performed using SPSS 
version 25.0 (IBM Corporation, Armonk, NY, USA). 
P<0.05 two-tailed was considered significant.

Results

SWE parameters and pathological response assessment 
system 

We recruited 145 patients with breast cancer treated with 
NAC to the study: 128 with invasive ductal carcinoma, 5 with 
invasive lobular carcinoma, 6 with papillary carcinoma, 3 
with squamous cell carcinoma, 2 with medullary carcinoma, 
and 1 with metaplastic carcinoma. Table 1 summarizes the 
distribution of RCB scores and MPG for breast cancer 
subgroups and histological types. There was marked 
variability in RCB scores for patients with breast cancer of 
different molecular subtypes: the HR− group had a lower RCB 
score, whereas the luminal A group had a higher RCB score.

Correlations of intratumor Emax, Emean, Emin, and Esd 
with age, MPG, RCB score, and components of the RCB 

score are presented in Table 2. In the correlation analysis, 
only the RCB score was significantly associated with Emax 

(r=−0.176; 95% CI: −0.346 to 0.002; P=0.034). Statistically 
significant associations were observed between Emean and 
both MPG and RCB score components. The correlation 
between Emean and RCB score was stronger (r=−0.277; 
P=0.001; 95% CI: −0.429 to −0.114) than that between 
Emean and MPG (r=0.129; 95% CI: −0.002 to 0.260; 
P=0.042), RCB class (r=−0.184; 95% CI: −0.318 to −0.047; 
P=0.004), the size of the largest axillary metastasis (r= 
−0.246; 95% CI: −0.398 to −0.080; P=0.003), the number 
of positive nodes (r=−0.231; 95% CI: −0.379 to −0.065; 
P=0.005), and invasive size (bidimensional diameters of 
the primary tumor bed in the resection specimen) (r= 
−0.170; 95% CI: −0.313 to −0.031; P=0.041). There were 
no significant correlations analysis between any of these 
indicators and either Emin or Esd.

Correlations of peritumor Emax, Emean, Emin, and Esd with 
age, MPG, RCB score, and RCB score components are 
presented in Table 3. Only the RCB score was significantly 
correlated with Emax (r=−0.189; 95% CI: −0.353 to −0.029; 
P=0.023). Statistically significant correlations were observed 
between Esd and age, MPG, and RCB score components. 

Table 1 Distribution of residual cancer burden scores and Miller-Payne grades by breast cancer subgroup and histological type

RCB score (mean) No. tumors
Miller-Payne grade

1 2 3 4 5

Molecular subtype

HER2+ (HR−) 0.358 20 0 0 2 1 17

HER2+ (HR+) 1.050 27 0 0 7 8 12

TNBC 1.391 23 0 2 8 5 8

Luminal A 2.254 34 0 7 19 6 2

Luminal B (HER2−) 2.206 41 0 6 22 5 8

P value <0.001

Histological type

Ductal 1.517 128 0 10 48 24 46

Lobular 2.433 5 0 2 2 1 0

Squamous cell 1.725 3 0 0 2 0 1

Papillary 2.852 6 0 2 4 0 0

Other 1.987 3 0 1 2 0 0

P value 0.484

RCB, residual cancer burden; HER2, human epidermal growth factor receptor 2; HR, hormone receptor; TNBC, triple-negative breast 
cancer.
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Table 2 Correlations of intratumor maximum, mean, minimum, and standard deviation elasticity with age, MPG, RCB class, and RCB score 
components in 145 patients

Emax Emean Emin Esd

r P value r P value r P value r P value

Age −0.101 0.227 −0.148 0.075 −0.086 0.306 0.103 0.217

MPG 0.088 0.164 0.129 0.042 0.012 0.855 −0.052 0.411

RCB score −0.176 0.034 −0.277 0.001 −0.126 0.131 0.075 0.371

RCB class −0.103 0.104 −0.184 0.004 −0.082 0.197 0.039 0.542

Size of the largest axillary metastasis −0.157 0.059 −0.246 0.003 −0.156 0.060 0.060 0.477

No. positive nodes −0.134 0.108 −0.231 0.005 −0.159 0.056 0.041 0.628

Invasive size −0.121 0.146 −0.170 0.041 −0.049 0.559 0.104 0.215

MPG, Miller-Payne grade; RCB, residual cancer burden; Emax, maximum elasticity; Emean, mean elasticity; Emin, minimum elasticity; Esd, 
standard deviation elasticity.

Table 3 Correlations of peritumor maximum, mean, minimum, and standard deviation elasticity with age, MPG, RCB class, and RCB score 
components in 145 patients

Emax Emean Emin Esd

r P value r P value r P value r P value

Age −0.135 0.106 −0.146 0.080 0.046 0.581 −0.176 0.035

MPG 0.096 0.132 0.123 0.051 −0.062 0.328 0.126 0.047

RCB score −0.189 0.023 −0.284 0.001 −0.048 0.564 −0.235 0.005

RCB class −0.116 0.067 −0.163 0.010 −0.007 0.908 −0.139 0.029

Size of largest axillary metastasis −0.126 0.130 −0.232 0.005 −0.121 0.148 −0.178 0.033

Number of positive nodes −0.139 0.096 −0.257 0.002 −0.136 0.103 −0.187 0.024

Invasive size −0.156 0.060 −0.199 0.016 0.074 0.374 −0.233 0.005

MPG, Miller-Payne grade; RCB, residual cancer burden; Emax, maximum elasticity; Emean, mean elasticity; Emin, minimum elasticity; Esd, 
standard deviation elasticity.

Statistically significant correlations were also observed 
between Emean and RCB score components (all P values 
<0.05).

Pathologic response assessment system evaluations of NAC

Of the 145 patients, 47 (32.4%) obtained a pCR. According 
to the MPG system, 0 and 15 (10.3%) reached grades 1 
and 2, respectively, and these patients were categorized 
as nonresponders. In the MPG system, 58 (40.0%), 25 
(17.2%), and 47 (32.4%) patients, were categorized as 
grade 3, 4, and 5, respectively, and these patients were 
considered good responders. Of the 145 patients, 48 
(33.1%), 14 (9.7%), 59 (40.7%), and 24 (16.6%) were 

classified as RCB class 0, I, II, and III, respectively; those in 
class II and III were considered nonresponders, and those 
in class 0 and I were considered good responders. These 
response categories were used to compare the pathological 
and ultrasound characteristics (Table 4). Tumor diameter, 
ER, PR, HER2, Ki-67 levels, histologic grade, number of 
suspected lymph nodes, intratumor Emean, and peritumoral 
Esd differed significantly between the pCR and non-pCR 
groups (P<0.05). In addition, all these characteristics, 
except peritumoral Esd, differed significantly between 
RCB good responders and nonresponders (P<0.05). 
However, intratumor Emean and peritumoral Esd did not 
differ significantly between MPG good responders and 
nonresponders. 
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Table 4 Pathological and ultrasound characteristics before neoadjuvant chemotherapy according to pathologic response assessment systems

Pathologic response Miller-Payne grade RCB class

pCR  
(n=47)

Non-pCR  
(n=98)

P value
Good responder 

(n=130)
Nonresponder 

(n=15)
P value

Good responder 
(n=62)

Nonresponder 
(n=83)

P value

Age (years) 49.4±10.0 49.7±8.5 0.825 49.4±9.0 49.7±8.1 0.287 48.4±10.0 50.5±8.0 0.207

Tumor size (mm) 23.9±8.7 28.8±9.9 0.013 26.1±9.7 31.4±8.2 0.042 24.1±8.0 27.9±10.3 0.010

Echogenicity 0.577 0.513 0.705

Nonhypoechoic 10 (28.6) 25 (71.4) 32 (94.1) 2 (5.9) 14 (40.0) 21 (60.0)

Hypoechoic 37 (33.6) 73 (66.4) 98 (88.3) 13 (11.7) 48 (43.6) 62 (56.4)

Tumor shape 0.405 0.140 0.508

Regular 4 (23.5) 13 (76.5) 13 (76.5) 4 (23.5) 6 (35.3) 11 (64.7)

Irregular 43 (33.6) 85 (66.4) 117 (91.4) 11 (8.6) 56 (43.8) 72 (56.2)

Microcalcification 0.716 0.571 0.337

No 13 (30.2) 30 (69.8) 40 (93.0) 3 (7.0) 21 (48.8) 22 (51.2)

Yes 34 (33.3) 68 (66.7) 90 (88.2) 12 (11.8) 41 (40.2) 61 (59.8)

Blood flow 0.398 0.390 0.607

0–I 35 (30.7) 79 (69.3) 104 (91.2) 10 (8.8) 50 (43.9) 64 (56.1)

II–III 12 (38.7) 19 (61.3) 26 (83.9) 5 (16.1) 12 (38.7) 19 (61.3)

Multifocality 0.450 0.790 0.449

No 39 (33.9) 76 (66.1) 104 (90.4) 11 (9.6) 51 (44.3) 64 (55.7)

Yes 8 (26.7) 22 (73.3) 26 (86.7) 4 (13.3) 11 (36.7) 19 (63.3)

ER <0.001 0.245 <0.001

Negative 25 (58.1) 18 (41.9) 41 (95.3) 2 (4.7) 29 (67.4) 14 (32.6)

Positive 22 (21.6) 80 (78.4) 89 (87.3) 13 (12.7) 33 (32.4) 69 (67.6)

PR <0.001 0.309 0.004

Negative 36 (47.4) 40 (52.6) 70 (92.1) 6 (7.9) 41 (53.9) 35 (46.1)

Positive 11 (15.9) 58 (84.1) 60 (87.0) 9 (13.0) 21 (30.4) 48 (69.6)

HER2 <0.001 0.022 <0.001

Negative 18 (18.6) 79 (81.4) 83 (85.6) 14 (14.4) 29 (29.9) 68 (70.1)

Positive 29 (60.4) 19 (39.6) 47 (97.9) 1 (2.1) 33 (68.7) 15 (31.3)

Ki-67 (%) 41.9±19.1 31.3±19.3 0.001 35.7±19.7 24.1±19.6 0.037 41.9±21.3 31.3±16.8 <0.001

Histologic grade 0.016 0.679 0.001

II 24 (25.5) 70 (74.5) 85 (90.4) 9 (9.6) 31 (33.0) 63 (67.0)

III 23 (45.1) 28 (54.9) 45 (88.2) 6 (11.8) 31 (60.8) 20 (39.2)

No. suspicious lymph nodes 0.046 0.001 0.032

0 8 (22.9) 27 (77.1) 27 (77.1) 8 (22.9) 14 (40.0) 21 (60.0)

1–2 28 (43.1) 37 (56.9) 64 (98.5) 1 (1.5) 35 (53.8) 30 (46.2)

≥3 11 (24.4) 34 (75.6) 39 (86.7) 6 (13.3) 13 (28.9) 32 (71.1)

Intratumor Emean 85.19±12.58 67.15±10.58 0.015 45.16±10.71 47.25±14.79 0.603 46.50±12.06 43.43±8.94 0.042

Peritumoral Esd 31.92±16.43 24.87±13.03 0.008 11.16±10.36 27.91±17.13 0.907 29.27±15.17 25.70±14.07 0.098

Unless indicated otherwise, data are expressed as the mean ± SD or n (%). RCB, residual cancer burden; pCR, pathologic complete 
response; ER, estrogen receptor; PR, progesterone receptor; HER2, human epidermal growth factor receptor 2; Emean, mean elasticity; Esd, 
standard deviation elasticity.
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Multivariate analysis combining pretreatment 
conventional ultrasound, SWE, and CNB results for 
assessment of pathological response in breast cancer 

We developed 2 prediction models: one for the pCR/non-
pCR groups and another for the RCB good responders/
nonresponders. The MPG response groups were excluded 
because there were no significant differences in stiffness 
parameters between them. For all statistically significant 
variables in conventional ultrasound, SWE, and relevant 
histopathological variables, binary logistic regression was used.

According to the findings of binary logistic regression 
analysis (Table 5), the independent predictors of pCR/non-
pCR were HER2 (95% CI: 0.058–0.358; P<0.001), PR 
(95% CI: 1.971–13.578; P=0.001), histologic grade (95% 
CI: 0.162–0.989; P=0.047), Ki-67 (95% CI: 3.245–281.011; 
P=0.003), and intratumor Emean (95% CI: 1.019–1.112; 
P=0.005). The regression equation established was follows:

( ) meanLogit P = 4.113 1.934 HER2 1.644 PR 0.916 histologic grade 3.408 Ki-67 0.063 intratumor E− − × + × − × + × + ×

( ) meanLogit P = 4.113 1.934 HER2 1.644 PR 0.916 histologic grade 3.408 Ki-67 0.063 intratumor E− − × + × − × + × + ×

( ) meanLogit P = 4.113 1.934 HER2 1.644 PR 0.916 histologic grade 3.408 Ki-67 0.063 intratumor E− − × + × − × + × + ×

 
[1]

The categorical independent risk predictor variables 
were assigned a value of “1” if present and “0” if absent.

According to the findings of binary logistic regression 
analysis (Table 6), the independent predictors of RCB good 
responders/nonresponders were HER2 (95% CI: 0.087–
0.517; P=0.001), ER (95% CI: 1.597–11.436; P=0.004), 
histological grade (95% CI: 0.129–0.778; P=0.012), tumor 
diameter (95% CI: 0.870–0.980; P=0.008), Ki-67 (95% CI: 
3.388–335.772; P=0.003), and intratumoral Emean (95% CI: 
0.999–1.089; P=0.055). The regression equation established 
was as follows:

( ) meanLogit P = 0.025 1.551 HER2 1.453 ER 1.148 histologic grade 0.080 tumor diameter 3.518 Ki-67 0.042 intratumor E− − × + × − × − × + × + ×

( ) meanLogit P = 0.025 1.551 HER2 1.453 ER 1.148 histologic grade 0.080 tumor diameter 3.518 Ki-67 0.042 intratumor E− − × + × − × − × + × + ×

( ) meanLogit P = 0.025 1.551 HER2 1.453 ER 1.148 histologic grade 0.080 tumor diameter 3.518 Ki-67 0.042 intratumor E− − × + × − × − × + × + ×
[2]

The categorical independent risk predictor variables 
were assigned a value of “1” if present and “0” if absent.

Nomogram establishment and evaluation

Based on the findings of the regression study, a nomogram 

Table 5 Binary logistic regression for pathologic complete response and nonpathologic complete response

Characteristic B SE Wald P value OR (95% CI)

HER2 −1.934 0.463 17.452 <0.001 0.145 (0.058−0.358)

PR 1.644 0.492 11.148 0.001 5.174 (1.971–13.578)

Histologic grade −0.916 0.461 3.938 0.047 0.400 (0.162−0.989)

Ki-67 3.408 1.138 8.965 0.003 30.196 (3.245−281.011)

Intratumor Emean 0.063 0.022 7.745 0.005 1.065 (1.019−1.112)

Constant −4.113 1.327 9.599 0.002

OR, odds ratio; HER2, human epidermal growth factor receptor 2; PR, progesterone receptor; Emean, mean elasticity.

Table 6 Binary logistic regression for good responder and nonresponder groups for residual cancer burden class

Characteristic B SE Wald P value OR (95% CI)

HER2 −1.551 0.455 11.610 0.001 0.212 (0.087−0.517)

ER 1.453 0.502 8.368 0.004 4.274 (1.597−11.436)

Histologic grade −1.148 0.457 6.298 0.012 0.317 (0.129−0.778)

Tumor diameter −0.080 0.030 7.003 0.008 0.923 (0.870−0.980)

Ki-67 3.518 1.173 9.004 0.003 33.728 (3.388−335.772)

Intratumor Emean 0.042 0.022 3.692 0.055 1.043 (0.999−1.089)

Constant −0.025 1.319 0.000 0.985

OR, odds ratio; HER2, human epidermal growth factor receptor 2; ER, estrogen receptor; Emean, mean elasticity.
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Figure 2 Nomogram established to predict pCR/non-pCR after neoadjuvant chemotherapy for breast cancer. pCR, pathologic complete 
response; HER2, human epidermal growth factor receptor 2; PR, progesterone receptor; Emean, mean elasticity.

was created to forecast the pathogenic response (Figures 2,3). 
The model had an AUC of 0.855 (95% CI: 0.787–0.922) 
in discriminating between the pCR and non-pCR groups. 
The AUC for discriminating between the RCB good 
responders/nonresponders was 0.845 (95% CI: 0.780–
0.910). A concordance between the projected value and the 
actual value was evident in the calibration curve (Figures 4,5). 
We used the nomogram in 2 patients to demonstrate its use 

(Figures 6,7).

Discussion

We observed a statistically significant correlation between 
pretreatment breast cancer tissue elasticity measured with 
SWE and the pathologic response evaluation systems after 
NAC in daily clinical practice. This study compared both 

Figure 3 Nomogram established to predict the pathological response of good responders/nonresponders the residual cancer burden classes 
after neoadjuvant chemotherapy for breast cancer. ER, estrogen receptor; HER2, human epidermal growth factor receptor 2; Emean, mean 
elasticity.
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Figure 4 (A) ROC curve and (B) calibration curve of the nomogram for predicting pCR/non-pCR. The area under the ROC curve was 0.855. 
ROC, receiver operating characteristic; pCR, pathologic complete response.
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the MPG and RCB systems with the SWE intratumor and 
peritumor features; our results showed that intratumor Emean 
and peritumoral Esd differed significantly according to the 
grade in the MPG system, class in the RCB system, and 
different components of the RCB score. Furthermore, based 
on the efficacy evaluation of different pathological response 
assessment systems, this study compared the pathological 
findings of CNB and ultrasound features before NAC to 
screen for statistically significant parameters. Ultimately, 
2 prediction models were developed by performing binary 
logistic regression analysis for all significant variables: one for 
the pCR/non-pCR group and the other for the RCB good 
responders/nonresponders. The AUC for the pCR/non-
pCR group was 0.855 (sensitivity 63.8%, specificity 93.7%) 

and that for the RCB good responders/nonresponders was 
0.845 (sensitivity 85.2%, specificity 71.0%). The MPG 
system was excluded because no significant differences were 
found in stiffness parameters across grades. 

The MPG system includes changes in cellularity 
between the biopsy and resected specimen but excludes 
lymph node responses. In contrast, ypTNM stage, residual 
breast and lymph node lesions, RCB, Sataloff stage, and 
Chevallier classification have been used to assess the 
features of residual cancer in breast parenchymal and 
lymph nodes (22,23). The RCB system was developed in 
2007. Symmans et al. (5) showed that RCB is a prognostic 
marker independent of the main chemotherapy type, with 
significant differences between RCB categories in hormone 

Figure 5 (A) ROC curve and (B) calibration curve of the nomogram for predicting good responders/nonresponders based on RCB class. 
The area under the ROC curve was 0.845. ROC, receiver operating characteristic; RCB, residual cancer burden.
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receptor-positive (ER+ and/or PR+, HER2−) breast cancer, 
TNBC (ER−, PR−, HER2−) and HER2-positive (hormone 
receptor-positive or -negative) breast cancer. The present 
study also found there to be significant differences in the 
distribution of RCB scores for breast cancer subgroups. 
According to Choi et al. (24), only RCB had prognostic 
value for all 4 immunohistochemical subtypes in terms of 
OS and DFS. This suggests that a pathologic classification 
system that assesses residual tumors in the breast and lymph 
nodes after NAC is better correlated with clinical outcome.

Ultrasound has multiple advantages over magnetic 
resonance imaging (MRI)  and posi tron emiss ion 

tomography/computed tomography in terms of clinical 
reproducibility. Grayscale ultrasound is generally used to 
measure changes in tumor size after NAC. However, most 
researchers have shown that ultrasound underestimates 
the size of breast tumors. The reduced prediction efficacy 
is likely due to the limited capacity of ultrasound to 
discriminate viable tumor tissue from fibrotic scar tissue. 
Previous studies (25-28) have found tumor stiffness assessed 
with SWE to be associated with the proportion of patients 
receiving NAC who experienced a pCR; their results further 
showed that elastography had a substantially higher ability 
to predict the effectiveness of NAC than did grayscale 
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Figure 6 Representative examples of good  pathological response. (A,B) Images from a 32-year-old woman with invasive ductal carcinoma 
(histologic grade II, ER negative, HER2 positive, and Ki-67 labeling index 30%). Before treatment, the maximum diameter of the lesion was 23 
mm on a conventional ultrasound image (A), and there was higher stiffness around the periphery of the tumor on shear wave elastography, with 
an intratumor Emean of 79.83 kPa (B). (C) With the nomogram, the scores were as follows: lesion size, 63 points; intratumor Emean, 89 points; 
histologic grade, 0 points; ER negativity, 45 points; HER2 positivity, 48 points; and Ki-67, 32 points. The total score was 277 points, which was 
used to predict the pathological response (93%). The tumor was pathologically confirmed as a good responder after neoadjuvant chemotherapy 
(residual cancer burden class 0). ER, estrogen receptor; HER2, human epidermal growth factor receptor 2; Emean, mean elasticity.
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Figure 7 Representative examples of residual cancer. (A,B) Images from a 51-year-old woman with invasive ductal carcinoma (histologic 
grade III, ER positive, HER2 negative, and Ki-67 labeling index 15%). Before treatment, the maximum diameter of the lesion was 30 mm 
on conventional ultrasound (A), and the intratumor Emean was 35.39 kPa (B). (C) With the nomogram, the scores were as follows: lesion size, 
27 points; intratumor Emean, 32 points; histologic grade, 35 points; ER positivity, 0 points; HER2 negativity, 0 points; and Ki-67, 17 points. 
The total score was 111 points, which was used to predict the pathological response (7%). The tumor was pathologically confirmed as a 
nonresponder after neoadjuvant chemotherapy (residual cancer burden class 3). ER, estrogen receptor; HER2, human epidermal growth 
factor receptor 2; Emean, mean elasticity.

ultrasound and was approximately on par with contrast-
enhanced ultrasound and MRI in this regard. Other studies 
have reported that elastography could predict NAC efficacy 
with a sensitivity of 59–100%, specificity of 63–100%, 
accuracy of 74–83%, positive predictive value (PPV) of 71–
79%, negative predictive value (NPV) of 66–86%, and AUC 
of 0.75–0.88 (2,3). It may be a helpful tool for assessing 
lesions because NAC alters the stiffness of breast cancers 
by reducing cancer cellularity and vascularity in addition to 
causing fibrotic changes in the tumor stroma (7). The MPG 
system and RCB scores, which were used in the present 
study to evaluate chemotherapy response, have been found 

to produce richer predictive information when subjected 
to multivariate analysis. We analyzed the correlation 
between SWE parameters and MPG, RCB class, and RCB 
score components and showed that intratumor Emean and 
peritumoral Esd were significantly correlated with the above 
assessment of NAC indicators. In contrast with MPG, the 
RCB score offers a continuous variable of therapy response. 
Interestingly, both the RCB class and MPG suggest that 
a good response to chemotherapy is associated with an 
initial “greater stiffness” of breast cancer. Recent research 
reported that the maximum area of stiffness in malignant 
tumors was consistently found in the peritumoral stroma 
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rather than inside the tumor (29,30). Potential causes of the 
“stiff rim” sign have been suggested to be a desmoplastic 
response and infiltration of tumor cells into the peritumoral 
stroma (2,31). As a consequence, the tissues surrounding the 
tumor’s edge or periphery are often stiffer (referred to as 
the “stiff rim”) (32), increasing their stiffness by a factor of 
2–10 or more (33). Both intratumoral and peritumoral SWE 
parameters were included in the present study, and statistical 
analysis showed that patients with breast cancer with a 
higher stiffness are more likely to achieve pCR after NAC, 
which may be related to the fact that TNBC and HER2-
positive tumors exhibit more stiffness than do ER-positive 
tumors (34). Ultimately, intratumor Emean was retained in the 
prediction models because of its good discriminatory ability. 
In this retrospective study, while collecting SWE parameters 
from patients, we found that some patients did not undergo 
SWE after NAC. Therefore, only pretreatment data were 
used in this study (see Limitations, below).

Thus far, dynamic contrast-enhanced MRI has been 
demonstrated to provide the most accurate evaluation of 
tumor response following NAC (35-37). Some reports 
have focused on the diagnostic performance of MRI and 
ultrasound images after NAC in predicting the response 
to NAC in patients with breast cancer (13,29). However, 
MRI has its limitations because it cannot be used in all 
patients because of the expense, the need for intravenous 
contrast injection, and other contraindications, such as 
renal insufficiency, claustrophobia, and the presence of 
ferromagnetic metal next to a vital structure. In the present 
study, we explored parameters with good pathological 
responsiveness to NAC by characterizing grayscale 
ultrasound, SWE, and puncture pathology findings of 
breast masses before treatment in order to create a simple 
and convenient efficacy prediction model before NAC. 
The findings of binary logistic regression analysis revealed 
that the independent predictive factors of pCR/non-pCR 
were HER2, PR, histologic grade, Ki-67, and intratumor 
Emean; independent predictive factors of RCB class good 
responders/nonresponders were HER2, ER, histological 
grade, size, Ki-67, and intratumoral Emean. Grayscale 
ultrasound features, including echogenicity, mass shape, 
microcalcifications, blood flow, and multifocality, were 
not included in either prediction model. The findings 
indicated that the initial conventional ultrasound features 
of breast cancer may not be useful as predictors to evaluate 
the efficacy of NAC. However, further analysis is needed 
to explore the dynamic changes in these features. The 
number of suspicious axillary lymph nodes (0, 1–2, ≥3) was 

an independent risk factor in univariate analysis but was 
excluded from the regression equation, possibly due to 
the stronger correlation between NAC and pathological 
findings. The same was true for “size” in the pCR/non-
pCR groups. It has been reported that the presence of 
microcalcifications on imaging is associated with residual 
disease after NAC in TNBC (38). In the present study, the 
correlation between the presence of microcalcifications on 
grayscale ultrasound images and pathological residuals after 
NAC was evaluated in all patients with molecular subtypes 
(and not only TNBC), with no significant differences 
being found. Some promising results were obtained when 
we analyzed the primary lesion for puncture pathology. 
In both prediction models developed in this study, HER-
2, PR, ER, Ki-67, and histologic grade were statistically 
significant in univariate analysis. In contrast, PR− showed 
good predictive performance for pCR/non-pCR in the 
multivariate analysis. Boland et al. (39) reported that in the 
ER+ and HER2− subgroups, PR negativity increased the 
chance of pCR in the breast 4-fold compared with the PR+ 
subgroup. Although the specific subtype of breast cancer 
in this study was not qualified, it is easy to see that HER2+ 
and PR− are positively correlated with breast pCR. When 
the RCB class was used to assess the pathological response 
of breast cancer, HER2+ and ER− were associated with 
better chemotherapy responses. In addition, we noted that 
the 95% CI of Ki-67 was too wide in the binary logistic 
regression analysis. We then reviewed the literature on the 
predictive value of Ki-67 before NAC in breast cancer. In a 
meta-analysis (40) that included 53 studies (10,848 patients), 
high Ki-67 before NAC was found to be related to a greater 
number of pCR events, regardless of subtype, Ki-67 cutoffs, 
and the definition of pCR. Furthermore, a nomogram 
including the Ki-67 index had good discriminatory ability 
in predicting the pCR of breast cancer on MRI (41). We 
speculated that there may be stronger predictors in the 
binary logistic regression analysis, which would result in a 
wider 95% CI for Ki-67. Therefore, we decided to keep Ki-
67 in the prediction model after careful consideration of the 
reports in the literature.

Limitations

This study has some limitations. First, there is inevitable bias 
due to the limited sample size and single-center observation 
study design. The accuracy of our forecasting model requires 
validation in a multicenter prospective trial with a larger 
sample size. The addition of clinicopathological factors, such 
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as tumor subtypes, to the response to NAC may improve 
model performance. However, no subgroup analysis of 
specific molecular types of breast cancer was performed 
in our prediction model. Second, only the initial SWE 
parameters of pretreatment breast cancer were considered 
in this study, and dynamic changes in grayscale ultrasound 
and SWE during NAC were not included. Third, previous 
studies have demonstrated the predictive value of axillary 
lymph node status for NAC (42-44). The present study 
investigated the number of ultrasound-suspected axillary 
lymph nodes based on RCB score components. Other 
indices, such as lymph node shape, fatty hilum, and cortical 
thickness, were not included, and their potential usefulness 
for assessing efficacy after NAC is unclear.

Conclusions

The preoperative nomogram based on multimodal 
ultrasound features and primary lesion biopsy results can 
effectively guide clinicians in predicting pathologic response 
after NAC for breast cancer and has potential implications 
for individualized treatment.
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