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According to the original definition, Schmorl’s node (SN) 
corresponds histologically to nucleus pulposus herniation 
into the vertebral spongy bone with thickened trabeculae 
around the formed node (1,2). Very conflicting literature on 
the epidemiology of SN have been reported. Several earlier 
reports noted that, except for the early childhood period, 
SN prevalence among age groups remains stable (3-6). Dar 
et al. (4) studied skeleton vertebrae from a normal adult 
population and noted that SN was more common in men 
than in women, but SN was age independent. Hilton et al. (5) 
found no relationship between age and SN with their study 
of cadaveric spines and thus proposed a developmental 
pathogenesis for SN. Chen et al. (7) reported that aging 
was related to greater odds of endplate lesions; however, 
the prevalence of focal endplate defects remained stable. 
Sonne-Holm et al. (6) analysed lateral spine radiographs 
in an adult Caucasian population cohort and did not note 
any significant correlation between SN and gender, or age. 
On the other hand, some authors reported the association 
of SN with age. Wang et al. (8) reported that greater age 
was associated with the presence of SN among a male 
cadaver collection. A male predominance of SN had been 
frequently reported (5,9-11). Üstündağ (11) studied SN in 
a post-medieval skeletal sample and noted that males were 
more affected than females, and there was no relationship 
found between SN and aging. However, a few studies did 

not observe an association of SN with gender (6,12,13). 
The correlation between osteoporosis and SN also remains 
controversial (14-16). In a study on the cadavers of pre-
Hispanic inhabitants González-Reimers et al. (14) did not 
find a relationship between osteoporosis and SN. On the 
other hand, other evidence suggests osteoporosis is a cause 
of SN. Mäkitie et al. (15) reported a high prevalence (61%) 
of SN in their case-control study of 18 patients diagnosed 
with WNT mutation-induced osteoporosis. Based on a CT 
study, Güngör et al. (16) suggested that low bone mineral 
density may be a predisposing factor for the development 
of SN in patients younger than 40 years. Recently we (17) 
described a study of thoracic spine MR imaging among 
community elderly subjects (mean age: 82 years) and noted 
a number of features of SN paralleled those of osteoporotic 
vertebral fracture (OVF). SN prevalence in women (55.5%) 
almost doubled that in men (25.9%). SN was statistically 
significantly correlated with lower bone mineral density, 
and subjects with SN were more likely to have OVF. 
In vertebrae with osteoporosis, the endplate becomes 
weakened due to the loss of support from trabecular bone 
and due to thinning of the endplate itself (18), thus this 
pathway may exist that: osteoporosis → weakened endplate 
→ SN development → osteoporotic endplate fracture (17). 

To make sense of these conflicting literature, we suggest 
that SNs should be classified into two categories: SN of 
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primarily developmental cause (SNd, Figure 1) and SN of 
primarily acquired cause (SNa, Figure 2). Note that, SN 
can be considered as a ‘general phenomenon’ (rather than 

a specific disease entity) where a portion of disc materials 
herniated through endplate into the vertebral spongy 
bone, and the surrounding sclerosis in vertebra reflects 

Figure 1 Image examples of SNd. (A) Reconstructed CT image. (B) Radiograph. Multiple acquired short vertebrae are noted. However, a 
few SNd might have been missed due to the projectional nature of radiograph. (C) Radiograph. * indicates SNd, arrow indicates a possible 
SNd. SNd, Schmorl’s node of primary developmental cause; CT, computed tomography.

Figure 2 Image examples of SNa. (A) reconstructed CT image. L1 lower endplate assumed SNa (arrow) with apparent reactive bone 
changes, and L4 upper endplate SNa (arrow) and depression. (B) Reconstructed CT image. Arrow indicates upper endplate SNa (arrow) 
and depression. (C) MR image, L4 OVF with apparent upper endplate depression and a SNa (arrow). (D) Radiograph. L1 upper endplate 
SNa together with compressive vertebral deformity. L2 upper endplate SNa together with apparent endplate fracture. *, Schmorl’s node 
of developmental cause. (A) reproduced with permission from (17). (B,C) modified with permission from (19). SNa, Schmorl’s node of 
primarily acquired cause; CT, computed tomography; OVF, osteoporotic vertebral fracture.
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reactive healing. An analogy can be made to congenital 
spondylolisthesis, traumatic spondylolisthesis, and 
degenerative spondylolisthesis (20).

SNd is characterized by that they more likely involve 
multiple adjacent vertebrae, more likely to be small or 
modest in size, they likely to have relatively consistent 
location and more likely involve a posterior portion of the 
lower endplate (though other locations are also common). 
Moreover, compared with SNa, SNd tend to have a more 
solid border on radiograph due to their longstanding 
and sometimes static nature. It is also possible some 
SNd and cupid bow may belong to the same spectrum of 
developmental changes (Figure 3). Note that Pfirrmann and 
Resnick described cases showing ‘the transition of Schmorl 
nodes to a cupid’s bow contour’ (21). SNd are known to be a 
common but not obligate manifestation of Scheuermann 
disease. SN associated with Scheuermann disease shall 
belong to SNd. It is also possible that some very ‘tiny’ 
SNd may not have clinical relevance (Figure 4), and some 
SNd may not have a true disc material herniation process. 
Heritability of SN has also been demonstrated (15,22,23). 
Though the upper endplate is less resistant to compressive 
pressure and more likely to fracture (24), in a female twin 
volunteer study (mean: 53 years), for their study subjects 
Williams et al. (22) noted that SNs (assumed largely SNd) 
were more prevalent in lower endplate than in upper 

endplate.
A vertebral endplate consists of perforated cortical bone 

with a layer of hyaline cartilage bonded to its disc surface. 
The cortical bone layer contains a network of small cavities 
which allow bone marrow to lie adjacent to calcified hyaline 
cartilage for approximately 10% of the central endplate area, 
which is an important route for metabolite transport into 
the discs. The nutritional demands of the discs result in that 
vertebral central endplates are thin and porous, and which 
can be subject to fracture under stress force even if bone 
strength is normal. For the pathogenesis of SNa, whatever 
the cause of the damage to the cartilaginous endplate, to 
the subchondral bone of the vertebral body, or to both 
structures, a weakened area is created that is unable to resist 
the expansive pressure of the adjacent nucleus pulposus. 
SNa are more likely to be modest or large in size, and 
their borders are not always clearly defined on radiograph. 
Trauma and endplate micro-fractures are triggers for 
SN (25-29). Dar et al. (25) proposed an axial load model 
which suggests that the human spine must accommodate 
increased axial forces in addition to balancing the need 
for spinal mobility and stability, and it may accumulate 
micro-traumas that can, over time, lead to the formation of 
SN. In a cohort of children who had suffered from stable 
compressive vertebral fractures, Möller et al. (26) reported 
the occurrence of SN at advanced ages (40 years) at adjacent 

Figure 3 Radiograph shows depression of posterior parts of 
vertebra T12 upper and lower endplates (arrows) and associated 
sclerosis. These changes may be a small version of SNd or a 
small version of cupid bow change. SNd, Schmorl’s node of 
developmental cause.

Figure 4 Radiograph shows a very small SNd (arrow). Note that 
this is a typical location of SNd. *, both vertebrae have minimal 
grade osteoporotic-like vertebral deformity. SNd, Schmorl’s node 
of developmental cause.
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disc levels. In a study of 70 thoracolumbar spines from 
cadavers of individuals killed in motor vehicle collisions, 
Fahey et al. (27) reported a link between trauma and the 
occurrence of SN. Swärd et al. (28) compared vertebral 
abnormalities in elite gymnasts versus non-athletes, they 
found SNs in 17 out of 24 (71%) gymnasts with nodes in 
57 endplates and in 7 out of 17 (44%) non-athletes with 
nodes in 23 endplates. Certain pre-existing conditions can 
facilitate herniation occurs due to axial forces. The theory 
of weak spot presence within vertebral endplate has been 
considered. The possible endplate weakness can be due 
notochord regression, ossification gaps, or vascular channels 
(2,30,31). The vertebral level distribution of SNa will be 
similar to traumatic vertebral fracture (high energy trauma) 
or OVF (low energy trauma) (19,32). SNa less likely involve 
posterior portion of an endplate which is not a weak point 
of biomechanics. Among elderly subjects, SNa more likely 
involve upper endplate which is the same as osteoporotic 
endplate fracture (24), and SNa are commonly associated 
with endplate depression. Osteopenic/osteoporotic SN 
may be a precursor of OVF, a specific type of endplate 
fracture, or a co-phenomenon for advanced OVF (Figure 5).  
Tumorous changes of a vertebra can also increase the 
fragility of an endplate, and lead to disc materials herniation 
through endplate into the vertebral spongy bone and form 
SNa (33,34). In these cases, the surrounding sclerosis may 
not necessarily develop when the SNa is detected.

Some earlier authors already discussed SN sub-

classifications. Hansson and Roos (35) classified the 
SNs situated just above or below the nucleus pulposus, 
symmetrically on both sides of the nucleus with well-
rounded smooth bone surroundings as type A nodes. The 
SNs which are situated asymmetrically in relation to the 
nucleus and/or surrounded by rough often sclerotic bone 
and were classified into type B. However, according to 
our reading of the literature, how our classification can 
correspond to the classification of Hansson and Roos 
remains unclear. On the other hand, Hansson and Roos did 
note that some SNs were associated with lower vertebral 
bone strength while others were not.

We advocate that, for future studies, SNd and SNa 
should be separately described as much as possible, as SNd 
and SNa may have different clinical significance. Small 
SNd may not have clinical relevance, and some SNd may be 
well covered with the endplate. SNa are usually associated 
with endplate fracture, and some SNa may be an indicator 
of compromised vertebral bone strength (17). On the 
other hand, the physiopathology of SN formation can be 
multifactorial; and for some SNs, a definite separation of 
SNd and SNa may not always be possible. More research 
is required to elucidate the classification of SNs and their 
relationship to developmental causes or degenerative causes.
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Figure 5 Schmorl’s nodes associated with advanced osteoporotic vertebral fracture. (A) Vertebra-2 and vertebra-3 have collapse grade (>2/3 
vertebral height loss) osteoporotic vertebral fracture. Arrows indicate Schmorl’s nodes. The height of vertebra-1 is reduced likely also due to 
osteoporotic compression. *, a Schmorl’s node of assumed acquired cause (its border does not appear to be as solid as those of developmental 
cause). (B) Vertebra-1 and vertebra-2 have osteoporotic vertebral fracture. Arrows in vertebra-1 indicate a Schmorl’s node of assumed 
osteoporotic cause.
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