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Introduction

Angiogenesis plays a vital role in tumor growth, and is 
an independent prognostic factor in breast cancer (1-5). 
New anti-angiogenetic therapy concepts for breast cancer 
treatment have being introduced (6,7). Dynamic-contrast 
enhanced (DCE) magnetic resonance imaging (MRI) is a 

valuable clinical tool to investigate angiogenesis of breast 
cancer in vivo (8-11). However, DCE-MRI requires contrast 
agent administration (12) and is associated with long-term 
risk of renal failure (13). As such, non-invasive assessment 
of breast cancer angiogenesis is desirable. 

Intravoxel incoherent motion (IVIM) MRI (12) offers 
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such a non-invasive means for simultaneous assessment of 
tumor diffusivity and vascularity in breast cancer (14,15). 
According to IVIM principle, diffusion weighted imaging 
(DWI) signal is not only influenced by true water diffusion 
in tissue due to the thermal Brownian motion, but also 
affected by micro-circulation of blood in the randomly 
structured capillary network, named pseudo-diffusion effect. 
As such, a bi-exponential mathematical model is proposed 
to quantify IVIM effect beyond the mono-exponential 
diffusion model, which only quantifies Brownian diffusion 
using apparent diffusion coefficient (ADC). By applying 
appropriate b-factor sets including both low and high b 
values, DWI signal is sensitive to both true water diffusion 
and pseudo-diffusion. IVIM parameters of pseudo-diffusion 
coefficient (D*), true diffusion coefficient (D) and pseudo-
diffusion fraction (f) can be determined by fitting DWI 
signal decay with b-factors to a bi-exponential function. In a 
number of studies, it has been observed that diffusion signal 
decay in breast tumors is better fitted by bi-exponential 
function with smaller residual errors (14-16).

IVIM-MRI is postulated to provide additional tumor 
vascularity information potentially for better tumor 
characterization (17), while this postulation could be 
hindered by some limitations of IVIM quantification. 
First, simply applying a more complex model with more 
parameters (bi-exponential model here) for least-square 
fitting would always yield smaller residual errors. As such, 
the commonly used goodness-of-fit measured by coefficient 
of determination (R2) to evaluate fitting quality would 
introduce bias and thus always prefer the bi-exponential 
model (18). The higher R2 value does not necessarily mean 
that bi-exponential model better describes the observed 
data but rather reflects the flexibility of the more complex 
model to match the observed data (19). Furthermore, 
fitting with a more complex model may sometimes overly 
capture the observed data variation contaminated by noise 
and motion, hence leads to the problem of overfitting (18). 
Although the use of adjusted R2 could partially penalize 
the statistic when extra variables are added to the model, 
it is still inadequate to determine whether the complex 
model significantly better fit the observed data (19). In 
addition, accurate and precise bi-exponential quantification 
is mathematically difficult, particularly for f and D* in 
situations of low signal-to-noise ratio (SNR) and limited 
data points (20,21). As such, the obtained IVIM parameter 
values may associate with bias, inaccuracy, high uncertainty 
and poor reproducibility (22-24). Although advanced 
estimation methods other than least-square fitting have also 

been proposed, such as Bayesian analysis (25), bootstrapping 
(26,27) and maximum likelihood estimation (28), their 
use in clinical practice is still sparse and yet to be further 
evaluated. Last, although mono-exponential function is 
nested within bi-exponential function, the fitting to bi-
exponential function does not always yield the fitting result 
of f=0, which makes bi-exponential model equivalent to 
mono-exponential one, even in the absence of IVIM effect 
(29,30), as the fitting procedure is subject to local minima, 
much dependent on the fitting method (31).

In consequence, the use of bi-exponential fitting to study 
IVIM effect should be carefully examined in a statistical 
point of view. In this study, we focus on malignant breast 
tumors in which higher micro-vascularity and hence 
pronounced IVIM effect could be presumed. We prompt 
to statistically assess whether bi-exponential function better 
fits the DWI signal decay of malignant breast tumors 
obtained with typical acquisition protocol for clinical 
scans through two statistical approaches, F-test (32) and 
Akaike information criterion (AIC) (33). We also prompt 
to examine whether the DWI model preference could be 
influenced by analysis means, i.e., region-of-interests (ROI)-
averaged signal fitting or voxel-wise signal fitting.

Methods

Patient information and MRI protocol

This retrospective study was approved by the local 
Institutional Review Board with a waiver of informed 
consent. Consecutive patients were considered in this study 
if they underwent 3 T bilateral breast MRI and had DWI 
scan performed with eight b values appropriate for IVIM 
quantification. A cohort of 29 tumors in 29 patients was 
generated, including 22 invasive ductal carcinoma (IDC), 
3 invasive lobular carcinoma (ILC), and 4 pure ductal 
carcinoma in situ (DCIS). 

MRI protocol

All patients received MRI scan in a prone position on a 3.0 T  
clinical scanner (Magnetom Trio; Siemens Healthcare, 
Erlangen, Germany) with a dedicated 4-channel breast 
array coil. DWI was performed in axial views that covered 
the entire bilateral breasts prior to the contrast agent 
administration using a fat-saturated single-shot spin-
echo type echo-planar imaging sequence. Major imaging 
parameters included: FOV =350 mm, matrix size = 192×192, 
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voxel size =1.82×1.82 mm2, slices =40, slice thickness/gap 
=3/0 mm, TE/TR=102/5,800 ms, number of signal averages 
(NSA) =4, SENSE factor =2. DW images at eight b-factors 
of 0, 50, 100, 150, 200, 400, 600, 1,000 s/mm2 were 
acquired. The DWI scan time was about 3 minutes. 

Image analysis and statistical analysis 

Curve fittings of DW signal decay with regard to b-factor, 
based on Gaussian diffusion model and IVIM model, were 
conducted using in-house developed Matlab programs (The 
MathWorks, Inc., Natick, MA, USA).

Gaussian diffusion model was given in a mono-
exponential function as shown in Eq. [1]:

0( ) - ⋅b ADCS b = S e
                         

[1]

where S(b) and S0 are the DW image intensities obtained 
with the b-factor value of b and zero, respectively. ADC is 
the apparent diffusion coefficient.

IVIM model was given in a bi-exponential decay function 
as shown in Eq. [2]:

( )0( ) - -(1 )
•⋅ ⋅⋅ + − ⋅b D b DS b = S f e f e              [2]

where D* and D respectively denote the pseudo-diffusion 
coefficient and the true water diffusion coefficient, and f is 
the unitless perfusion fraction. S(b) and S0 have the same 
meaning as in Eq. [1].

DWI images were first rigidly registered on console 
to the baseline image with b=0 s/mm2. The registration 
performance was visually inspected to make sure there was 
no apparent observable displacement of the lesion. ROIs 
of tumors were drawn manually on the slice of high-b DW 
images in which the tumor had the largest cross sectional 
area by referring to the DCE-MRI images. Two types of 
analyses were utilized. The first type, termed ROI-averaged 
analysis, calculated the average of DW image intensity 
for all voxels within the ROI and then this ROI-averaged 
intensity decay with regard to b-factor was fitted to mono- 
and bi-exponential function respectively to calculate ADC 
and IVIM parameters. For the other type, termed voxel-
wise analysis, DW image intensity decay of each voxel 
within the ROI was fitted to mono- and bi-exponential 
function to obtain the voxel-wise value of ADC and IVIM 
parameters. 

For both mono- and bi-exponential fitting, DW 
image intensities were first normalized to S0 and then 

logarithmized. The logarithmized DW signal decay with 
regard to all eight b-factors was least-square fitted to a linear 
function, and the slope of the best fitted linear curve was 
the estimated ADC. Bi-exponential fitting was conducted 
using the segmented fitting method, which was reported 
as an improved fitting method for IVIM quantification in 
particular at sufficiently high SNR (20,34-36). In detail, D 
was obtained similarly as ADC in mono-exponential through 
least-square linear fitting but only using the logarithmized 
DW signal at the b values of 200 s/mm2 and above. The 
fitted linear curve was then extrapolated to obtain an 
intercept at b=0. The ratio between this intercept and the 
DW signal at b=0 gave an estimate of f. Finally, the obtained 
D and f were substituted into the logarithmized Eq. [2] and 
non-linear least-square fitted against all b-factors to estimate 
D*. The start point for D* fitting was set as 10×10−3 mm2/s.  
By taking account of the reasonable physiological values, 
the lower limits of 0.0.01×10−3 and 1×10−3 mm2/s, and the 
upper limits of 1.5×10−3 and 500×10−3 mm2/s, were set for 
f, D and D* fitting respectively. D was constrained to be 
smaller than D*. 

To statistically assess which model better fit the DW 
signal of breast tumors, two approaches, i.e., F-test (32) and 
AIC (19,33), were utilized and implemented in customized 
Matlab programs. F-test and AIC select model based on 
different but independent criteria. F-test is a null-hypothesis 
test applicable for nested models, but has the limitation to 
tend to choose the simpler model (34). In comparison, AIC 
is not a statistical hypothesis test so has no null hypothesis 
and P value. Instead, AIC provides a relative estimate of the 
information lost when a given model is used to describe the 
observed data, and is applicable to both nested and non-
nested models. F-test and AIC were used in this study to 
complement each other and strengthen the confidence of 
the model preference results. 

The null hypothesis of F-test is that the simpler model 
with fewer parameters, mono-exponential model here, is 
preferable. An F-ratio (F) was calculated to test whether 
the sum of squared deviations was sufficiently reduced to 
justify fitting with additional parameters by using the more 
complex bi-exponential model according to Eq. [3]:

−
⋅

−
mono bi bi

bi mono bi

SS SS DF
F =

SS DF DF

where, DF=N-n                       [3] 
In Eq. [3], the subscripts mono and bi represent the 

mono-exponential and bi-exponential models, respectively. 
SS is the residual sum-of-squares. DF is degrees of freedom, 
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which can be calculated by the subtraction of the number 
of model parameters n (n=3 for bi-exponential and n=1 for 
mono-exponential model) from the number of measured 
data points N. The P value associated with the F-ratio 
was then calculated based on F-distribution. If the P value 
associated with F-ratio was smaller than a significance level 
of 0.05, bi-exponential model was preferable. Otherwise, 
mono-exponential model was preferable in a statistical point 
of view.

AIC is not a statistical hypothesis test so has no null 
hypothesis and P value. Instead, it provides a relative 
estimate of the information lost when a given model is used 
to represent the observed data. We calculated the finite 
sample size corrected AIC values (AICc) first using Eq. [4]:

2 ( 1)ln( ) 2
1− −

n n +AICc = N SS + n +
N n

               [4]

where all parameters have the same meaning as in Eq. [3]. 
The preferred model is the one with the smaller AICc value. 
Based on the calculated AICc values for two models, relative 
likelihood of bi-exponential model (RLbi) was calculated as 
Eq. [5]:

( )/2-mono biATCc AICc
biRL = e                        [5]

In general, if RLbi value was larger than 1, bi-exponential 
model was preferable, and the larger RLbi value implies 
that the mono-exponential model is more probable to 
result in a loss of information relative to the bi-exponential 
model. Conversely, mono-exponential was preferable if 
RLbi value was smaller than 1, and the preference was more 
strengthened with the smaller RLbi value. 

For voxel-wise analysis using both F-test and AIC, if 
there were more voxels preferred bi-exponential model 
than mono-exponential one in a tumor ROI, this tumor 
was considered bi-exponential preferable. Otherwise, it was 
considered mono-exponential preferable.

The calculated ADC values were compared to D values 
(reported in mean ± SD) for all tumors, mono-exponential 
preferable tumors and bi-exponential preferable tumors for 
both ROI averaged analysis and voxel-wise analysis using 
Wilcoxon-signed rank test. For ROI-averaged analysis, 
the mean ADC, D and f values of the mono-exponential 
preferable tumors were compared to their corresponding 
counterparts of the bi-exponential preferable tumors using 
Mann-Whitney U-test. A significant level of 0.05 was used 
for all comparisons. Considering the unreliability of D* 

quantification in bi-exponential fitting (26), particularly 
when SNR was limited, comparison of D*, was still 
conducted but without further interpretation between 
mono-exponential and bi-exponential preferable tumor 
groups.

Results

No observable displacement was observed in lesions after 
registration. All lesions were still well visible even at the 
highest b value of 1,000 s/mm2, without dropping to the 
background image intensity level. Excellent R2 value was 
achieved in all tumors by fitting the ROI-averaged DWI 
signal to both mono-exponential (all R2>0.91) and bi-
exponential models (all R2>0.97). Regarding the ROI-
averaged analysis using F-test, 15 tumors were significantly 
better described by bi-exponential model, including 
12 IDCs, 1 DCIS and 2 ILCs. In other 14 tumors, bi-
exponential model was not significantly better than mono-
exponential model, including 10 IDCs, 3 DCISs and 1 
ILC. Regarding the ROI-averaged analysis using AIC, the 
preference results were well agreed with those using F-test. 
Figure 1 illustrates the 1st post-contrast DCE-MRI image 
and its corresponding ADC map of an IDC (Figure 1A,B) 
in which bi-exponential fitting is preferred (Figure 1C), and 
a DCIS (Figure 1D,E) in which mono-exponential fitting is 
preferred (Figure 1F). 

For ROI-averaged analysis, the mean D of total 29 tumors 
(0.92±0.25×10−3 mm2/s) was significantly smaller (P<0.001) 
than the mean ADC (1.04±0.29×10−3 mm2/s) (Figure 2). 
The values (mean ± SD) of f and D* for the whole cohort 
(n=29) were 13.4%±7.7% and 13.8±15.4×10−3 mm2/s,  
respectively. For those bi-exponential preferred tumors 
based on the F-test results, the mean ADC of total 15 tumors 
(0.97±0.24×10−3 mm2/s) was significantly larger (P<0.001) 
than the mean D (0.86±0.22×10−3 mm2/s). For the remaining 
14 mono-exponential preferred tumors, the mean ADC was 
1.11±0.32×10−3 mm2/s, still (but less) significantly larger 
(P<0.001) than the corresponding mean D of 0.98±0.27 
×10−3 mm2/s (Figure 2). Meanwhile, ADC, D, and f were not 
significantly different between the mono-exponential and 
bi-exponential preferable cohorts (Table 1). Although the 
D* value difference between the two cohorts appeared to be 
significant, the further interpretation should be made with 
caution by taking account of the higher uncertainty of D* 
quantification via bi-exponential fitting.

Heterogeneity of parameter values was found in all 
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Figure 1 The illustration of ROI-averaged analysis. (A-C) the DWI signal of an IDC is significantly better fitted by bi-exponential fitting; 
(D-F) the DWI signal of a DCIS is not significantly better fitted by bi-exponential fitting. DWI, diffusion weighted imaging; IDC, invasive 
ductal carcinoma; DCIS, ductal carcinoma in situ; ROI, region-of-interests.

Figure 2 The statistical comparison of ADC and D for bi-
exponential preferred tumor group, mono-exponential preferred 
tumor group and whole tumor cohort (n=29) based on ROI-
averaged F-test. ADC, apparent diffusion coefficient; ROI, region-
of-interests.
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tumors by using voxel-wise mono-exponential and bi-
exponential mapping. The voxel-wise R2 ranged from 0.75 
to over 0.95, indicating the heterogeneous SNR within 
voxels. Regarding the voxel-wise analysis results using 
F-test and AIC, in sharp contrast to ROI-averaged analysis, 
all tumors except for two IDCs exhibited over half of all 
voxels presenting apparent mono-exponential DWI signal 
decay rather than bi-exponential decay (Figure 3). For the 
remaining two IDCs (Figure 4), more voxels within the 
tumor were significantly better fitted by bi-exponential 
function (ROI-averaged analysis also revealed bi-
exponential preference). In terms of voxel fractions for each 
tumor subtype, voxel-wise F-test revealed that 23%±21% of 
voxels within the ROI exhibited bi-exponential signal decay 
for IDC, and 23%±12% for ILC, higher than the fraction 
of 10%±11% for DCIS (P=0.35 and P=0.23, respectively).
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Similar to ROI-averaged analysis, the mean ADC 
(1.02±0.28×10−3 and 1.03±0.29×10−3 mm2/s for entire 
tumor cohort and the mono-exponential preferred cohort, 
respectively) was systematically and significantly (P<0.001) 
larger than the mean D (0.97±0.28×10−3 and 0.97±0.28×10−3 
mm2/s, respectively) for the entire tumor cohort and the 
mono-exponential preferred cohort (Figure 5). Due to the 
extremely limited sample size of bi-exponential preferred 
cohort (n=2), the mean ADC (0.97±0.18×10−3 mm2/s) and 
D (0.88±0.11×10−3 mm2/s) showed no significant difference 
(P>0.05), although the mean ADC was still larger than D 
(Figure 5). 

Discussion

IVIM-MRI has been gaining increased attention in clinical 
applications of various organs, including breast (14,34,37-41).  
Sigmund et al. (14) first demonstrated the feasibility 
of using IVIM model in breast lesions. In a cohort of 
cancerous breast lesion including different subtypes (n=24), 
the segmented-fitting estimated ADC, D, f, and D* (mean 
± SD) from a spin echo based DWI acquisition at 3 T were 
1.34±0.39×10−3, 1.15±0.35×10−3 mm2/s, 9.8%±4.8% and 
15.1±10.4×10−3 mm2/s, respectively. Subsequent studies 
showed that IVIM parameters of f and D were helpful to 

Table 1 The comparison of mean ADC, D and f (mean ± SD) between the bi-exponential preferable and mono-exponential preferable tumor  
cohorts according to ROI-averaged F-test

ROI-averaged analysis ADC (×10-3 mm2/s) D (×10-3 mm2/s) D* (×10-3 mm2/s) f

Bi-preferred 0.97±0.24 0.86±0.22 11.78±2.81 0.14±0.04

Mono-preferred 1.11±0.32 0.98±0.27 15.97±22.22 0.13±0.10

P values 0.1437 0.1112 0.0121 0.6468

Note, the P values are calculated using Mann-Whitney U-test. ADC, apparent diffusion coefficient; ROI, region-of-interests.

Figure 3 The DCE post-contrast image (A) and parametric maps (B-H) of an ILC tumor containing more mono-exponential preferred 
voxels. DCE, dynamic-contrast enhanced; ILC, invasive lobular carcinoma.
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better differentiate malignant and benign breast tumors 
than ADC (15,42). In the work of Bokacheva et al., the 
estimated ADC, D, f, and D* (mean ± SD) of 26 malignant 
breast lesions acquired by an EPI-DWI sequence at  
3 T were 1.40±0.30×10−3, 1.29±0.28×10−3 mm2/s, 6.4%±3.1% 
and 21.7±11.0×10−3 mm2/s, respectively (15). In the work 
of Liu et al., EPI-DWI were obtained at 1.5 T on 40 
malignant breast lesions, the median values of ADC, D, 

f, and D* were reported as 0.95×10−3, 0.85×10−3 mm2/s,  
10.34% and 94.71×10−3 mm2/s, respectively (42). In 
terms of IVIM quantification in breast, Cho et al. (36) 
compared fitting methods and sampling strategies, then 
proposed an optimized b-factor combination for improved 
IVIM parameters estimation in breast cancer. Their 
reported IVIM parameters of malignant lesions (n=24) 
estimated from an optimized b-factor combination and 
segmented fitting at 3 T were 1.195±0.471×10−3 mm2/s,  
13.183%±6.529% and 16.83±9.06×10−3 mm2/s, for D, f, 
and D* respectively. Suo et al. (43) also compared three 
different curve-fitting methods for IVIM analysis in a 
cohort of 12 IDC tumors obtained at 3 T using an EPI 
sequence with 7 b-factors. The reported D, f, and D* 
values estimated by the similar segmented fitting as our 
approach were 0.83±0.19×10−3 mm2/s, 6.10%±3.19% and 
159.50±90.32×10−3 mm2/s, respectively. By comparing the 
ADC and IVIM parameters values obtained in our study to 
those in the literatures, variabilities of the estimated values 
were found for all parameters, which could be attributed to 
the heterogeneities of tumor cohorts, acquisition sequences, 
b values and quantification methods. In particular, the largest 
discrepancy (>1,000% difference) was found in D*, and 
the second largest (up to 276% difference) in f, indicating 
the high uncertainty of f and D* via bi-exponential fitting 

Figure 4 The DCE post-contrast image (A) and parametric maps (B-H) an IDC tumor exhibiting more bi-exponential preferred voxels. 
DCE, dynamic-contrast enhanced; IDC, invasive ductal carcinoma.

Figure 5 The statistical comparison between ADC and D for bi-
exponential preferred tumor group, mono-exponential prefer 
group and whole tumor cohort (n=29) based on voxel-wise F-test. 
ADC, apparent diffusion coefficient.
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approach, even when the optimized method was applied. 
In contrast, the discrepancies on the estimated ADC (up to 
~47% difference) and D (up to ~52% difference) between 
different studies were much smaller compared to D* and f. 
However, none of previous studies examined whether IVIM 
analysis provides significantly better fit of DWI signal decay 
in breast cancer in a statistical view.

In this study, we statistically compared the segmented bi-
exponential fitting and mono-exponential fitting f of DWI 
signal decay in malignant breast tumors. Despite that F-test 
is known to tend to choose the simpler model in comparison 
to AIC (44), the model preference results derived from 
both F-test and AIC in our study were consistent. In total 
29 breast tumors, 15 tumors were significantly better fitted 
by bi-exponential function while other 14 tumors were not 
by using ROI-averaged analysis. More advanced invasive 
tumors of IDC (12:10) and ILC (2:1) while fewer precursor 
tumors of DCIS (1:3) were better fitted by bi-exponential 
model as found in ROI-averaged analysis. Regardless of 
model preference and tumor subtypes, ADC value was 
significantly larger than D. On the other hand, there was 
no significant difference in the value of ADC, D, and f 
between the mono-exponential preferred cohort and the bi-
exponential preferred cohort. 

The significantly better fitting to bi-exponential function 
by ROI-averaged analysis in over half tumors strongly 
suggested the presence of IVIM effect in these tumors. 
The exhibition of bi-exponential DWI signal in more 
advanced invasive tumors might indicate the increased 
micro-vascularity in the invasive tumors compared to the 
precursor tumor in situ (i.e., DCIS), while yet to be further 
verified. On the other hand, a number of advanced invasive 
tumors apparently exhibited mono-exponential DWI 
signal decay. This may be interpreted by either the absence 
of IVIM effect, or the undetectability of IVIM effect 
restricted by the limited SNR under the scan protocol (16).  
These two possibilities cannot be further delineated based 
on the current study. Presuming the presence of IVIM 
effect, the detectability of bi-exponential DWI signal could 
theoretically be improved by using more and optimized 
b-factors, higher NSA and better estimation methods. 
Nevertheless, as 8 b-factors and NSA of 4 were applied 
for acquisition and the segmented bi-exponential fitting 
was used for IVIM analysis, our data represented a typical 
clinically applicable protocol with reasonably high SNR, 
so it is believed that the model preference was not biased 
by the scan protocol and fitting method. The significantly 
larger value of ADC than D in all tumors suggests that 

the DWI signal at low b-factors does affect most likely 
overestimate the tumor diffusivity (45), regardless of 
fitting model preference. In consequence, D may be used 
as a more accurate parameter to reveal tissue diffusivity 
than ADC. The insignificant difference in the calculated f 
between the mono-exponential preferred cohort and the bi-
exponential preferred cohort was a bit out of expectation, 
which might be majorly explained by the relatively lower 
micro-vascularity and hence the small value of underlying 
f (generally reported as <15% in literatures) in breast 
cancers. It has been suggested that small f could be 
associated with higher estimation uncertainty, which was 
also reflected by the larger SD of f in the mono-exponential 
preferable cohort (Table 1). It is plausible that this larger 
SD resulted from the f estimation uncertainty may obscure 
the difference of f between the mono-exponential and bi-
exponential cohorts. On the other hand, the relatively 
small sample size might also contribute to the insignificant 
difference, so should be increased in future studies for 
better delineation. 

Quite different from the ROI-averaged analysis, the voxel-
wise analysis reveals that most tumors (n=27) presented 
more voxels exhibiting mono-exponential diffusion behavior 
than bi-exponential type, implying the heterogeneous but 
relatively small microvascularity in breast cancer. In addition, 
this difference may be explained by that ROI-averaged 
analysis could remarkably increase the DWI signal SNR and 
thus enhance the detectability of macroscopic IVIM effect 
(46,47). It has been recognized that the noise of magnitude 
MR image acquired by a single coil has Rician distribution 
rather than Gaussian distribution (48). At extremely low 
SNR below three, Rician distribution can be considerably 
deviates from Gaussian distribution, and results in the non-
zero positive mean of the noise. In this study, all images were 
acquired by an array coil. Although the magnitude image 
noise pattern could be complicated, the voxel-wise fitting, 
in particular at high b values was carefully examined in this 
study to avoid the possible bias introduced by noise. In all 
cases, flattening of the DWI decay at high b-factors was not 
observed, and the image intensities within the lesion ROIs 
were still well above the background noise level even at the 
highest b value of 1,000 s/mm2. In the presence of tumor 
heterogeneity revealed by voxel-wise analysis, it is interesting 
to find that the average bi-exponential preferable voxel 
fraction (23%) was higher in advanced IDC and ILC tumors 
than the voxel fraction (10%) in precursor DCIS tumors, 
indicating the increased micro-vascularity in advanced 
breast tumors. Nevertheless, this has to be thoroughly 
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further validated. Similar to the ROI-averaged analysis 
result, the calculated mean ADC in voxel-wise analysis was 
significantly larger than the corresponding mean D. One 
advantage of voxel-wise analysis over ROI-averaged analysis 
is the capability of revealing tumor heterogeneity. However, 
considering the relatively lower SNR compared to ROI-
averaged analysis, f and D* should be used and interpreted 
with caution due to the possible inaccuracy and high 
uncertainty induced by quantification (23,36). 

It is interesting to compare the DWI model preference 
results in breast cancer as found by this study to those in 
other tissues. Wittsack et al. reported that bi-exponential 
model better described the DWI signal decay of the 
healthy kidney at 3 T even for voxel-wise analysis, while 
was less robust to noise than mono-exponential model (49). 
In another study, Quentin et al. (44) found that mono-
exponential model was most preferable in prostate cancers 
compared to other advanced diffusion models including 
bi-exponential IVIM, and bi-exponential model was best 
to describe DWI signal in healthy prostates of young 
volunteers. These model preference differences from our 
results in breast cancer could be explained by the intrinsic 
properties of different tissues, such as diffusivity and capillary 
density, as well as the different acquisition protocols used. 
It is speculated that the capillary density in kidney might be 
much higher (mean f=0.44 in Wittsack’s study) than that in 
breast, which makes the bi-exponential DWI behavior more 
easily to be detected. Meanwhile, breast and prostate DWI is 
suspected to suffer from lower SNR and more pronounced 
artifact than kidney DWI, which might also obscure the 
underlying bi-exponential DWI under a typical clinical 
acquisition protocol. It is also noticed that the averaged f in 
prostate cancer was reported as 0.29 in Quentin’s study (44)  
while mono-exponential was still preferable. This also 
supports the more frequent mono-exponential model 
preference as found by our study in breast cancer since the f 
value was even lower (<0.15). 

This study is majorly limited in its small sample size, 
in particularly of DCIS and ILC. We only focused on 
malignant breast tumors in which more pronounced 
IVIM effect could be presumed. The discrimination of 
normal tissue, precursor and advanced breast tumors using 
IVIM parameters (15,42) is beyond the study purpose. 
We did not correlate the IVIM parameters to pathology 
or clinical outcome either because of the retrospective 
nature of this study. To further enhance the clinical impact, 
these investigations are warranted in the future and some 
promising results have been reported in other tissues in 

literatures (50,51). It is worth noting that DWI signal 
model preference and the calculated parameter values are 
dependent on scan protocol and fitting method. Although 
high NSA and segmented fitting were applied, our results 
just applied to the specific acquisition protocol and fitting 
method, representing a typical situation under clinically 
practical and achievable protocol, which might not be the 
most optimized one. It is also recognized that the number 
of b-factors used in our study, i.e., 8, was relatively small. As 
such, the statistical power of F-test and AIC might need to 
be further strengthened by applying even more b-factors, 
but at the cost of the longer scan time. Meanwhile, the 
pre-processing for fitting in this study might have some 
pitfalls. For example, performing linear least-square fits 
to logarithmic forms of the mono-exponential function, 
although is frequently adopted in many studies to simplify 
computation, this logarithmization operation might 
potentially affect the noise distribution pattern of the image 
and hence the fitting result, in particular at low SNRs. 
The optimization of IVIM acquisition and quantification 
is definitely worth being further exploited, whereas is also 
beyond the purpose of this study, and needs to be conducted 
in a prospective study design in the future. 

Conclusions

In conclusion, although the presence of IVIM effect could 
be strongly suggested in some malignant breast tumors, our 
results show that bi-exponential fitting does not necessarily 
better represent the DWI signal decay in breast cancer 
in a statistical view under a clinically typical acquisition 
protocol and SNR as the microvascularity in breast cancer 
might be generally small. Although the IVIM detectability 
and quantification in breast cancer are much dependent on 
many factors such as acquisition protocol, fitting algorithm 
and analysis method, our study indicates the importance 
to statistically examine the breast cancer DWI signal 
characteristics in practice so as to select the appropriate 
model to interpret the quantification result in DWI analysis. 
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