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Background: This study aimed to explore optimal computed tomography (CT)-based machine learning 
and deep learning methods for the identification of pelvic and sacral osteosarcomas (OS) and Ewing’s 
sarcomas (ES).
Methods: A total of 185 patients with pathologically confirmed pelvic and sacral OS and ES were analyzed. 
We first compared the performance of 9 radiomics-based machine learning models, 1 radiomics-based 
convolutional neural networks (CNNs) model, and 1 3-dimensional (3D) CNN model, respectively. We 
then proposed a 2-step no-new-Net (nnU-Net) model for the automatic segmentation and identification 
of OS and ES. The diagnoses by 3 radiologists were also obtained. The area under the receiver operating 
characteristic curve (AUC) and accuracy (ACC) were used to evaluate the different models. 
Results: Age, tumor size, and tumor location showed significant differences between OS and ES (P<0.01). 
For the radiomics-based machine learning models, logistic regression (LR; AUC =0.716, ACC =0.660) 
performed best in the validation set. However, the radiomics-based CNN model had an AUC of 0.812 and 
ACC of 0.774 in the validation set, which were higher than those of the 3D CNN model (AUC =0.709, ACC 
=0.717). Among all the models, the nnU-Net model performed best, with an AUC of 0.835 and an ACC 
of 0.830 in the validation set, which was significantly higher than the primary physician’s diagnosis (ACCs 
ranged from 0.757 to 0.811) (P<0.01).
Conclusions: The proposed nnU-Net model could be an end-to-end, non-invasive, and accurate auxiliary 
diagnostic tool for the differentiation of pelvic and sacral OS and ES.
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Introduction

Osteosarcoma (OS) is the most common primary bone 
malignancy affecting children and young adults, followed 
by Ewing’s sarcoma (ES) (1-3). OS is most common in 
the metaphyseal region of long bones in the extremities, 
whereas ES is more common in the tubular bone, mostly 
in the diaphysis, and less in the metaphysis or epiphysis. 
The pelvis and sacrum are unusual locations for OS, and 
only about 8% of OS cases occur in the pelvis (4). ES in the 
pelvis and spine account for approximately 25% and 8% of 
all primary sites, respectively (5). Therefore, the diagnosis 
of OS and ES in the pelvis and sacrum is sometimes 
challenging for radiologists due to them being less common 
sites of occurrence (4).

Pelvic and sacral OS and ES also share numerous similar 
clinical and imaging features. They are most common 
in adolescents, often with pain as the earliest clinical 
symptom. Computed tomography (CT) findings of OS 
include a mixed-density mass, matrix mineralization, 
cortical destruction, and unclear margins (4). The common 
manifestations of ES are “insect-eaten” erosion or osmotic 
osteolytic lesions and fusiform periosteum reaction; 
however, rare manifestations of soft tissue components, 
such as sclerosis, calcification, and pathological fractures, 
may also occur (6). Tumor bone formation is the most 
characteristic manifestation of OS, but ES could also 
produce reactive new bone, which increases the difficulty of 
identification. 

In clinical practice, the preoperative treatments of OS 
and ES differ. The latest Clinical Practice Guidelines for 
Bone Tumors published by the National Comprehensive 
Cancer Network in 2020 pointed out that ES treatment 
should include primary therapy, local treatment, and 
adjuvant chemotherapy. Primary treatment includes 
multidrug chemotherapy and appropriate growth 
factor support. Local control needs to be selected in 
accordance with tumor location, size, and age, including 
extensive resection, targeted radiotherapy combined with 
chemotherapy, and amputation. The standard treatment 
for OS is still surgery combined with chemotherapy and 
neoadjuvant chemotherapy (7). Furthermore, the clinical 
outcomes of OS and ES in the pelvis and sacrum have 
been shown to be inferior to those in other sites due to the 
larger sizes of the lesions when found and the difficulty 
in obtaining a wide surgical resection margin (5,8,9). 
Clinically, an auxiliary diagnostic tool is needed to improve 
the accuracy of distinguishing OS from ES to promptly 

formulate individualized treatment plans (10). 
In the past decade, radiomics has been successfully used 

in the field of medicine, especially for the identification, 
prognosis, and efficacy evaluation of tumors (11). Deep 
learning has provided an opportunity to automatically 
extract imaging features to maximize model performance 
for the task at hand and has been widely used in medical 
imaging in recent years (12-19). Its application in the 
musculoskeletal system is also extensive, mainly focusing 
on prognostic prediction (20), treatment outcomes  
(21-23), and relapse (24,25). However, previous studies 
have not distinguished OS and ES in the pelvis and sacrum 
from those in other sites, or do not even include the pelvic 
and sacral regions. Dai et al. (2) developed and validated 
magnetic resonance (MR) radiomics models to identify OS 
and ES in the pelvis; however, they did not incorporate deep 
learning methods. Yin et al. (26) assessed the performance 
of the deep neural network and machine learning based on 
radiomics features to predict benign or malignant sacral 
tumors and found that both approaches performed well. 
Deep learning could take radiomics features or raw images 
as inputs but often requires a large sample size. To our 
knowledge, no studies have compared the performance 
of different machine learning and deep learning methods 
that are based on radiomics features and raw images 
simultaneously in differentiating OS and ES. 

Therefore, the current study aimed to explore optimal 
CT-based machine learning and deep learning methods for 
the identification of pelvic and sacral OS and ES, possibly 
to provide an efficient and accurate auxiliary diagnostic 
tool for clinical practice. We present the following article 
in accordance with the Transparent Reporting of a 
multivariable prediction model for Individual Prognosis 
Or Diagnosis (TRIPOD) reporting checklist (available at 
https://qims.amegroups.com/article/view/10.21037/qims-
22-1042/rc).

Methods

This study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013) and was 
approved by the Ethics Committee of Peking University 
People’s Hospital. The requirement for written informed 
consent for this retrospective analysis was waived. A total of 
201 patients with pathologically confirmed pelvic and sacral 
OS or ES in Peking University People’s Hospital from 
June 2007 to June 2020 were retrospectively analyzed. All 
patients underwent CT examination within 1 month before 

https://qims.amegroups.com/article/view/10.21037/qims-22-1042/rc
https://qims.amegroups.com/article/view/10.21037/qims-22-1042/rc
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the first operation. A total of 16 patients were excluded due 
to obvious artifacts on the CT images. Age, sex, maximal 
tumor size, tumor location (zones I–IV) (27), and the 
history of malignancy of the patients were also analyzed. 

All CT images were obtained using multi-detector row 
CT systems (Philips iCT 256; Philips Medical Systems, 
Best, Netherlands; GE Lightspeed VCT 64; GE Medical 
Systems, Chicago, IL, USA). The scanning parameters were 
as follows: 120 kV, 100–370 mAs, slice thickness = 5 mm, 
field of view = 350 mm × 350 mm, and matrix = 512 mm × 
512 mm. The reconstruction methods were soft tissue and 
bone kernel algorithms.

Extraction and selection of radiomics features

MITK software version 2018.04.2 (www.mitk.org) was used 
for the semi-automatic segmentation of all tumors (28).  
Multilayer annotation was performed by 2 radiologists 
along the lesion contour on the axial, sagittal, and coronal 
planes, respectively, and then the 3-dimensional (3D) lesions 
were automatically generated using the 3D interpolation 
annotation tool. Subsequently, all lesions were manually 
corrected by another 2 musculoskeletal radiologists with 5 
and 20 years of experience, respectively, who were blinded 
to the evaluation.

A total of 1,316 radiomics features of each patient 
were extracted from the CT images by using the Artificial 
Intelligence Kit software version 3.3.0 (AK; GE Healthcare, 
Shanghai, China), including 16 gray-level size-zone matrix 
features, 24 gray-level co-occurrence matrix features, 18 
first-order histogram features, 14 gray-level dependence 
matrix features, 16 gray-level run-length matrix features, 14 
shape features, 5 neighboring gray-tone difference matrix 
features, 186 Laplacian of Gaussian (LoGsigma =2.0/3.0) 
features, 744 wavelet features, and 279 local binary pattern 
features.

Features selection was applied in the training database. 
Before conducting the analyses, variables with zero variance 
were excluded. Then, the median was used to fill in the 
missing value of the features, and Z-score standardization 
was conducted at the same time. Analysis of variance 
(ANOVA), correlation analysis with a threshold of 0.7, and 
least absolute shrinkage and selection operator (LASSO) 
regression were used to determine the optimal combination 
characteristics of the model. Finally, 4 radiomics features, 
including sigma_2_0_mm_3D_glcm_Inverse Variance, 
HLH_firstorder_Median, LHL_glcm_Cluster Shade, 
and LLL_glszm_Size ZoneNonUniformity, were left for 

constructing the radiomics-based machine learning and 
deep learning models.

Radiomics-based machine learning models

A total of 9 machine learning models were built based on 
radiomics features by using logistic regression (LR), random 
forest (RF), support vector machine (SVM), Bayes, decision 
tree (DT), k-nearest neighbor (KNN), Adaboost, Xgboost, 
and gradient boosting decision tree (GBDT). 

All patients were randomly divided into training (n=130) 
and validation (n=55) datasets at a ratio of 7:3. The models 
were trained with the training set using the repeated 5-fold 
cross-validation method, and estimation performance was 
evaluated in the validation dataset. Figure 1 shows the 
workflow of this study.

Radiomics-based deep learning model

A 3-layer deep-learning convolutional neural network 
(CNN) model, namely the multilayer perceptron (MLP) 
model, was also constructed with the selected 4 radiomics 
features as inputs. MLP is an artificial neural network that 
has also performed well in previous studies (29,30). The 
overall architecture is represented in Figure 2. Grid Search 
was used to select the best configuration of hidden layer 
number nodes. The node numbers for 2 hidden layers were 
set to 20 and 10, respectively. The learning rate was 0.0001. 
This radiomics-based deep learning model was derived 
using Pytorch 1.7.1 (https://pytorch.org), and the training 
was stopped when the model converged. The model was 
trained with 100 epochs. The optimizer was the stochastic 
gradient descent, and the loss function was the weighted 
cross entropy. 

3D deep learning classification networks

The 3D CNN model was directly used to classify the 
lesions by the original image and its annotation information 
to avoid the influence of artificial feature selection on the 
model. CNNs are widely used deep learning architecture 
in medical image analysis tasks, such as image classification 
and segmentation. However, the performance of CNNs 
is significantly influenced by the volume of training data. 
Building a sufficiently large dataset is extremely challenging 
due to the difficulty of data acquisition and annotation in 
3D medical imaging. For classification, the experiments 
showed that converging training from scratch was difficult. 

https://pytorch.org
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Figure 1 The workflow of this study. OS, osteosarcoma; ES, Ewing’s sarcoma; CNN, convolutional neural networks; ROI, region of 
interest; AUC, area under the curve; ACC, accuracy.

Patients with pathologically confirmed pelvic and 
sacral OS or ES underwent CT examination in our 
institution from June 2007 to June 2020 (n=201)

185 patients

Patients with obvious artifacts 
were excluded (n=16)
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Figure 2 Overall architecture of the radiomics-based CNN model. The model consists of 1 input layer, 2 hidden layers, and 1 output layer. 
The selected radiomics features were taken as inputs, and the node numbers for 2 hidden layers were set to 20 and 10, respectively. CNN, 
convolutional neural network.
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Transfer learning is a powerful method to speed up 
training convergence and improve accuracy. Med3D (31), 
a co-train multidomain series of 3D medical models, 
was used as pre-trained models to initialize the weight. 
Direct classification was conducted using the original 
image as input. Data augmentation, such as random 
rotations, random scaling, random elastic deformations, 
gamma correction, and mirroring, was performed to avoid 
overfitting. Resnet18 (32) was used as the base architecture. 
The loss function was the combination of focal loss (33) 
and cross entropy in Eq. [1]. Data were shuffled to reduce 
variance and ensure that the models remained general and 
overfitted less. The Adam optimizer was used to train the 
network with a batch size of 8 and adjust the parameters 
in the supervised learning progress. The Grad-cam++ 
technique was applied to draw coarse localization heatmaps, 
which highlighted the important regions for the CNN 
model to make diagnostic decisions (34) (Figure 3). The area 
under the receiver operating characteristic (ROC) curve 
(AUC) and accuracy (ACC) were used as evaluation metrics. 
A total of 100 epochs were trained on the dataset. 

  = cross entropy focal lossL L L+ 	 [1]

No-new-Net (nnU-Net) model

The performance of direct classification was relatively 
limited because of the millions of parameters in the 
classification network. However, this work only had 
hundreds of labels. A 2-stage deep learning architecture 
similar to that in Figure 4 was proposed to better use the 
region of interest (ROI) annotations, which contained a 
segmentation network and a category label calculation 

module. First, nnU-Net (35) was used to condense and 
automate key decisions to design a successful segmentation 
pipeline for the dataset. 

Preprocessing was conducted via the following steps: 
CT scans were cropped to the region with non-zero values 
to reduce the matrix size and computational burden. The 
datasets were then resampled to the median voxel spacing 
by using third-order spline interpolation for the image and 
neighbor interpolation for the mask to enable the networks 
to better learn spatial semantics. Finally, the entire dataset 
was normalized by clipping to the [0.5, 99.5] percentile of 
these intensity values, and the z-score was then normalized 
according to the mean and standard deviation of all 
collected intensity values. 

In the training procedure, the 3d_fullres model was used 
to train the proposed model with a combination of dice and 
cross-entropy loss in Eq. [2]. The same data augmentation 
methods were applied to avoid overfitting. The number 
of training epochs was 100, at which epoch the model 
converged. We employed 5-fold cross-validation in the 
training progress. Connected component analysis was used 
as the postprocessing technique. After inference, each voxel 
point obtained a predictive probability for the classification. 
The category label of the whole image was determined 
according to the maximum number of voxels in 1 category.

  = cross entropy dice lossL L L+ 	 [2]

Physician’s diagnosis

All images were read by 3 radiologists with less than 5 years 
of experience in musculoskeletal CT who were blinded 
to the radiologists’ initial CT report and pathological and 

Figure 3 CT raw images and localization heatmaps of patients. (A,B) A 26-year-old male patient with OS; (C,D) A 12-year-old male patient 
with Ewing’s sarcoma. (A,C) CT raw image; (B,D) localization heatmaps, which highlight the important regions for the CNN model to 
make diagnostic decisions. The model paid more attention to the red regions, which were important for the diagnostic decision, and the 
deep red regions overlapped with the tumor area. OS, osteosarcoma; CT, computed tomography; CNN, convolutional neural network.

A B C D
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clinical information.

Statistical analysis

The AUC and ACC were used to evaluate the performance 
of the models. R (version 3.5.1; R Foundation for Statistical 
Computing, Vienna, Austria) and Python (version 3.5.6; 
Python Software Foundation, Wilmington, DE, USA) were 
used for all statistical analyses. The Mann–Whitney U test 
was performed to compare the continuous variables, and 
the chi-squared test or Fisher’s exact was used to compare 
categorical variables between groups. A comparison of the 
diagnostic ACC between the radiologists and the nnU-Net 
model was performed using McNemar’s chi-squared test. 
The dice score was used to evaluate segmentation. A 2-tailed 
P<0.05 indicated statistical significance. 

Results

Patient characteristics

A total of 185 patients [113 males and 72 females, median 
age of 22.0 (16.0, 30.0) years, and age range of 4–75 years] 
were included in this study (Table 1). Age, tumor size, and 
tumor location showed significant differences between the 

groups (Zage=−4.864, Zsize=−5.027, χ2
location=16.836, P<0.01). 

However, no significant difference was found in terms of sex 
and history of malignancy between the groups (χ2

sex=2.443, 
χ2

history of malignancy=0.013, P>0.05).

Performance of the radiomics classification models

Among the 9 radiomics models, Xgboost performed best 
(AUC =0.823, ACC =0.836) in the training group, whereas 
GBDT performed worst (AUC =0.625, ACC =0.680). In 
the validation group, LR and RF performed better than 
the other models, and their AUC values were all greater 
than 0.7. However, LR had a higher ACC value. Therefore, 
combining the AUC and ACC values showed that LR 
performed best in the validation group (AUC =0.716, ACC 
=0.660) among all radiomics models (Figure 5 and Table 2).

Performance of the deep learning classification models

The radiomics-based CNN model achieved an AUC of 
0.885 and an ACC of 0.811 in the training set and an AUC 
of 0.812 and an ACC of 0.774 in the validation set. These 
values were higher than those in the radiomics-based 
machine learning models. 

Figure 4 The 2-stage nnU-Net deep learning architecture. This contained a segmentation network and a category label calculation module. 
Preprocessing was performed before model training. In the training procedure, the model was trained with a combination of dice and 
cross-entropy loss. Data augmentation was performed to avoid overfitting. Connected component analysis was used as the postprocessing 
technique. After inference, each voxel point obtained a predictive probability for the classification. The category label of the whole image 
was determined according to the maximum number of voxels in one category. 
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The performance of the 3D CNN model was relatively 
poor, only achieving an AUC of 0.709 and an ACC of 0.717 
in the validation set, corresponding to a sensitivity of 0.767, 
a specificity of 0.652, a positive predictive value (PPV) of 
0.742, and a negative predictive value (NPV) of 0.682.

The nnU-Net model combines the functions of 
segmentation and classification. For segmentation, the 

average dice score of the model was 0.77. For classification, 
the nnU-Net model performed best among all of the 
models, with an AUC of 0.922 and an ACC of 0.919 in the 
training set (sensitivity =0.9, specificity =0.943, PPV =0.955, 
NPV =0.877), an AUC of 0.835, and an ACC of 0.830 in 
the validation set (sensitivity =0.8, specificity =0.870, PPV 
=0.889, NPV =0.769).

Table 1 General characteristics of the included patients

Variable Ewing’s sarcoma Osteosarcoma χ2/Z value P value

Sex, n (%) 2.443 0.118

Female 26 (32.50) 46 (43.81)

Male 54 (67.50) 59 (56.19)

Age (years), median (interquartile range) 17.0 (13.0, 25.6) 26.0 (19.0, 34.3) −4.864 <0.001

Size (cm), median (interquartile range) 7.90 (5.33, 10.31) 11.90 (8.00, 14.46) −5.027 <0.001

Location, n (%) 16.836 0.002

Location I 22 (27.50) 28 (26.67)

Location II 5 (6.25) 8 (7.62)

Location III 10 (12.50) 8 (7.62)

Location IV 28 (35.00) 16 (15.24)

Multi-location 15 (18.75) 45 (42.86)

History of malignancy, n (%) 0.013 0.909

No 75 (93.75) 98 (93.33)

Yes 5 (6.25) 7 (6.67)

Location I includes the iliac crest, Location II includes the acetabulum and its surroundings, Location III includes the pubis and ischium 
regions, and Location IV refers to the sacrum region. “Multi-location” refers to a tumor that involves more than one area simultaneously.

Figure 5 Scatterplots depicting the AUC and ACC of the different models. (A) The AUC scatterplots showed that the nnU-Net model 
performed best, with an AUC of 0.922 in the training set and an AUC of 0.835 in the validation set. (B) The ACC scatterplots showed that 
the nnU-Net model performed best, with an ACC of 0.919 in the training set and an ACC of 0.830 in the validation set. AUC, area under 
the curve; ACC, accuracy.
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Results of radiologist’s diagnosis 

The ACCs of the 3 primary radiologists’ judgments were 
0.757, 0.811, and 0.789, and the mean value was 0.786. 
The results of the doctors’ judgments were higher than 
those of the 3D CNN and radiomics models. However, the 
performance of the nnU-Net model was significantly higher 
than the primary physician’s diagnosis (χ2

radiologist 1 vs. nnU-Net 
=23.04, χ2

radiologist 2 vs. nnU-Net =13.07, χ2
radiologist 3 vs. nnU-Net =19.05, 

P<0.01).

Discussion

In this study, the performance of different machine 
learning and deep learning methods was investigated, and 
a 2-step nnU-Net model was proposed for the automatic 
segmentation and identification of OS and ES. Significant 
differences were found in terms of age, tumor size, and 
tumor location for differentiating pelvic and sacral OS 
and ES. Among the 9 radiomics models, LR performed 
best in the validation group. The radiomics-based CNN 

model performed better than the 3D CNN model. 
Also, the nnU-Net model performed best among all the 
models, with an AUC of 0.835 and an ACC of 0.830 in the 
validation set, which were higher than those of the primary 
physician’s diagnosis. The proposed nnU-Net model could 
automatically segment and identify OS and ES lesions. 
Thus, it is not only more efficient than the radiomics and 
3D CNN model but also more convenient and practical, 
and does not involve manual intervention in the whole 
process.

In this study, significant differences were found in terms 
of age, tumor size, and tumor location for differentiating 
pelvic and sacral OS and ES. Consistent with the result of 
a previous study (5), the median age of ES was significantly 
lower than that of OS. ES usually occurs in the second 
decade of life, whereas OS has 2 peak periods, namely, 
adolescence and older adulthood (2). Furthermore, the 
maximum tumor size of ES was significantly smaller than 
that of OS. ES is also more prevalent in the sacral region, 
followed by the iliac crest and multiple sites, whereas OS 
was more prevalent in multiple sites, followed by the iliac 

Table 2 Performance of the different models in the training and validation sets

Models’ or radiologists’ 
performance

AUC ACC Sensitivity Cut-off Specificity PPV NPV

LR 0.725 (0.716) 0.672 (0.660) 0.788 (0.652) 0.390 0.586 (0.667) 0.586 (0.600) 0.788 (0.714)

RF 0.800 (0.711) 0.672 (0.623) 0.558 (0.391) 0.378 0.757 (0.800) 0.630 (0.600) 0.697 (0.632)

SVM 0.733 (0.696) 0.664 (0.604) 0.481 (0.391) 0.409 0.800 (0.767) 0.641 (0.562) 0.675 (0.622)

DT 0.824 (0.695) 0.730 (0.679) 0.923 (0.826) 0.541 0.586 (0.567) 0.623 (0.594) 0.911 (0.810)

Bayes 0.715 (0.690) 0.680 (0.604) 0.519 (0.261) 0.267 0.800 (0.867) 0.659 (0.600) 0.691 (0.605)

KNN 0.816 (0.693) 0.697 (0.660) 0.654 (0.609) 0.400 0.729 (0.700) 0.642 (0.609) 0.739 (0.700)

Adaboost 0.705 (0.624) 0.730 (0.660) 0.538 (0.348) 0.474 0.871 (0.900) 0.757 (0.727) 0.718 (0.643)

Xgboost 0.823 (0.688) 0.836 (0.698) 0.731 (0.609) 0.423 0.914 (0.767) 0.864 (0.667) 0.821 (0.719)

GBDT 0.625 (0.510) 0.680 (0.566) 0.25 (0.087) 0.441 1.000 (0.933) 1.000 (0.500) 0.642 (0.571)

Radiomics + CNN 0.885 (0.812) 0.811 (0.774) 0.865 (0.826) 0.425 0.771 (0.733) 0.738 (0.704) 0.885 (0.846)

Radiologist1 – 0.757 0.739 – 0.768 0.675 0.819

Radiologist2 – 0.811 0.8 – 0.818 0.75 0.857

Radiologist3 – 0.789 0.753 – 0.8 0.725 0.822

3D CNN 0.874 (0.709) 0.862 (0.717) 0.786 (0.767) 0.495 0.962 (0.652) 0.965 (0.742) 0.773 (0.682)

nnU-Net 0.922 (0.835) 0.919 (0.830) 0.900 (0.800) 0.506 0.943 (0.870) 0.955 (0.889) 0.877 (0.769)

LR, logistic regression; RF, random forest; SVM, support vector machine; DT, decision tree; KNN, k-nearest neighbor; GBDT, gradient 
boosting decision tree; CNN, convolutional neural network; AUC, area under the curve; ACC, accuracy; PPV, positive predictive value; 
NPV, negative predictive value. Training set, in front of the brackets. Validation set, in brackets.  
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crest and sacral regions. Previous studies have reported that 
OS and ES in the pelvis often involve the sacroiliac joint in 
multiple locations (4,8). This finding may be related to the 
fact that OS is generally larger and more likely to involve 
multiple areas. 

Until now, few studies on the differentiation of pelvic 
and sacral tumors using machine learning methods have 
been conducted (2,3,26,36-38). Although the data analysis 
process is relatively cumbersome, the traditional radiomics 
analysis is suitable for small sample data. In the present 
study, the traditional radiomics method was used first, and 
the effects of 9 machine learning models were compared 
to distinguish OS from ES. Consistent with the result of 
a previous study (26), LR performed best in the validation 
set. Due to the poor performance of the radiomics models, 
a CNN model was then constructed based on previously 
filtered radiomics features. The results showed that the 
radiomics-based CNN model performed better than the 
conventional machine learning methods. However, the 
performance of the radiomics-based CNN model is still not 
very satisfactory, and the analysis process is complicated due 
to the use of the radiomics analysis method. 

Therefore, a deep learning method without the need 
for manual intervention that only required raw images 
and ROIs as inputs was further adopted. Contrary to 
expectations, the performance of the 3D CNN model was 
not very good and overfitted. This may be related to the 
fact that CNN usually requires a large sample size, and 
this study only included 100 cases. More importantly, the 
3D CNN model also requires delineated lesions as inputs, 
which is a time-consuming process.

We then applied the nnU-Net model to further simplify 
the process and improve efficiency. Isensee et al. (35) were 
the first to propose nnU-Net, which is a deep learning-
based segmentation method that automatically configures 
itself, including preprocessing, network architecture, model 
training, and post-processing, for any new task. It only 
requires the original image as input, and can automatically 
complete the segmentation of lesions. Unlike Isensee  
et al.’s study (35), nnU-Net was applied in the present work 
to first perform automatic segmentation of the lesions on 
OS and ES images and then classify them without manual 
intervention, forming an end-to-end process. Considering 
that deep learning models usually require large data samples, 
this voxel-based prediction method, which was based on the 
principle that the minority is subordinate to the majority, 
greatly optimized the accuracy of this classification task (39). 
Therefore, the problem of insufficient input of small sample 

data analysis could be solved, and the stability and efficiency 
of the model could be improved. The results demonstrated 
that the nnU-Net model performed best among all models 
and better than the radiologists. Using the proposed model, 
OS or ES lesions could be automatically identified by only 
inputting the original images, without manual delineation 
or any intervention.

This study has certain limitations that should be noted. 
First, this was a retrospective study, and all the images were 
collected on 2 different machines. Although the data were 
preprocessed, they may still have affected the performance 
of the model. Second, this was a single-center study with 
a small sample size and lacking an external verification 
group. Although a suitable method for a small sample of 
data was developed, more external data are still needed for 
validation. Third, to better compare the performance of 
various machine-learning and deep-learning models, only 
CT data were included. In the future, more data (such as 
semantic features, clinical data, and genes) will be included 
to improve the performance of the proposed model. 

Conclusions

The proposed nnU-Net model could be an end-to-end, 
non-invasive, and accurate auxiliary diagnostic tool for the 
differentiation of pelvic and sacral OS and ES, which may 
relatively improve the diagnostic efficiency of clinicians. 
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