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Background: [18F] Fluorodeoxyglucose (FDG) positron emission tomography/computed tomography 
(PET/CT) is an important tool for tumor assessment. Shortening scanning time and reducing the amount 
of radioactive tracer remain the most difficult challenges. Deep learning methods have provided powerful 
solutions, thus making it important to choose an appropriate neural network architecture. 
Methods: A total of 311 tumor patients who underwent 18F-FDG PET/CT were retrospectively collected. 
The PET collection time was 3 min/bed. The first 15 and 30 s of each bed collection time were selected to 
simulate low-dose collection, and the pre-90s was used as the clinical standard protocol. Low-dose PET was 
used as input, convolutional neural network (CNN, 3D Unet as representative) and generative adversarial 
network (GAN, P2P as representative) were used to predict the full-dose images. The image visual scores, 
noise levels and quantitative parameters of tumor tissue were compared. 
Results: There was high consistency in image quality scores among all groups [Kappa =0.719, 95% 
confidence interval (CI): 0.697–0.741, P<0.001]. There were 264 cases (3D Unet-15s), 311 cases (3D Unet-
30s), 89 cases (P2P-15s) and 247 cases (P2P-30s) with image quality score ≥3, respectively. There was 
significant difference in the score composition among all groups (χ2=1,325.46, P<0.001). Both deep learning 
models reduced the standard deviation (SD) of background, and increased the signal-to-noise ratio (SNR). 
When 8%PET images were used as input, P2P and 3D Unet had similar enhancement effect on SNR of 
tumor lesions, but 3D Unet could significantly improve the contrast-noise ratio (CNR) (P<0.05). There 
was no significant difference in SUVmean of tumor lesions compared with s-PET group (P>0.05). When 
17%PET image was used as input, SNR, CNR and SUVmax of tumor lesion of 3D Unet group had no 
statistical difference with those of s-PET group (P>0.05).
Conclusions: Both GAN and CNN can suppress image noise to varying degrees and improve image 
quality. However, when 3D Unet reduces the noise of tumor lesions, it can improve the CNR of tumor 
lesions. Moreover, quantitative parameters of tumor tissue are similar to those under the standard acquisition 
protocol, which can meet the needs of clinical diagnosis.

3775

 
^ ORCID: 0000-0003-0376-982X.

https://crossmark.crossref.org/dialog/?doi=10.21037/qims-22-1181


Quantitative Imaging in Medicine and Surgery, Vol 13, No 6 June 2023 3761

© Quantitative Imaging in Medicine and Surgery. All rights reserved.   Quant Imaging Med Surg 2023;13(6):3760-3775 | https://dx.doi.org/10.21037/qims-22-1181

Introduction

In terms of the detection, treatment, and follow-up of 
cancer, positron emission tomography (PET) is a sensitive, 
noninvasive imaging method that provides molecular-level 
metabolic information and fine anatomical morphological 
information of lesions (1-4). In clinical practice, the activity 
and acquisition time of injected radiopharmaceuticals are 
often limited by safety, patient tolerance, or compliance. 
Reducing acquisition time may positively impact patient 
comfort and increase patient throughput in the Division 
of Nuclear Medicine. Children, healthy volunteers, and 
cancer patients should receive lower doses of the tracer to 
reduce radiation exposure, as well as when multiple follow-
up scans are performed and different tracers are used to 
monitor the progress of treatment. However, reducing 
the injection dose/acquisition time can increase image 
noise, reduce the signal-to-noise ratio (SNR), and increase 
potentially unnecessary artifacts, thus affecting diagnostic 
and quantitative accuracy.

In recent years, large datasets have been made available, 
optimization algorithms have advanced, and efficient 
network structures have emerged, which have been widely 
used to segment images (5), detect lesions (6), and restore 
image super-resolution in computer vision tasks (7). Medical 
imaging has recently benefited from deep learning-based 
reconstruction methods (8-11), such as using convolutional 
neural networks (CNNs) or generative adversarial networks 
(GANs) to denoise and reduce artifacts in images and 
improve the SNR of low-dose PET (LDPET) images. 
Deep learning has proven remarkably effective in predicting 
full-dose PET (FDPET) images from either LDPET or 
ultra-low-dose PET (ULDPET) images. Kaplan and Zhu 
suggested reconstructing FDPET images from 1/10th-
dose PET images using residual CNN preserved image 
edges and metabolic parameters (12). By using LDPET 
sinograms as 3D Unet inputs, Sanaat reduced the bias of 
quantitative parameters in 83 brain regions using full-
dose sinograms (13). Using 3D conditional generative 
adversarial networks (3D C-GANs), Wang et al. designed 

an end-to-end approach to predict high-dose PET images 
from the corresponding LDPET images (14). Ouyang et al. 
used GAN to generate PET images of amyloid plaques of 
high quality and simultaneously applied contrary learning, 
analyzing features, and perceptual impairments specific to 
particular tasks to considerably improve high-quality PET 
images (15). According to our research, PET image noise 
can be reduced, and image quality can be improved using 
deep learning. Different network structure frameworks have 
different absolute quantitative accuracy and visual image 
quality (16), but the impact on clinical diagnosis of tumors 
and quantitative accuracy of lesions remains to be explored. 

According to our literature investigation, we found that 
the improved model based on CNN network is more used 
in PET image recovery for tumor lesions at present (17). 
Since PET images are gray images with relatively simple 
semantic meaning and fixed structure, high-level semantic 
information and low-level features are very important. 
CNN represented by Unet contains Skip connection and 
U-shaped structure, which can well retain low-level features 
and high-level features. The multi-layer continuous image 
input can provide enough information to distinguish the 
noise from the organization structure. In the literature 
of Lu et al. (16), it is confirmed that 3D Unet has the 
best quantitative performance compared with 2D and 
2.5D Unet, so we choose 3D Unet to represent CNN. 
GAN network is an unsupervised deep learning Model. 
It generates satisfactory input results through the game 
learning of two types of Generative Model (generative 
model and Discriminative model) in the framework. In 
medical image reconstruction, segmentation, registration 
and other work, most work is based on Pixel2Pixel (P2P) 
GAN frame and Cycle GAN frame, P2P GAN has been 
applied in CT noise reduction, MR Reconstruction and 
PET noise reduction (18). Therefore, in this study, P2P was 
chosen to represent GAN.

In this study, we systematically compared two deep 
learning reconstruction models based on 3D Unet and 
Pix2Pix GAN to predict FDPET tumor images from 
LDPET images. The original LDPET (1/6) and (1/12) 
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ULDPET images were used as input data to the 3D Unet 
and Pix2Pix GAN networks, respectively, to compare 
the effectiveness of noise reduction and accuracy in the 
quantitative measurements of the two deep learning models 
and explore their clinical applicability.

Methods

Patient clinical data collection

In total, 311 tumor patients (205 male and 106 female) 
who underwent PET/CT scanning in the Department of 
Nuclear Medicine at the First Hospital of Shanxi Medical 
University from March 2020 to December 2021 were 
included in this study. The tumor types of the included 
cases are shown in Figure 1. Their ages ranged between 
20–90 years, with the mean patient age of 61±13 years. This 
study was conducted in accordance with the principles of 
the Declaration of Helsinki (as revised in 2013). The study 
protocol was approved by the Ethics Committee of First 
Hospital of Shanxi Medical University (No. K-GK001) and 
informed consent was taken from all individual participants.

PET/CT scanning protocol and reconstruction methods

The patients were scanned using the Discovery MI PET/
CT apparatus (GE Healthcare, USA), and 18F-FDG 
was produced by the HM-10 cyclotron and 18F-FDG 
synthesis module of the Sumitomo Corporation of Japan 
(radiochemical purity >99%). The patients fasted for 4 to  
6 hours before the examination, and their blood sugar levels 
were within the normal range. They were intravenously 
injected with 18F-FDG 3.7 MBq/kg according to their 
body weight, and then rested for 50–70 minutes after 

the injection. Scanning was performed from the base of 
the skull to the middle of the femur. The CT scanning 
parameters were as follows: tube voltage 120 kV, tube 
current 60–150 mA (automatic adjustment in x-y direction/z  
direction), noise index 18, pitch 0.984:1, slice thickness  
2.75 mm, rotation time 0.5 s; PET scan in list mode,  
3 min/bed, 5–7 beds. The patients were breathing with 
normal tidal airflow. Select PET list mode data for image 
reconstruction. The reconstruction algorithm was TOF 
(time of flight)-PSF (point spread function)-BSREM (block 
sequential regularized expectation maximization) with 
penalty factor β=350 (19). Images collected for 3 min per 
bed were regarded as full dose PET (FD-PET). Low-dose 
imaging was selected for the first 15 and 30 s of each bed 
collection (92% reduction and 87% reduction), which were 
denoted as 8%PET and 17%PET, respectively. At the same 
time, the pre-90s of each bed collection time was selected 
as the clinical Standard protocol collection, which was 
recorded as standard PET (s-PET).

Deep learning reconstruction methods

3D Unet model 
(I) Preprocessing: perform a normalization operation 

with a mean value of 0 and a variance of 1 on the PET 
image taken at a low dose and uniformly crop the 
image to a size of 256×256×64.

(II) Model structure: the entire model structure is shown 
in Figure 2. The 3D Unet was proposed based on 
the improvement in the 3D Unet (20). It includes 
an encoding structure for capturing semantics and a 
coding structure for an accurately positioned decoding 
structure. The entire model uses an LDPET image 
with a size of 256×256×64 as input, extracts image 
semantic features through an “encoding structure” 
constructed by three downsampling layers, uses ReLU 
as an activation function, and then constructs through 
three upsampling layers. The 3D Unet model is an 
improved version of the traditional 3D Unet model in 
the following three aspects:
(i) In the encoding structure, the traditional 3D 

Unet model applies a max pooling layer to 
downsample the image, whereas the 3D Unet 
model uses a convolution operation with a 3×3×3 
convolution kernel and stride of 2 to replace the 
max pooling layer.

(ii) In the decoding structure, the 3D Unet model 
applies transposed convolution to upsample 

Figure 1 Proportion of tumor types in the included cases.

Total =311

45.66% respiratory system tumors
21.86% digestive system tumors 
9.65% gynecological malignant tumors
8.68% head and neck tumors 
5.79% lymphoma 
5.47% urinary system tumors 
0.96% hematological system tumors
0.64% bone tumors 
0.64% mediastinal tumors
0.64%skin tumors
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the image, whereas the 3D Unet uses bilinear 
interpolation instead of transposed convolution 
to remove potential checkerboard artifacts.

(iii) In the traditional 3D Unet, the downsampled 
feature image and upsampled feature image are 
spliced through concatenation. In the 3D Unet, 
two feature images are directly added.

(III) Loss function: losses are calculated using the mean 
squared error (MSE), which is calculated as follows:
 ( ) ( )2

1

1, M
m mm

MSE X Y X Y
M =

= −∑  [1]

where M represents the number of pixels,  m 
represents the mth pixel, and X and Y represent the 
reconstructed and labeled images of the model, 
respectively.

(IV) Post-processing: the image predicted by the model 
was stitched to restore the original image size, and the 
normalized pixel values were mapped back to the data 
range of the original image, according to the mean 
and variance.

P2P model
(I) Model structure: the overall model structure design is 

based on the P2P framework (21):
(i) The PET image generation network adopts an 

adjusted Unet network. The Unet encoder is 
downsampled three times, for a total of eight 
downsamplings. Furthermore, the decoder part 
is upsampled three times in accordance with the 

high-level semantic feature map of the encoder, 
which comprises more low-level and multi-
dimensional picture features for multi-scale 
prediction, and skip connection is employed at 
the same stage.

(ii) Obtain the actual collected image (3 min) 
scanned for  a  long t ime and the  image 
discriminant model reconstructed by the model. 
Further, input the real image and generated 
image into the discrimination network in a 
different sequence, such as [real image generated 
image], the corresponding discrimination label 
is (1, 0). A discriminant network was constructed 
by stacking multilayer CNN convolution layers. 
After multiple convolution downsampling, the 
obtained features were straightened, and the 
discriminative probability of the real 3 min 
image and the generated 3 min image were 
predicted through two fully connected layers 
(Figure 3).

(II) Loss function.
(i) The loss function in the training stage of model 

generation is based on the L1 loss (regression 
loss function), as shown in the following 
formula:
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Figure 2 Process diagram of the 3D Unet model. Conv, convolution; BN, batch normalization; ReLU, rectified linear unit; 3D Unet, a deep 
network model based on CNN; CNN, convolutional neural network.
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Convolution Concatenate Fully connected layer

Figure 3 Model flow diagram Pixel2Pixel reconstruction. G, Generator model; D, Discriminator model.

reconstructed by the generative model; y i 

represents the real voxel value, corresponding 
to layer i, after normalization of the image; αi 
represents the weight of the layer-i image; n 
represents the number of layers in the image.

(ii) Bidirectional cross-entropy loss functions were 
used in the training stage of the discriminant 
models, as shown in the formula: 
 ( ) ( )log 1 log 1DL P Q P Q= ∗ − − ∗ −  [3]

 where P indicates the label (P=0 indicates 
that the image is generated by the model, P=1 
indicates that the image is derived from the real 
image), and Q indicates the probability predicted 
by the discriminant model.

(iii) Final loss function obtained from the generation 
and discriminant models:

 
 ( )( )( )

( )( )( ) ( )( )( )
GANL argmin max E log L ,
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 When the image output from the generated 
model is closer to the real image, the loss of 

the generated model G is increasingly smaller, 
whereas the loss of the discriminant model D is 
greater, thus realizing the optimization process 
of training.

(III) Image post-processing stage: all the slices predicted 
by the network are spliced together in order, and the 
resultant output in the range of 0–1 is mapped back 
to the data range of the PET image according to the 
maximum and minimum values of the original input 
data.

Training set and test set

In this study, 311 patients were randomly divided into 
training and test groups in the ratio of 7:3, with 218 patients 
used for training and 93 for testing; 8%PET and 17%PET 
raw data, respectively, were used as inputs to train the two 
models.

Visual assessment of PET image quality

The quality of PET images in the deep learning, 8%PET, 
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17%PET, and s-PET groups was evaluated by two 
experienced PET/CT physicians (with 5 and 8 years of 
experience in PET/CT diagnosis, respectively) without 
knowledge of image acquisition, reconstruction methods, 
and clinical information. Visual scoring was performed on a 
1–5 scale (22): 1, unacceptable; 2, acceptable (subdiagnostic); 
3, average; 4, good; and 5, excellent. When there was a 
difference between the two physicians, an additional score 
was assigned by a third physician.

Semi-quantitative analysis of PET images

AK software (Artificial Intelligent Kit, GE Healthcare, 
China) was used to delineate the spherical volume of 
interest (VOI) and measure the quantitative parameters of 
the liver background and tumor lesions in each group of 
images. On the CT tomographic images, measurements 
were conducted in the right liver lobe using a 3 cm VOI. 
The software automatically measured the maximum 
standardized uptake value (SUVmax), mean standardized 
uptake value (SUVmean), and standard deviation (SD) in 
the VOI and calculated the SNR in the liver [SNR = liver 
SUVmean/SD] (23). Similarly, an automated software 
program measured the SUVmax and SUVmean of 18F-FDG 
high-uptake tumor lesions by manually defining the VOIs 
on the CT images. The median diameter of the tumor 
lesions was 2.14 cm (1.65–3.94 cm), and the liver was used 
as the background to calculate the SNR in tumor lesions 
(SNR = SUVmax/liver SD) and the contrast-noise ratio 
(CNR) in tumor lesions  [CNR = (lesion SUVmean − liver 
SUVmean)/liver SD] (24). 

Statistical analysis

Data analysis was performed using IBM SPSS 22.0, 
and measurements with non-normal distributions were 
expressed as medians (P25, P75). The reconstruction data 
with 17%PET raw data as input were defined as 3D Unet-
30s and P2P-30s groups, and the reconstruction data with 
8%PET raw data as input were also defined as 3D Unet-
15s and P2P-15s groups. The background of s-PET group 
images and quantitative parameters of tumor lesions were 
used as reference standards to evaluate the quality of the 
reconstructed image and its quantitative accuracy. The 
kappa test was used to analyze the agreement between the 
visual scores of the two physicians. The chi-square test was 
used to analyze the differences in the proportion of cases in 
the visual score of PET images among the groups. Multiple 

group comparisons were conducted using the Kruskal 
Wallis H test with Bonfferoni correction, whereas pairwise 
comparisons were conducted using the Wilcoxon signed-
rank test. Statistical significance set at P<0.05 was regarded 
as consistent.

Results

Visual assessment of PET image quality

The visual scores of the two physicians for the 3D Unet-
15s/3D Unet-30s and P2P-15s/-30s groups and between 
groups (8%PET, 17%PET, and s-PET) were highly 
consistent, with a kappa value of 0.719 (95% CI: 0.697–
0.741), P<0.001). Image visual scores of 236 subjects in the 
3D Unet-15s group were ≥3 points, compared with 303 
subjects in the 3D Unet-30s group. A total of 280 patients 
in the P2P-15s and P2P-30s groups had visual scores ≥3, 
while 1,130,303 patients in the 8%PET, 16%PET and 
s-PET groups had visual scores ≥3, respectively. Statistically 
significant differences were found in the composition ratio 
of visual scores between groups (χ2=1,252.81 and 1,286.98, 
respectively, P<0.001 for both groups) (Figure 4), and the 
images of typical cases are shown in Figure 5 and Figure 6.

3D Unet deep learning model based on CNN

The ability to suppress background tissue noise
In this study, we selected liver, lung, aorta and lumbar spine 
as background tissues, and measured the noise levels of four 
background tissues in 8%PET, 17%PET and two deep 
learning model reconstruction image groups.

With 8%PET as the input of the model, 3D Unet can 
reduce the SD of the background tissue and significantly 
increase the SNR. Compared with standard dose images, 
SD and SNR in liver and aorta of the 3D Unet-15s group 
were lower than those of the s-PET group.

With 17%PET as the input of the model, 3D Unet 
also reduced the SD of background tissue and increased 
the SNR. Noise levels in lung and lumbar tissues were 
not statistically different from those in the s-PET group  
(Tables 1-4).

Effect on noise and SNR of tumor tissue
Regardless of whether 8%PET or 17%PET was used as 
input to the model, SNRs of tumor lesions in 3D Unet-
15s group were higher than those in the original image, but 
there was no statistical difference in SNR compared with 
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Figure 4 Distribution of image quality assessments. X-axis 
represents image grouping obtained by multiple image 
reconstruction methods. Taking the 15 s PET image as input, the 
reconstructed image is recorded as 3D Unet-15s/P2P-15s. Similar 
to the above recording method, another set of images is recorded 
as 3D Unet-30s/P2P-30s; Y-axis represents the percentage of 
each score in each group; the legend in the upper right corner 
represents scores of 1–5. PET, positron emission tomography; 
s-PET, standard positron emission tomography (per bed time: 90 s); 
3D Unet, a deep network model based on CNN; P2P, Pixel2Pixel 
deep network model based on GAN; CNN, convolutional neural 
network; GAN, generative adversarial network.

8%PET 3D Unet-15s P2P-15s FD-PET

10.10
Activity (SUVbw:g/mL)

0.00

R

6.27

Figure 5 Comparison of reconstructed images using 3D Unet and P2P models with 8%PET images as input. SUVbw, standardized uptake 
value body weight; 3D Unet, a deep network model based on CNN; P2P, Pixel2Pixel deep network model based on GAN; PET, positron 
emission tomography; FD-PET, full dose-positron emission tomography; CNN, convolutional neural network; GAN, generative adversarial 
network.

the standard dose group.
NR is an important indicator to measure image contrast. 

The larger CNR, the larger the difference between the focal 
signal and the background area, and correspondingly, the 
better the image contrast. Therefore, we further compared 
the influence of the deep learning model on the CNR of 
tumor lesions, when 8%PET or 17%PET was used as the 
model input, 3D Unet could increase the CNR of tumor 
lesions to a level similar to that of the standard dose group 
(Tables 5,6, Figures 7,8).

Effect on semi-quantitative parameters of tumor tissue
The metabolic parameters of tumor have strong correlation 
with the evaluation of benign and malignant tumor, the 
evaluation of tumor efficacy, and the evaluation of tumor 
prognosis. Therefore, we further observed the influence 
of deep learning model on semi-quantitative parameters 
of tumor lesions. When 8%PET was used as model input, 
SUVmean and SUVmax of tumor lesions in the 3D Unet-
15s group were lower than those in the original image 
group. Compared with standard dose images, SUVmax of 
tumor lesions in the 3D Unet-15s group was significantly 
decreased, while SUVmean had no significant difference. 
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Table 1 Comparison of SD value of background tissue between reconstructed images and real images using 8%PET images as input

Group Liver Lung Aorta Lumbar spine

3D Unet-15s 0.20 (0.14, 0.28)* 0.06 (0.05, 0.10) 0.12 (0.09, 0.15)* 0.27 (0.16, 0.37)

P2P-15s 0.31 (0.23, 0.37)* 0.11 (0.09, 0.13)* 0.16 (0.15, 0.23) 0.27 (0.24, 0.34)

8%PET 0.86 (0.64, 1.06) 0.22 (0.16, 0.25) 0.55 (0.46, 0.77) 1.20 (0.75, 1.57)

s-PET 0.25 (0.19, 0.29) 0.08 (0.06, 0.09) 0.19 (0.16, 0.20) 0.27 (0.23, 0.41)

H 32.13 35.22 35.11 28.65

P <0.0001 <0.0001 <0.0001 <0.0001

The italic font represents a statistical difference between this value and that of the 8%PET group. And * indicates that the value is 
statistically significant compared with the s-PET group. SD, standard deviation; PET, positron emission tomography; s-PET, standard 
positron emission tomography (per bed time: 90 s); 3D Unet, a deep network model based on CNN; P2P, Pixel2Pixel deep network model 
based on GAN; H, H value for the Kruskal-Wallis method; CNN, convolutional neural network; GAN, generative adversarial network.

17%PET 3D Unet-30s P2P-30s FD-PET

78.18
Activity (SUVbw:g/mL)

4.59
0.00

R

Figure 6 Comparison of reconstructed images using 3D Unet and P2P models with 17%PET images as input. SUVbw, standardized uptake 
value body weight; 3D Unet, a deep network model based on CNN; P2P, Pixel2Pixel deep network model based on GAN; PET, positron 
emission tomography; FD-PET, full dose-positron emission tomography (per bed time: 180 s); CNN, convolutional neural network; GAN, 
generative adversarial network. 

When 17%PET was used as model input, SUVmean and 
SUVmax of tumor lesions in the 3D Unet-30s group were 
lower than those in the original image group, and only 
SUVmax was not significantly different in the 3D Unet-30s 
group compared with the standard dose group (Tables 5,6, 
Figures 9,10).

P2P deep learning model based on GAN

The ability to suppress background tissue noise
When 8%PET was used as model input, P2P significantly 

decreased SD and increased SNR in four background 
tissues. Compared with standard dose images, SD and SNR 
in liver and lungs were higher and lower in the P2P-15s 
group than in the s-PET group, and SD and SNR in the 
aorta and lumbar spine were not different from those in the 
s-PET group.

When 17%PET was used as model input, the SD of 
background tissue was decreased and SNR was increased in 
P2P-30s group. Compared with standard dose images, there 
were statistical differences in SD and SNR in lung and liver 
in the P2P-30s group, but no statistical differences in aortic 
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Table 2 Comparison of SNR value of background tissue between reconstructed images and real images using 8%PET images as input

Group Liver Lung Aorta Lumbar spine

3D Unet-15s 13.42 (10.04, 19.71)* 7.83 (6.10, 8.84)* 15.73 (12.15, 22.36)* 7.69 (6.15, 10.82)

P2P-15s 7.49 (6.66, 10.34)* 3.58 (2.73, 4.36)* 8.14 (7.30, 10.48) 6.29 (5.73, 7.31)

8%PET 2.69 (1.95, 3.28) 2.00 (1.18, 2.14) 2.34 (1.55, 3.01) 1.51 (1.20, 2.26)

s-PET 8.29 (7.77, 10.02) 5.00 (4.23, 5.64) 7.95 (6.22, 9.32) 5.95 (4.77, 8.28)

H 36.86 40.84 37.06 31.10

P <0.0001 <0.0001 <0.0001 <0.0001

The italic font represents a statistical difference between this value and that of the 8%PET group. And * indicates that the value is 
statistically significant compared with the s-PET group. SNR, signal-to-noise ratio; PET, positron emission tomography; s-PET, standard 
positron emission tomography (per bed time: 90 s); 3D Unet, a deep network model based on CNN; P2P, Pixel2Pixel deep network model 
based on GAN; H, H value for the Kruskal-Wallis method; CNN, convolutional neural network; GAN, generative adversarial network.

Table 3 Comparison of SD value of background tissue between reconstructed images and real images using 17%PET images as input

Group Liver Lung Aorta Lumbar spine

3D Unet-30s 0.19 (0.15, 0.24)* 0.06 (0.05, 0.09) 0.12 (0.10, 0.14)* 0.26 (0.20, 0.43) 

P2P-30s 0.28 (0.25, 0.33)* 0.10 (0.07, 0.13)* 0.16 (0.13, 0.20) 0.29 (0.22, 0.37) 

17%PET 0.45 (0.38, 0.67) 0.12 (0.11, 0.16) 0.35 (0.25, 0.42) 0.66 (0.45, 0.90)

s-PET 0.25 (0.19, 0.29) 0.08 (0.06, 0.09) 0.19 (0.16, 0.20) 0.27 (0.23, 0.41)

H 29.46 25.18 32.96 19.93

P <0.0001 <0.0001 <0.0001 <0.0001

The italic font represents a statistical difference between this value and that of the 17%PET group. And * indicates that the value is 
statistically significant compared with the s-PET group. SD, standard deviation; PET, positron emission tomography; s-PET, standard 
positron emission tomography (per bed time: 90 s); 3D Unet, a deep network model based on CNN; P2P, Pixel2Pixel deep network model 
based on GAN; H, H value for the Kruskal-Wallis method; CNN, convolutional neural network; GAN, generative adversarial network.

Table 4 Comparison of SNR value of background tissue between reconstructed images and real images using 17%PET images as input

Group Liver Lung Aorta Lumbar spine

3D Unet-30s 11.29 (10.11, 12.95)* 7.40 (5.00, 9.01)* 13.85 (9.15, 17.47)* 7.19 (5.34, 11.07)*

P2P-30s 11.32 (9.46, 14.59)* 5.88 (4.43, 7.75)* 13.31 (10.05, 15.87)* 8.55 (6.78, 10.74)*

17%PET 4.70 (3.49, 5.19) 2.64 (2.03, 3.17) 3.93 (2.84, 5.30) 3.15 (2.05, 3.81)

s-PET 8.29 (7.77, 10.02) 5.00 (4.23, 5.64) 7.95 (6.22, 9.32) 5.95 (4.77, 8.28)

H 31.06 27.54 35.80 27.63

P <0.0001 <0.0001 <0.0001 <0.0001

The italic font represents a statistical difference between this value and that of the 17%PET group. And * indicates that the value is 
statistically significant compared with the s-PET group. SNR, signal-to-noise ratio; PET, positron emission tomography; s-PET, standard 
positron emission tomography (per bed time: 90 s); 3D Unet, a deep network model based on CNN; P2P, Pixel2Pixel deep network model 
based on GAN; H, H value for the Kruskal-Wallis method; CNN, convolutional neural network; GAN, generative adversarial network.
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Table 6 Comparison of multi-group model results for PET quantitative parameters of tumor lesions based on 17%PET images

Groups
PET quantitative parameters of tumor lesions

SNR CNR SUVmean SUVmax

3D Unet-30s 39.29 (29.10, 50.56) 9.40 (4.66, 12.77) 3.55 (3.27, 4.60)* 7.45 (5.42, 9.73)

P2P-30s 25.31 (19.83, 39.49)* 4.88 (1.18, 8.96)* 3.78 (3.32, 5.09) 5.47 (4.47, 7.51)*

17%PET 17.61 (13.26, 24.68) 4.39 (3.12, 7.10) 4.17 (3.47, 5.30) 8.37 (6.38, 11.29)

s-PET 34.82 (24.92, 51.82) 9.68 (5.90, 13.95) 3.93 (3.23, 4.86) 7.29 (5.78, 10.59)

H 38.19 17.67 2.63 12.20

P <0.0001 0.001 0.452 0.007

The italic font represents a statistical difference between this value and that of the 17%PET group. And * indicates that the value is stati-
stically significant compared with the s-PET group. SNR, signal-to-noise ratio; CNR, contrast-noise ratio; SUVmean, mean standardized 
uptake values for all voxels in the ROI; SUVmax, maximum standardized uptake values for all voxels in the ROI; PET, positron emission 
tomography; s-PET, standard positron emission tomography (per bed time: 90 s); 3D Unet, a deep network model based on CNN; P2P, Pi-
xel2Pixel deep network model based on GAN; H, H value for the Kruskal-Wallis method; ROI, region of interest; CNN, convolutional neural 
network; GAN, generative adversarial network.

and lumbar values (Tables 1-4).

Effect on noise and SNR of tumor tissue
When 8%PET or 17%PET was used as model input, SNR 
of P2P-15s group was higher than that of original image 
group, but still significantly lower than that of standard dose 
group (s-PET group).

Then, the influence of P2P deep learning model on 
CNR of tumor lesions was observed. When 8%PET was 
used as model input, CNR of P2P-15s group was higher 
than that of original image group, but significantly lower 

than that of s-PET group. When 17%PET was used as 
model input, CNR of tumor lesions in the P2P-30s group 
showed no statistical difference compared with the original 
image group, and was significantly lower than that in the 
s-PET group (Tables 5,6, Figures 7,8).

Effect on semi-quantitative parameters of tumor tissue
When 8%PET was used as model input, the SUVmean and 
SUVmax of tumor lesions in the P2P-15s group were lower 
than those in the original image group and the standard 
dose group. When 17%PET was used as model input, 

Table 5 Comparison of multi-group model results for PET quantitative parameters of tumor lesions based on 8%PET images

Group
PET quantitative parameters of tumor lesions

SNR CNR SUVmean SUVmax

3D Unet-15s 33.81 (24.79, 45.52) 9.94 (5.63, 13.72) 3.78 (3.06, 4.86) 6.57 (4.54, 9.61)*

P2P-15s 20.45 (15.08, 29.24)* 3.97 (1.06, 6.91)* 3.03 (2.62, 3.99)* 4.72 (3.70, 6.27)*

8%PET 16.38 (10.78, 19.90) 3.19 (2.18, 4.82) 4.25 (3.62, 5.34) 10.81 (7.44, 16.41)

s-PET 34.82 (24.92, 51.82) 9.68 (5.90, 13.95) 3.93 (3.23, 4.86) 7.29( 5.78, 10.59)

H 54.90 27.25 16.81 37.28

P <0.0001 <0.0001 0.001 <0.0001

The italic font represents a statistical difference between this value and that of the 8%PET group. And * indicates that the value is stati-
stically significant compared with the s-PET group. SNR, signal-to-noise ratio; CNR, contrast-noise ratio; SUVmean, mean standardized 
uptake values for all voxels in the ROI; SUVmax, maximum standardized uptake values for all voxels in the ROI; PET, positron emission 
tomography; s-PET, standard positron emission tomography (per bed time: 90 s); 3D Unet, a deep network model based on CNN; P2P, Pi-
xel2Pixel deep network model based on GAN; H, H value for the Kruskal-Wallis method; ROI, region of interest; CNN, convolutional neural 
network; GAN, generative adversarial network.
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Figure 9 Comparison of SUVmean in tumor lesions between 
multiple groups. SUVmean, mean standardized uptake values for 
all voxels in the ROI; 3D Unet, a deep network model based on 
CNN; P2P, Pixel2Pixel deep network model based on GAN; PET, 
positron emission tomography; s-PET, standard positron emission 
tomography (per bed time: 90 s); SUVmean, mean standardized 
uptake value; ROI, region of interest; CNN, convolutional neural 
network; GAN, generative adversarial network.

Figure 8 Comparison of CNRs in tumor lesions between multiple 
groups. CNRs, convolutional neural networks; 3D Unet, a deep 
network model based on CNN; P2P, Pixel2Pixel deep network 
model based on GAN; PET, positron emission tomography; s-PET, 
standard positron emission tomography (per bed time: 90 s); 
CNN, convolutional neural network; GAN, generative adversarial 
network.

Figure 7 Comparison of SNRs in tumor lesions between multiple 
groups. SNRs, signal-to-noise ratios; 3D Unet, a deep network 
model based on CNN; P2P, Pixel2Pixel deep network model 
based on GAN; PET, positron emission tomography; s-PET, 
standard positron emission tomography (per bed time: 90 s); 
CNN, convolutional neural network; GAN, generative adversarial 
network.

SUVmax of tumor lesions in P2P-30s group was significantly 
lower than that in standard dose group, while SUVmean had 
no statistical difference (Tables 5,6, Figures 9,10).

Discussion

A systematic comparison of the effectiveness of deep learning 
reconstruction models, based on CNN and GAN, for 
improving LDPET images was conducted in this study to 
determine their impact on tumor clinical diagnosis. The 
results showed that both the 3D Unet and P2P models 
improved the quality of the LDPET tumor image and 
improved the objective quantitative parameter SNR of image 
quality, both in the background tissue and tumor lesions. 
However, the 3D Unet model was significantly better than 
the P2P model in improving the quality of the clinical images 
of the PET tumor; it could meet the accuracy of tumor lesion 
quantification and reach the level of tumor diagnosis.
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Deep learning methods using GANs and CNNs have 
shown promise in medical image denoising (25). Wang  
et al. (14), Islam and Zhang (26), and Sajjad et al. (27) used a 
GAN synthesis model to generate PET images of the brain 
at different stages of progression of Alzheimer’s disease. 
Ouyang et al. also used a GAN model to generate images of 
a PET scan with a standard dose of amyloid from intensively 
low-dosage (1%) images (15). Xie et al. achieved a trade-
off between lesion contrast recovery and background noise 
using an improved GAN model (28). A GAN-based deep 
learning model was used to restore LDPET images of the 
brain and body (29-32). The results show that the GAN-
based model can retain more details in the image while 
reducing SUVmean and SUVmax errors. However, for the 
recovery of LDPET images of tumor lesions, an improved 
reconstruction model based on a CNN was adopted. 
Using CNN, Kaplan and Zhu obtained better image edge, 
structure, and texture details and refined the quantitative 
parameters using 1/10 LDPET images as inputs (12). Lu  
et al. used a 3D Unet deep learning reconstruction model 
to significantly reduce the dose of 18F-FDG in patients with 
tumors and ensure diagnostic accuracy (16). Furthermore, 
2D and 2.5D Unets were found to have inferior quantitative 
performance when compared to 3D Unet, and when using 
10% low counts to predict standard-dose PET images. 

3D Unet was able to reduce image noise and SUVmean 
deviation even for subcentimeter lung nodules, consistent 
with the results of this study. There are also studies  
(13,33-35) using fewer doses of PET images, and CNN also 
shows an advantage in tumor quantification. A 3D Unet 
model was developed by Sanaat et al. to predict FDPET 
images from 5% LDPET images (13), thereby improving 
both image quality and SUV accuracy. Wang et al. used 
6.25% 18F-FDG ULDPET images and MRI images of the 
same machine from 33 children and young adults and input 
them into the CNN network for image quality recovery (35). 
The results showed a significant improvement in SUVmax 
values of tumor lesions and reference tissues and achieved 
similar parameter values as the standard PET clinical scan.

We found that the 3D Unet model was significantly 
better than the P2P model for denoising the PET 
images. 3D Unet builds the entire model based on a 3D 
convolution. With 3D convolution, we can better acquire 
the three-dimensional spatial information of an image, 
and the network model can perform more reliably and 
robustly if the data contain more dimensions; therefore, 
reconstructed images are of better quality. Simultaneously, 
compared with the workflow of P2P stitching to obtain 
the final image layer by layer, the 3D Unet stitching has 
fewer layers and uses bilinear interpolation to replace 
the upsampling layer, which can effectively eliminate the 
checkerboard artifacts in the reconstructed image. The P2P 
model takes 2D data as the training target; therefore, the 
processing speed is high and hardware requirement is low. 
In this study, high-count reconstructions were used as gold 
standard labels to represent the unknown PET images to be 
reconstructed. In addition, instead of feeding noisy images 
directly into the CNN, a feasible set of PET images was 
determined using the CNN, thus the entire network was 
more data-driven. The most desirable feature of this model 
is that it can include more extensive prior information in 
the image representation, such as interpatient scanning 
information. In addition, when the prior information comes 
from multiple resources, such as time and anatomical 
information, we can use multiple input channels to 
aggregate the information and let the network decide the 
best combination during the training phase. In this study, 
3D Unet and P2P models had essentially the same ability 
to reduce noise, restore image quality, and improve SNR 
in (1/6 and 1/12) LDPET, both of which can meet the 
image quality requirements of clinical tumor diagnosis. 
However, the two models had different recovery effects 
on the accuracy of the quantitative tumor parameters. 
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Figure 10 Comparison of SUVmax in tumor lesions between 
multiple groups. SUVmax, maximum standardized uptake values 
for all voxels in the ROI; 3D Unet, a deep network model based on 
CNN; P2P, Pixel2Pixel deep network model based on GAN; PET, 
positron emission tomography; s-PET, standard positron emission 
tomography (per bed time: 90 s); SUVmax, maximum standardized 
uptake value; ROI, region of interest; CNN, convolutional neural 
network; GAN, generative adversarial network.
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A significant reduction was observed in the quantitative 
parameters SUVmean and SUVmax for cancerous lesions 
for both models. 3D Unet-30s significantly reduced 
SUVmean (P=0.016) compared with 90 s, whereas SUVmax 
did not differ significantly (P=0.313). In the 3D Unet-
15s group, SUVmax was significantly reduced (P=0.034), 
whereas SUVmean was not significantly different (P=0.315). 
SUVmean may have been affected by differences in the 
metabolic volume delineated by the tumor. Among P2P- 
15s/-30s participants, SUVmax was significantly lower than 
that of the 90 s participants (all P<0.0001). Thus, with the 
3D Unet model, the quantitative parameters of the tumors 
were maintained more accurately.

In addition, we found that the 3D Unet model had 
obvious advantages in improving the CNR of foci with high 
FDG uptake. By constraining the measured data, 3D Unet 
can help recover some small features that have been removed 
by image denoising methods, facilitating the recovery of 
CNR (36). This study confirmed the recovery effect of the 
3D Unet model on the CNR index of LDPET images, 
which could allow the CNR to reach the level of 90s-PET 
images with lower dose (1/12 dose) PET data input and 
clearly display and effectively detect small lesions (37).  
However, the size of lesions in this study ranged from 
1.65 to 3.94 cm, and stratified analysis was not performed 
according to the size of lesions. As a result, it is uncertain 
whether this model would perform well in other tasks (such 
as detecting small lesions). Moreover, the robustness of the 
3D Unet model should be determined by further testing via 
quantification of other tasks.

For the optimization of model performance, this study 
also used 1/6 and 1/12 noise level data to train the model. da 
Costa-Luis and Reader suggested that a 3D Unet network 
design is robust when only a limited number of training 
data are available while accepting multiple inputs (including 
competitive denoising methods) (38). When the test data 
dose levels exceed the training dose levels, a new training 
session is required to achieve an optimal neural network 
performance. In this study, data with two noise levels were 
used to train the model separately, instead of superimposing 
the two types of data. At the same time, some studies have 
proposed that training models with anatomic morphological 
imaging information and LDPET images can further 
improve the image details and quantitative accuracy of 
lesions. In addition, a combination of different PET 

reconstruction algorithms, such as the Bayesian algorithm 
(BSREM) with a CNN network, has also been used to 
optimize model performance (39).

The applicability of this model is limited, mainly because 
of the SiPM digital PET/CT equipment and data obtained 
based on the BSREM reconstruction algorithm. However, 
the equipment used in most clinical trials is not uniform 
and PET data with the same acquisition reconstruction 
parameters cannot be used. Moreover, the study was 
limited in sample size, which made it impossible to apply 
fair judgment to the performance of the deep learning 
model. To make the model more robust, the training 
dataset must be increased. In addition to cross-validating 
the generalizability of the model, we hope to conduct more 
multicenter studies. Furthermore, a variety of tumors were 
included in this study, and deep-learning model research 
focusing on a single tumor may be more conducive to the 
clinical application of the model, such as the application of 
LDPET in the screening of pulmonary nodules. 

Conclusions

In this study, the advantages of two different models in 
the clinical tumor diagnosis environment were compared. 
Both GAN and CNN can suppress image noise to varying 
degrees and improve the overall quality of the image. 
However, when CNN represented by 3D Unet reduces the 
noise of tumor lesions, it can improve the CNR of tumor 
lesions and correspondingly improve the salience of tumor 
lesions. Moreover, the SUVmean and SUVmax of tumor 
lesions are similar to those under the collection conditions 
of clinical standard protocols, which can meet the needs of 
clinical diagnosis.
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