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Background: Preoperative non-invasive histologic grading of breast cancer is essential. This study aimed 
to explore the effectiveness of a machine learning classification method based on Dempster-Shafer (D-S) 
evidence theory for the histologic grading of breast cancer.
Methods: A total of 489 contrast-enhanced magnetic resonance imaging (MRI) slices with breast cancer 
lesions (including 171 grade Ⅰ, 140 grade Ⅱ, and 178 grade Ⅲ lesions) were used for analysis. All the 
lesions were segmented by two radiologists in consensus. For each slice, the quantitative pharmacokinetic 
parameters based on a modified Tofts model and the textural features of the segmented lesion on the image 
were extracted. Principal component analysis was then used to reduce feature dimensionality and obtain 
new features from the pharmacokinetic parameters and texture features. The basic confidence assignments 
of different classifiers were combined using D-S evidence theory based on the accuracy of three classifiers: 
support vector machine (SVM), Random Forest, and k-nearest neighbor (KNN). The performance of the 
machine learning techniques was evaluated in terms of accuracy, sensitivity, specificity, and the area under the 
curve.
Results: The three classifiers showed varying accuracy across different categories. The accuracy of using 
D-S evidence theory in combination with multiple classifiers reached 92.86%, which was higher than that of 
using SVM (82.76%), Random Forest (78.85%), or KNN (87.82%) individually. The average area under the 
curve of using the D-S evidence theory combined with multiple classifiers reached 0.896, which was larger 
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Introduction

Breast cancer is a serious, life-threatening malignancy in 
women which accounts for 15.4% of all cancer-related 
deaths (1,2). Due to the underlying tumor heterogeneity, 
breast cancers of the same clinical stage can have completely 
different treatment responses and prognoses. Therefore, 
in this new era of precision medicine, there is a pressing 
clinical need for a noninvasive method that enables this 
tumor heterogeneity to be quantified so that individualized 
treatment can be tailored, and the treatment response can 
be promptly evaluated.

Among all the sequences in a routine breast magnetic 
resonance imaging (MRI) protocol, dynamic contrast-
enhanced MRI (DCE-MRI) is the backbone. Not only is 
it the most sensitive method for detecting breast cancer (3)  
but, more importantly, it can also reflect the tumor 
hemodynamic heterogeneity, including micro-vessel density 
and vascular permeability differences (4).

In the clinical setting, the histologic grade for breast 
cancer is determined by assessing the glandular and tubular 
differentiation, nuclear pleomorphism, and mitotic activity, 
which are hallmark characteristics of tumor aggressiveness. 
In general, high-grade tumors have poorer differentiation 
and more dismal prognoses than do low-grade tumors (5). 
The preoperative histological grading of breast cancer is 
critical for clinical decision-making, including breast cancer 
surgery and subsequent treatment planning. Therefore, 
the ability to noninvasively predict the histological grade of 
breast cancer is critical.

Texture features acquired from breast DCE-MRI 
images can reflect the microvascular density and spatial 
permeability heterogeneity within a region of interest (ROI), 
which is useful for identifying different types of breast 
lesions (6). Also, pharmacokinetic parameters obtained by 
fitting the temporal signal intensity profile of T1-weighted 
images using a modified Tofts model (such as Ktrans) can 

reflect the hemodynamic heterogeneity of tumor tissue 
(7,8). Therefore, both DCE-MRI-based texture features 
and pharmacokinetic parameters have potential for the 
noninvasive preoperative histological grading of breast 
cancers.

With the widespread application of artificial intelligence 
in the field of medical image processing seen in recent 
years, texture feature analysis based on machine learning 
has achieved groundbreaking results in tumor classification 
tasks, such as outcome prediction (9), neoadjuvant 
chemotherapy response prediction (10), and molecular 
subtype classification (11). However, most of the studies 
to date have used only spatial or temporal features to 
achieve the best classification effect (9,10). Pharmacokinetic 
parameters obtained from DCE-MRI can be used to 
explore permeability and perfusion changes within a tumor, 
and thus could potentially be integrated into a conventional 
texture-based machine learning model to further improve 
the classification of tumors (11). 

Dempster-Shafer (D-S) evidence theory is an inference 
method that can handle uncertain information (12). 
Different classifiers have different data processing abilities, 
and thus, varying levels of fault tolerance and applicability. 
Using D-S evidence theory, the classification effects of 
multiple classifiers can be combined to obtain more accurate 
classification results. In the fields of urban planning and 
natural image classification, D-S evidence theory was found 
to substantially improve the classification results of a model 
based on a single classifier by combining multiple classifiers 
[support vector machine (SVM) and k-nearest neighbor 
(KNN)], with a 20% to 30% increase in accuracy (13-15). 
Therefore, this combination could be expected to improve 
classification accuracy; however, its potential in the medical 
field has yet to be explored.

We hypothesized that breast cancers of different 
pathological grades show spatial and hemodynamic 
heterogeneity on DCE-MRI, and that this spatial and 

than that of using SVM (0.829), Random Forest (0.727), or KNN (0.835) individually.
Conclusions: Multiple classifiers can be effectively combined based on D-S evidence theory to improve 
the prediction of histologic grade in breast cancer.
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hemodynamic heterogeneity can be quantified using texture 
features and hemodynamic parameters. Therefore, in this 
study, we investigated and evaluated the performance of 
a machine learning model based on the combination of 
pharmacokinetic parameters and texture features derived 
from DCE-MRI, using D-S evidence theory, in predicting 
the preoperative histologic grade of breast cancer. We 
present the following article in accordance with the 
TRIPOD reporting checklist (available at https://qims.
amegroups.com/article/view/10.21037/qims-22-652/rc).

Methods

Study participants

This study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013) and was 
approved by the ethics committee of Cancer Hospital 
Chinese Academy of Sciences, Shenzhen Hospital. The 
requirement for individual consent was waived for this 
retrospective analysis.

Thirty-three female patients with a histologically 
confirmed diagnosis of breast cancer who underwent 
baseline DCE-MRI between December 2019 and July 2020 
were retrospectively included. The inclusion criteria were as 
follows: (I) the histology of each breast lesion was confirmed 
as invasive breast carcinoma of no special type by biopsy 
or surgical specimen; (II) each breast cancer lesion had a 
histologic grade of I–III, and the maximal diameter of the 
primary breast lesion exceeded 1 cm; (III) conventional MRI 
and DCE-MRI were performed within the 2 weeks before 
treatment; and (IV) in one DCE-MRI scan, ten phases had 
been acquired. The DCE-MRI images were reviewed by 
two board-certified radiologists (MW and YR). Images of 
poor quality, including those with overt signal loss, motion 
artifacts, or geometric distortion, were excluded from the 
analysis. The clinical characteristics of the enrolled patients 
are summarized in Table 1.

MRI protocols

The MRI examinations were performed on a 3T MR 
scanner (Discovery MR 750w, General Electric Healthcare, 
Waukesha, WI, USA) using an eight-channel phase-array 
breast coil. All the participants had undergone DCE-
MRI using a three-dimension T1-weighted fast spoiled 

Table 1 Clinical characteristics of the enrolled patients.

IBC-NST (n = 33) Data

Age (years) 50.6±8.3

Histologic subtype

IBC-NST 19

Mixed type (IBC-NST + DCIS) 14

Size in the largest diameter  
(≤2 cm/2–5 cm/>5 cm)

22/11/0

TNM stage

T stage (T1/T2/T3/T4) 13/18/1/1

N stage (N0/N1/N2/N3) 16/5/7/5

M stage (M0/M1) 33/0

Histologic grade

Grade I/II/III 13/12/8

Proliferation protein (ki-67 index)

≤20% 18

>20% 15

Metastatic status of ALNs (positive/negative) 18/15

ER (positive/negative) 25/8

PR (positive/negative) 23/10

HER-2 (positive/negative) 17/16

Molecular subtypes

Luminal A 2

Luminal B 22

HER-2 enriched 9

Triple negative 0

Perineural invasion

Positive/negative 7/17

Not available 9

Vascular invasion

Positive/negative 15/9

Not available 9

The data in the table are presented as mean ± standard 
deviation or frequency. IBC-NST, invasive breast carcinoma of 
no special type; DCIS, ductal carcinoma in situ; TNM, tumor, 
node, metastasis; ALN, axillary lymph node; ER, estrogen 
receptor; PR, progesterone receptor; HER-2, human epidermal 
growth factor receptor. 
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gradient-echo sequence with the imaging parameters set as 
follows: repetition time/echo time =4.5/2.1 ms, field of view  
=360 mm × 360 mm, image matrix = 320×320, slice 
thickness =1.4 mm with no gap, and flip angle =12°. A total 
of 10 periods (35–55 s per period), with one pre-contrast 
and nine post-contrast dynamic periods, were obtained. 
For dynamic MRI, gadoteric acid meglumine (Gd-DOTA, 
Dotarem, Guerbet, Roissy CdG Cedex, France) was 
injected into the antecubital vein at a rate of 2 mL/s (total 
dose, 0.1 mmol/kg of body weight) using a power injector 
(Ulrich, Germany) via a 20-gauge needle, which was 
followed by a 20 mL saline flush.

Image analysis

All the MRI images were transferred to an in-house 
MATLAB platform developed by X.W. for analysis. A 
total of 489 slices with breast cancer lesions (171 grade I, 
140 grade II, and 178 grade III) were used for analysis. All 
the lesions were initially segmented manually on the third 
phase of the DCE-MR images by a radiologist (M.W. or 

Y.R., each with 5 years of experience in breast imaging) 
and then reviewed by a senior radiologist (J.W., with more 
than 10 years of experience in breast imaging). All three 
radiologists were blinded to the histology of the lesions. 
Any discrepancies were resolved through discussion. For 
each slice, 78 original texture features were extracted using 
the first-order histogram (FH; 18 features), gray-level co-
occurrence matrix (GLCM; 23 features), neighborhood 
gray-tone difference matrix (NGTDM; 5 features), gray-
level run-length matrix (GLRLM; 13 features), gray-
level size zone matrix (GLSZM; 13 features), and 6 shape 
features. The data processing flowchart is shown in Figure 1. 

A total of 390 (78×5) texture features, including the 
original features and the features after two-dimensional 
discrete wavelet transform in four directions [components 
of the approximation (CA), components of the diagonal 
detail (CD), components of the horizontal detail (CH), 
components of the vertical detail (CV)], were finally 
extracted for each slice. Five pharmacokinetic parameters, 
including the volume transfer constant of contrast agent 
leaked into the extravascular extracellular space from the 

Figure 1 Data processing flow diagram. EES, extravascular extracellular space; Ktrans, volume transfer constant; Kep, rate constant; Ve, 
extracellular volume fraction of the imaged tissue; Vp, fractional plasma volume; GLCM, gray-level co-occurrence matrix; NGTDM, 
neighborhood gray-tone difference matrix; GLRLM, gray-level run-length matrix; GLSZM, gray-level size zone matrix; PCA, principal 
component analysis.
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plasma (Ktrans), the rate constant of contrast agent reflux to 
the plasma (Kep), the fractional extravascular extracellular 
space volume (Ve), the fractional plasma volume (Vp), 
and the area under the time-intensity curve (AUC), were 
calculated using the modified Tofts model (7). The time-
transformed contrast concentration profile was calculated first 
using the temporal signal intensity profile (see Eq. [1]), after 
which the kinetic parameters (Ktrans and Ve) were calculated 
by fitting the temporal concentration profile using a modified 
two-compartment kinetic model (see Eq. [2]).
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where TR is the repetition time (msec), T10 is the so-called 
native relaxation time, C(t) is the tissue contrast agent 
concentration, r1 (mM−1s−1) is the longitudinal contrast 
agent relaxation coefficient, and α is the flip angle.
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where kel is the excretion rate and represents the loss of 
contrast agent in the system, Cp(0) denotes the contrast 
agent concentration in the vascular space at time t=0, and t0 
is the time before the injection of the contrast agent.

The data set was first divided into a training set and a 
test set at a ratio of 7:3. Next, to reduce the dimension, 
principal component analysis (PCA) was performed for all 
pharmacokinetic parameters and texture features. Then, the 
reduced dimension features were used in training sets for 
the three different types of classifiers (random forest, SVM, 
and KNN). This paper employed two-fold cross-validation 
in the training phase.

Study method

In D-S evidence theory, all answers that can be thought of 
for a question are put into the identification framework. 
All the answers within the identification framework are 
mutually exclusive, whereas the answer to the question 
is unique. Each answer can be regarded as a proposition, 
and each proposition has a degree of confidence called the 
basic probability assignment (BPA, also known as the M 
function). The m(A) reflects the degree of reliability of A.

For the same problem, different evidence sources will 
yield different BPA values, and the BPA values of different 
evidence sources can be processed using the orthogonal sum 
to obtain a new basic probability distribution function (16). 
For the ith classifier, first, a sample was selected for training, 

the best recognition rate ( )i
rε  of the classifier was found, 

and then the probability distribution function was designed 
according to the distribution of the sample category. The 
BPA estimation formula is as follows:
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where ( )V ,i j t  is the number of test samples that actually 
belong to the tth class when they are judged to be the jth class 
by the ith classifier, and α is the uncertainty factor.

The D-S evidence theory synthesis rule can be 
interpreted as follows:

( ) ( ) ( ) ( )1
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, ,
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∈
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where ( ) ( ) ( )1 2 3
l j h

K m l m j m h
∩ ∩ ≠∅

= × ×∑ ; and m1(l), m2(j), and m3(h) 
represent the basic probability value that the classification 
result of the first classifier is pathology grade l, grade j, and 
grade h, respectively.

The BPAs of the three classifiers, namely m1, m2, and 
m3, were calculated. Each classifier has three classification 
levels, and the correct and incorrect prediction results 
can be represented using a 3×3 matrix. Elements within 
the matrix represent the BPA for that classifier. The BPA 
matrices obtained by the three classifiers are denoted by M1, 
M2, and M3, respectively. M1, M2, and M3 are input into 
Eq. [4] to obtain the synthetic result G. Assuming that the 
combined BPA value is G (k), the formula for the decision-
making process is as follows:

( ){ }arg maxk Dj G k∈=  [5]

which satisfies ( ) ( )
,

1
k D k j

G j kG σ
∈ ≠

− ≥ , where j is the decision-
making category. According to the recognition rate of 
SVM, Random Forest, and KNN, this paper considered the 
distribution of training samples to construct the BPA and 
conducted evidence synthesis and decision-making based 
on the synthesis rules of D-S evidence theory. Receiver 
operating characteristic curve analysis was performed for 
each model built. The overall algorithm flowchart is shown 
in Figure 2.

Results

Clinical characteristics of the participants

A total of 489 slices with breast cancer lesions (171 grade 
I, 140 grade II, and 178 grade III) were used for analysis. 
Figure 3 shows representative MRI images of the first, 



Quantitative Imaging in Medicine and Surgery, Vol 13, No 5 May 2023 3293

© Quantitative Imaging in Medicine and Surgery. All rights reserved.   Quant Imaging Med Surg 2023;13(5):3288-3297 | https://dx.doi.org/10.21037/qims-22-652

third, fifth, seventh, and ninth phases acquired in the 
corresponding acquisition times for grade I–III breast 
cancer.

Comparison between the single classifier results and the 
classification results based on D-S evidence theory 

After reducing the dimension of 390 texture features 
extracted from slices, 113 new features were selected. The 
data were divided into training and testing sets at a ratio 
of 7:3 and then sent to three different classifiers (SVM, 
random forest, and KNN) for training and testing. The 
performance of the machine learning techniques was 
evaluated in terms of accuracy, sensitivity, and specificity 

(Table 2).
From the case classification results using a single classifier 

(Table 2), KNN had the highest accuracy among the three 
classifiers. However, in terms of specificity and sensitivity 
in classifying breast cancers of different pathological 
grades, the performance of KNN was not always the best. 
For example, in the recognition of pathology grade II, the 
sensitivity of the SVM classifier was 1.0, which was much 
higher than that of KNN or Random Forest; however, 
in the classification of pathology grade I, the sensitivity 
of the SVM classifier was lower than that of KNN and 
Random Forest. These observations show that the different 
classifiers have different advantages in classifying slices at 
different pathological levels. Table 3 shows the results of the 

Figure 2 The overall algorithm flow diagram. SVM, support vector machine; KNN, k-nearest neighbor.
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classification evaluation index of the D-S evidence theory 
combined with multiple classifiers. The accuracy rate of 
the D-S evidence theory was 0.929; its sensitivity for the 
different grades was 0.896 for grade I, 0.976 for grade II, 
and 0.814 for grade III; and its specificity for the different 
grades was 0.972 for grade I, 0.796 for grade II, and 0.833 
for grade III.

According to the experimental results, the receiver 
operating characteristic curve of each level was drawn, 
and the average AUC value was calculated (Figure 4). The 
average AUC value of the D-S-based method reached 0.896, 
which was higher than that of the methods using a single 
classifier (SVM: 0.829, Random Forest: 0.727, and KNN: 
0.835.

Discussion 

In this study, we investigated the performance of a 
combination of multiple classifiers based on D-S evidence 
theory in classifying the histologic grade of breast cancer 
and compared it with the performances of three classical 
single classifiers. Our proposed method outperformed the 
single classical classifiers, which indicates that D-S evidence 
theory can effectively combine the effects of multiple 
classifiers to obtain higher classification accuracy.

The three classifiers included in this study have different 
recognition situations in different categories and have 

unique advantages for different histologic grades. Using 
D-S evidence theory combined with multiple classifiers 
eliminated the blind spots of the single classifiers for certain 
pathology levels by combining the recognition advantages 
of each classifier for those pathology levels, to achieve 
a balanced recognition of all pathology levels (17,18). 
According to the training results and the sample size, the 
BPA values of the three classifiers were calculated and the 
evidence was synthesized, and from this, the decision was 
made. Since the KNN method mainly relies on a limited 
number of neighboring samples around to determine 
the class to which it belongs, rather than the method of 
discriminating class domains, it is more advantageous for 
classifying sample sets with more intersection or overlap of 
class domains. Moreover, KNN involves no assumptions on 
the data, is highly accurate, and is insensitive to outliers (19). 
Therefore, these factors might explain our observation that 
KNN had the best overall performance among the three 
classifiers.

Regarding SVM classifiers, K secondary classification 
SVM classifiers need to be trained for the sample data of 
the K categories during training. The sample data of the 
ith SVM subcategory is marked as a positive category, while 
the sample data not belonging to category I are marked as a 
negative category. Therefore, the negative category sample 
data appears for each level of the pathological section, and 
the data of the negative category samples are much larger 

Table 2 Histologic grading evaluation index results of single classifiers (support vector machine, Random Forest, and K-nearest neighbor)

Histologic grade
SVM Random Forest KNN

Specificity Sensitivity Specificity Sensitivity Specificity Sensitivity

Grade I 0.716 0.990 0.761 0.836 0.894 0.967

Grade II 1.000 0.629 0.816 0.738 0.791 0.810

Grade III 0.934 0.798 0.804 0.774 0.936 0.830

Accuracy 0.828 0.789 0.878

SVM, support vector machine; KNN, K-nearest neighbor.

Table 3 Grading evaluation index results of D-S evidence theory combined with multiple classifiers

Evaluation indicator Grade I Grade II Grade III

Specificity 0.896 0.976 0.814

Sensitivity 0.972 0.796 0.833

Accuracy 0.929

D-S, Dempster-Shafer.
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Figure 4 Receiver operating characteristic curves for each pathological grade. Receiver operating characteristic curves of (A) SVM, (B) 
Random Forest, (C) KNN, and (D) multiple classifiers based on D-S evidence theory. SVM, support vector machine; KNN, k-nearest 
neighbor; AUC, area under the curve; TPR, true positive rate; D-S, Dempster-Shafer.
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than those of the positive category samples. Consequently, 
class imbalance appears, and this situation tends to become 
more serious with the increase of training data. For 
example, in histologic grade II recognition, the specificity of 
the SVM classifier reaches 1 but its sensitivity is only 0.6286.

As previously reported, using D-S evidence theory 
combined with multiple classifiers can achieve a balanced 
recognition of classification tasks. Consistently, we 
observed that the accuracy and average AUC of the 
fusion strategy proposed in this paper were higher than 
those of single classifiers for breast histologic grade 
classification, indicating that our fusion strategy can 
integrate the advantages of different classifiers to improve 
the classification performance. Therefore, the results of this 
study demonstrate that based on D-S evidence theory, the 
knowledge of multiple classifiers can be fused at the same 
time using the Dempster synthesis rules, and the prediction 

results of multiple predictors (SVM, KNN, and Random 
Forest) can be fused to improve the classification accuracy.

This study had a number of limitations. First, the sample 
size in this study was relatively limited. However, our 
study mainly focused on verifying the proof of concept of 
using D-S evidence theory to merge and take advantage of 
multiple classical classifiers. To augment our dataset, two-
dimensional slices were used instead of three-dimensional 
volume to extract texture features and pharmacokinetic 
parameters. Second, the PCA method was applied in this 
study to solve the “curse of dimensionality” problem. 
However, PCA is a linear reduction method, which might 
have resulted in the loss of some valuable information. In 
the future, the appropriateness of PCA should be evaluated 
and more feature selection methods should be explored. 
Third, this paper applied the D-S formula to the SVM, 
Random Forest, and KNN classifiers without analyzing the 
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independence between the different classifier-based models; 
this aspect should be further investigated in the future. 
Fourth, this paper did not apply bootstrapping techniques 
to obtain confidence intervals of the classification 
performance. Finally, we arbitrarily chose KNN, SVM, 
and Random Forest, as three of the most commonly used 
classifiers. Many other commonly used classifiers, such as 
naïve Bayes, logistic regression, and decision tree classifiers, 
were not explored in our study. However, the primary aim 
of this work was to explore the potential benefit of D-S 
evidence theory in taking advantage of multiple classifiers, 
not to explore the performance of specific classifiers 
themselves.

Conclusions

The results of this study suggest that the effective 
combination of multiple classifiers under D-S evidence 
theory can improve histological grade prediction in breast 
cancer.
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