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Background: Quantification of in vivo chemical exchange saturation transfer (CEST) magnetic resonance 
signals is challenging due to contamination from coexisting effects, including the direct water effect and 
asymmetric magnetization transfer. Fitting-based analysis allows the calculation of multiple types of signals 
from the line shape of Z-spectra. However, the conventional voxelwise method has several drawbacks, 
including its long computation time and its susceptibility to image noise and Z-spectra oscillations, and it is 
difficult to determine the initial fitting parameters.
Methods: Herein, we propose a K-means clustering method for accelerated Lorentzian estimation (KALE) 
in CEST quantification. Briefly, voxels in CEST images are clustered into K groups according to their 
Z-spectra characteristics. A ‘groupwise’ fitting process is then performed with preset initial values, yielding 
a set of fitted spectra and fitted parameters for each group. With the updated initial values, each group 
is further clustered into subgroups, and groupwise fitting is performed again. This hierarchical K-means 
clustering and parameter updating process continues until the pixel number or intensity error meets the 
termination criteria. Voxelwise fitting could be further conducted to improve the quantification images 
(termed voxel-K) by utilizing the previous groupwise KALE results as the initial values (termed group-K).
Results: Incorporated with Lorentzian difference (LD) quantification, KALE was first optimized and 
evaluated on 5 healthy human brain datasets at 3 Tesla. Compared with traditional voxel-by-voxel LD 
quantification, the computation times of group-K and voxel-K were significantly reduced by ~85% and 
~70%, respectively (P<0.001). Furthermore, the group-K images exhibited better denoising performance 
than traditional LD and voxel-K. KALE was further validated on six ischemic rat brains acquired at  
7 Tesla, with both LD_group-K and LD_voxel-K displaying almost identical contrast maps with traditional 
voxelwise maps. When incorporated with the five-pool Lorentzian fitting (LF), KALE exhibited an improved 
contrast-to-noise ratio (CNR) for amplitude maps of each pool [P=0.003, 0.015, 0.047, and 0.047 for amide, 
nuclear Overhauser effect (NOE), magnetic transfer (MT) and guanidine amine, respectively] and improved 
fitting goodness (P=0.033).
Conclusions: KALE quantification provides comparable or even superior contrast maps to traditional 
voxelwise fitting, with significantly reduced computation time. The ‘smart’ and hierarchical voxel-clustering 
and parameter updating process of KALE may facilitate more preclinical and clinical CEST applications.
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Introduction

Chemical exchange saturation transfer imaging (CEST) 
magnetic resonance imaging (MRI) can be used to 
indirectly image low concentration components with 
enhanced sensitivity by measuring the deprivation of water 
signals caused by the exchange of selectively saturated 
protons. The specific radiofrequency (RF) labeling of 
solute protons in CEST allows for the imaging of targeted 
metabolites (1-5). Due to the pH sensitivity of the chemical 
exchange process (6-8), CEST can also measure changes 
in the microenvironment, i.e., changes in pH. Therefore, 
CEST MRI has great potential in clinical applications such 
as the detection of ischemic stroke, tumors, and neurologic 
diseases.

CEST images are acquired as a function of saturation 
frequency offsets, generating the so-called Z-spectrum. 
However, multiple signal components are shown as 
overlapping effects in the Z-spectrum, including direct 
water saturation (DS) (9), the magnetic transfer (MT) 
effect (9-11) from macromolecules, the nuclear Overhauser 
effects (NOEs) from mobile macromolecules (12-14), and 
the CEST effects from multiple types of exchangeable 
protons such as creatine (4,15,16), phosphocreatine (17-19),  
glycogen (20-22), amide (23-25), and amine (15,26,27). 
Line shape fitting-based quantification methods have been 
proposed to quantify these effects by fitting the experimental 
data with multipool models [multipool Lorentzian fitting 
(LF)] (26,28,29) or by taking the difference of raw Z-spectra 
and the fitted background spectra [Lorentzian difference 
(LD) analysis] (30-32). The LD and multipool Lorentzian 
allow the estimation of peak amplitude, peak width and 
centered offset for multiple proton pools and therefore 
have been increasingly used in a wide range of preclinical 
and clinical studies (33,34). However, generating contrast 
maps by voxelwise fitting results in high computational 
costs, which increase dramatically with image size and 
fitting complexity. In addition, the fitting results are easily 
affected by image noise, Z-spectrum oscillations and the 
initial values of iterative optimization. These obstacles have 
greatly hindered CEST applications, especially for clinical 

situations with a weak CEST signal of a few percent and a 
large dataset with multiple slices.

To tackle the obstacles, an “image downsampling 
expedited adaptive least-squares (IDEAL)” approach (35) 
was developed, which creatively used voxel-grouping by 
multilevel downsampling and fitting updates to generate 
contrast maps. Despite its improved denoising performance, 
IDEAL used a fixed-square subgroup downsampling 
strategy, resulting in intensity dilution and loss of detailed 
structure information in the contrast map. Later, another 
study used a similar voxel grouping idea to IDEAL but 
further integrated K-means for voxel clustering (36). 
Since K-means can intelligently group voxels according to 
the image structure, this study significantly improved B0 
correction using 1-pool LF. However, this study did not 
calculate contrast maps from LF.

In this study, we develop a K-means clustering method 
for accelerated Lorentzian estimation (KALE) approach to 
calculate CEST contrast maps based on LF of Z-spectra. 
KALE groups voxels using K-means clustering according 
to their Z-spectral similarities, and only a single fitting is 
required within each group. Subgrouping and ‘groupwise’ 
fitting are performed hierarchically at multiple levels, with 
the initial values and boundaries updated adaptively for each 
group. We first optimize and validate KALE implemented 
with LD quantification using multislice healthy human 
brain data acquired at 2 T. Then, for the ischemic rat 
brain acquired at 7 T, KALE is further evaluated for 
implementation with LD and with five-pool LF.

Methods

Hierarchical K-means clustering and transitional fitting 
parameters

K-means clustering is a simple and popular clustering 
method. Under the K-means++ strategy (37), K-means 
clustering classifies voxels into a designated number (K) 
of groups based on the distance of each voxel from K 
centroids (37). In CEST MRI, the Z-spectra differ greatly 
among varying tissues and abnormal regions but resemble 
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each other within similar tissues or microenvironments. By 
clustering voxels with similar Z-spectra, the computational 
cost of LF can be greatly reduced. Thus, we proposed a 
KALE method that conducts K-means clustering iteratively 
in a top-down manner and optimizes the fitting parameters 
(and boundaries) of LF in a groupwise manner.

Figure 1 illustrates the KALE method. K-means 
clustering separates the Z-spectra of all image voxels into 
different groups by the K-means++ strategy. A group is 
regarded as fine-clustered (labeled in green) if it satisfies one 
of the two termination criteria (described below). Otherwise, 
the group is further clustered until each subcluster 
is fine-clustered. The whole process is implemented 
using the breadth-first search (BFS) strategy (38),  
and a demonstration of hierarchical clustering is shown in 
Figure S1.

To minimize tissue variation within the group, the 
criteria for the termination of clustering are set according 
to the standard deviation of voxel values or the number of 

voxels:
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where σcluster and σbrain are the standard deviations (σ) of the 
measured Z-spectral intensities for voxels within a cluster 
and for voxels within the entire brain, respectively; N/cluster 
and N/image are the voxel number within a cluster and the 
voxel number in the image, respectively; and RS and  2

NR  are 
the trade-off parameters determined by the ratio of σbrain and 
σcluster and N/image and N/cluster, respectively. Eq. [1] constrains 
the signal intensities within a group to a small standard 
deviation, and Eq. [2] restricts the voxel numbers within a 
group according to the full image size. Since the restriction 
is on a two-dimensional image, RN is set as the squared 
term. The choice of clustering number K and clustering 
termination criteria Rs and RN are discussed in the Results 
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Figure 1 An illustrative flowchart of the proposed method. The whole S0-normalized CEST image series is input to the K-means++ 
clustering method. K=2 is used for illustration. Output1 and output2 correspond to KALE with the Lorentzian difference and the parameter 
set, as described in A. KALE with the multipool Lorentzian fitting update parameters in the strategy described in B has the final parameters 
as output. The details can be found in the Methods section, “Hierarchical K-means clustering and transitional fitting parameters”. LF, 
Lorentzian fitting; CEST, chemical exchange saturation transfer; KALE, K-means clustering method for accelerated Lorentzian estimation.

https://cdn.amegroups.cn/static/public/QIMS-22-1379-supplementary.pdf


Quantitative Imaging in Medicine and Surgery, Vol 13, No 7 July 2023 4353

© Quantitative Imaging in Medicine and Surgery. All rights reserved.   Quant Imaging Med Surg 2023;13(7):4350-4364 | https://dx.doi.org/10.21037/qims-22-1379

Section “KALE with LD”.

K-means integrated with the LD 
The single-pool LF (39) process is first embedded in the 
clustering iteration.
 ( ) 2

1 4

bf ω d
ω a

c

∆ = +
∆ − + × 

 
 [3]

where Δω is the frequency offset from water resonance and 
a, b, and c are the frequency offset, amplitude, and linewidth 
of water, respectively. d is the baseline constant.

The LF of the group-averaged Z-spectra is conducted 
for each group, generating a fitted reference Z-spectra 
(Zgroup,fit) and a set of parameters (Paras = [a, b, c, d]). The 
iterative step is only executed for groups that need to be 
further clustered. Paras of these groups are used as initial 
values for fitting of the group-average Z-spectra in the 
next loop of finer clustering. Finally, the groupwise fitted 
Z-spectra (Zgroup,fit) of all fine-clustered groups are merged 
as the groupwise reference signal Zkgroup_ref. Moreover, the 
groupwise optimized parameters Paras are used as initial 
values for voxelwise LF to generate Zkvoxel_ref. Therefore, the 
LD images can be obtained by two strategies, including (I) 
subtracting the experimental Z-spectra from the voxelwise 
fitting (Zkvoxel_ref), marked as LDvoxel-k; and (II) taking the 
difference of the groupwise reference spectra (Zkgroup_ref) and 
the group-averaged Z-spectra, marked as LDgroup-k.

K-means integrated with multipool LF
Then, the KALE concept is combined with multipool LF, 
including water, amide, amine, NOE, and MT pools:
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where Mz and M0 are the Z-spectra with and without 
saturation and ai, bi and ci are the frequency offset, amplitude 
and line width of the peak for the ith pool, respectively.

The basic scheme is similar to KALE with LD. However, 
in KALE with multipool fitting, only Paras are recorded. 
For non-fine-clustered groups, Paras are used as initial 
values and to constrain the boundaries of fitting parameters 
(Eq. [5-7]) for further fitting the group-averaged Z-spectra 
over loops. For fine-clustered groups, each voxel within the 
group is fitted with Paras as the initial fitting parameters, 
with boundaries set as follows:
 1 1, ,

2 2low higha a a aλ λ   = − +    
 [5]

 [ ], 10 , 10low highb b b bλ λ  = − ∗ + ∗   [6]

 [ ], 100 , 100low highc c c cλ λ  = − ∗ + ∗   [7]

where [alow, ahigh], [blow, bhigh], and [clow, chigh] are the boundaries 
of the frequency offset (ppm), amplitude and line width 
(ppm) of a pool, respectively. For group m, λ is set as the 
largest standard deviation of the Z-spectral data among the 
different frequency offsets:
 ( )( )( )max mZ clusterϖϖ
λ σ ∆=  [8]

where ZΔω is the Z-spectral intensity (Mz/M0) at Δω.
The order of the standard deviation for a cluster is 

usually 10−2; thus, 10*λ and 100*λ are of the same order of 
amplitude and linewidth, respectively. Since we assumed 
that the voxels within a cluster have a similar structure with 
a relatively homogeneous B0 field, the fitting boundary for 
the offset is set as the range e of the standard deviation, 
which is ±(1/2)*λ.

Animal experiments

Experiments were performed under a project license 
granted by the ethics committee of Weifang Medical 
University in compliance with the institutional guidelines of 
Weifang Medical University for the care and use of animals. 
The animals used in the experiments were adult male 
Sprague-Dawley rats weighing 240 to 250 g. The stroke 
model used in this research was transient focal cerebral 
ischemia, where the rat experienced a 2-hour middle 
cerebral artery occlusion (MCAO) via intraluminal suture 
following reperfusion performed two hours post MCAO 
by withdrawing the nylon suture. During surgery, the body 
temperature of the rat was maintained at 37–37.5 ℃.

Brain MR imaging was performed at 2 hours post 
transient MCAO surgery on a Biospec 7 Tesla horizontal 
scanner (Bruker, Germany) with a transmit-receiver volume 
coil (diameter =40 mm). The rats were anesthetized by 
first applying ~4% isoflurane and then maintained at 1–2% 
during data acquisition. Multislice T2W images were first 
acquired. Then, a 1 mm thick coronal slice at the center of 
the striatum was selected for the collection of both water 
saturation shift referencing (WASSR) (40) and CEST 
images. The imaging sequence consists of a continuous-
wave presaturation pulse (Tsat =2,500 ms) and a rapid 
acquisition with relaxation enhancement (RARE) readout 
[RARE factor =32, repetition time/echo time (TR/TE) 
=5,000 ms/4 ms]. With B1sat = 0.7 µT, a total of 51 Z-spectra 
images were collected from −10 to 10 ppm. WASSR 
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images were collected by a weak saturation pulse (B1sat  
=0.5 µT, Tsat =500 ms) with Δω incremented from −1 to  
1 ppm (0.1 ppm step size) to correct B0 inhomogeneity. The 
M0 image without saturation at 66 ppm was acquired for 
data normalization. Other imaging parameters were field of 
view (FOV) =34×28 mm2 and matrix size =64×64.

Healthy volunteers

Five healthy volunteers were recruited for brain data 
acquisition to validate KALE on clinical data. The study was 
conducted in accordance with the Declaration of Helsinki 
(as revised in 2013). The study was approved by the 
institutional review board, Tsinghua University, China, and 
informed consent was obtained from all the subjects. MR 
data were collected on a 3.0 Tesla Philips scanner (Ingenia, 
Philips Health Care, Amsterdam, The Netherlands) with a 
32-channel phase array.

CEST images were acquired using a 3D APT sequence 
with turbo spin echo readout on a 7 mm thick axial slice 
selected from T2W images. A 40×50 ms Gaussian-shaped 
saturation pulse with a 100% duty cycle was used. Other 
imaging parameters of CEST images were as follows: Tsat 
=2 s, B1sat =0.7 µT, 31 frequency offsets (i.e., ±0.5, 0.8, ±1, 
1.2, 1.7, 1.9, ±2.1, 2.3, 2.5, ±3, +3.4, ±3.5, +3.6, +3.7, ±4, 
+4.5, ±5, ±6, ±8, ±10 ppm), TR =5 s, TE =7.8 ms, FOV 
=220×186 mm2 with an acquisition voxel size of 2×2×7 mm3, 
and 5 slices. For better visualization, the vendor provided 
finer reconstruction images of 256×256 using zero-padding, 
which was used by all the following CEST analyses. The M0 
image at −1,560 ppm was acquired for data normalization. 
WASSR images (40) were collected for B0 correction, with 
the same saturation time and power as animal scanning. 
Multislice T2W images were acquired with a slice thickness 
of 1.5 mm, TR =5,000 ms, and TE =336 ms. T1w images 
were collected with a slice thickness of 1.25 mm and TR/
TE of 6.5/3.2 ms.

Data analysis

All data were processed by custom written MATLAB 
code on a computer with an Intel(R) Core(TM) i7-
9700K processor, a 3.60 GHz CPU, and 32 G RAM. The 
saturation data were first corrected for B0 inhomogeneity 
by the WASSR map and then interpolated by the MATLAB 
function “spline” with a step size of 0.1 ppm. The B0 
corrected image series were then normalized by the M0 
image. The computation time was accessed by MATLAB 

function “tic” “toc” from the start to the end of the fitting 
process (excluding data preprocessing).

Determination of trade-off parameters RS and RN
To determine the proper RS and RN values, the structural 
similarity index (SSIM) (41) and peak signal-to-noise 
ratio (PSNR) (36) were calculated between the groupwise 
Lorentzian estimation of the whole image and the raw input 
saturated data at −10 to −6.25 ppm, −2 to 2 ppm and 6.25 to 
10 ppm:
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where x is the fitted data and y is the raw normalized 
CEST data (Mz/M0); μx and μy are the mean values for x 
and y, respectively; σx and σy are the standard deviations of 
x and y, respectively; σxy is the covariance between x and 
y; and c1=(k1L)2 and c2=(k2L)2 are two constants to stabilize 
the division with a weak denominator, in which L is the 
dynamic range of the voxel values and by default k1=0.01 
and k2=0.03.
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where peakvalue is set to 1, and MSE is the mean square 
error of x and y.

LF details
For the single-pool fitting, the initial parameters for both 
KALE and traditional LF were set arbitrarily. Z-spectra 
within (−10 to −6.25), (−2 to 2) and (6.25 to 10) ppm were 
used in fitting.

For 5-pool fitting, the whole Z-spectra were fed into 
the fitting. The initial value and boundaries of the fitting 
parameters for both KALE and the traditional method were 
set as shown in Table 1 (42).

For both the traditional methods and KALE, the 
MATLAB-embedded function ‘lsqcurvefit’, a nonlinear 
least-squares solver, was used with the ‘lenvenberg-
marquardt’ algorithm for optimization. The termination 
tolerance on the function value was set to 1e-10, and the 
maximum number of function evaluations was set to 10,000. 
The optimization was solved numerically by the finite 
difference method without using the Jacobian matrix.

Evaluation of the fitting performance
The fitting performance of the traditional method and 
KALE was evaluated by calculating the coefficient of 
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variation (COV) of the designated ROI, namely, the 
putamen for human data and the striatum of the normal 
hemisphere for rat data:
 ( )

( )
ROI

COV
ROI

σ
µ

=  [11]

where σ(ROI) and μ(ROI) are the standard deviation and the 
mean value of the ROI intensity, respectively.

The fitting goodness was calculated by the coefficient of 
determination (R2) (43),
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where yi is the Z-spectrum,  y is the mean of the Z-spectrum, 
 


iy  is the fitted spectrum, and N is the number of voxels in 
the brain.

Robustness to noise
Six levels (σ=0.005, 0.01, 0.015, 0.02, 0.025, 0.03) of 
Gaussian noise were added to the human brain data with a 
clinical size to assess the robustness of KALE with LD to 
noise.

The significance in all statistics was analyzed by the 
Prism embedded paired t-test method. Groups were 
considered to be different when the P value was 0.05 or less 
between groups.

Results

KALE with LD 

Determination of the K value and trade-off parameters
To determine the K value for K-means clustering and the 
proper termination criteria of clustering for data with a 
clinical size (256×256), we tested KALE on healthy human 
brain data. We first evaluated the choice of K value based 
on the total computation time, with the empirical RN =50 
and RS =120. As shown in Figure 2A, the computation time 
increased dramatically when K was larger than 3; hence, 
it was set to 3. With K=3, RN and RS were determined by 
considering both the computation time and the fitting 
performance, including SSIM and PSNR. Since the 
clustering process could not converge for RN beyond 60 and 
RS beyond 130, RN and RS were tested from 0 to 60 and 130, 
respectively. As illustrated in Figure 2B-2D, the computation 
time group rose significantly when RN was over 40 and RS 
was over 50, while SSIM and PSNR increased slowly when 
RN was over 40 and RS was over 50. To achieve the best 
fitting performance within a sufficiently short computation 
time, RS =120 and RN =50 were chosen, where SSIM =0.989, 
PSNR =35.65, and the calculation time was 16.84 seconds 
per slice.

The parameters for rat data were estimated by assuming 
a linear relationship between the clinical image size 
(256×256) and preclinical image size (64×64). Specifically,  
 

2_
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 ( ) ( )_
_

clinical_image
 preclinical_images preclinical

S clinical

R
R

σ
σ= × . Thus,  

the coarsely estimated [RS, RN] for the periclinal data was  
[76, 13].

Evaluation on human data
As shown in Figure 3, for Z-spectra without noise, the LD 
contrast maps of KALE were similar to the traditional 
results. Whereas the CEST image series interfered with by 
Gaussian noise of σ=0.01, the LDgroup-k method performed 
better than the others, with similar contrast to the clear 
one. To evaluate the performance of the methods influenced 
by noise, the COVs within the putamen (ROIs plotted in 
Figure 3B) were calculated. Figure 3F,3G shows that the 
COV of the LDgroup-k method was not affected by noise, 
while the COV of LDvoxel-k and the traditional method 
increased as the noise level increased. Additionally, the 

Table 1 The starting points and boundaries of the offset (astart), 
amplitude (bstart) and line width (cstart) of five-pool Lorentzian fitting. 
The unit of the peak offset and line width is ppm

Parameters Amide NOE Amine MT Water

astart 3.63 −3.25 2.04 −1.48 0.02

alow 3.48 −3.67 1.8127 −4.223 −0.115

ahigh 3.78 −2.82 2.763 1.263 0.155

bstart 0.062 0.15 0.095 0.203 0.71

blow 0.006 0.015 0.009 0.02 0.071

bhigh 0.621 1.505 0.951 2.03 7.1

cstart 1.49 4.28 2.23 27.43 1.35

clow 0.745 2.14 1.115 13.715 0.675

chigh 2.98 8.56 4.46 54.86 2.7

ppm, parts per million; NOE, nuclear Overhauser effect; MT, 
magnetic transfer.
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Figure 2 Optimization of the clustering parameters. (A) The relationship of the K value with the computation time; (B) the relationship 
of RS and RN with the computation time; (C) the relationship of RS and RN with the SSIM; (D) the relationship RS and RN with the PSNR. 
SSIM, structural similarity index measure; PSNR, peak signal-to-noise ratio; RS and RN, trade-off parameters.

fitting results of five subjects (five slices per subject) were 
included for a statistical analysis of the computation time. 
The average computation times of the LDgroup-k and LDvoxel-k 
methods per subject (five slices) were 2.18 and 4.82 min, 
respectively, which were significantly shorter than that of 
the traditional method (9.48 min) (Figure 3H, P<0.001).

Evaluation of stroke rat brain data
Then, the KALE framework with the LD on stroke 
rat brain data was evaluated, as shown in Figure 4. The 
KALE summarized voxelwise LF (4,096 voxels in a CEST 
image) into 107 groupwise LF for a Z-spectral image 
series. Voxelwise KALE fitted the data with the groupwise 
optimized fitting parameters, achieving the same result as the 
traditional LD, with the computation time reduced from 7 
to 2 s. Statistically, the computation time for six rats showed 
a significant decrease for both groupwise and voxelwise 
KALE (Figure 4D). Since only the initial parameters were 
optimized, the contrast and spectrum of voxelwise KALE 
closely resembled the traditional method on both the image 

(Figure 4C) and the spectra (Figure S2A,S2B).
For the groupwise KALE, the image resolution was 

reduced due to the in-cluster averaging, which could 
be improved by increasing the final cluster number. An 
experiment on the final cluster number and the image 
intensity of groupwise KALE on rat data was performed, as 
shown in Figure 4F. The final cluster number was increased 
by adjusting the K value. The KALE-quantified values 
in the ischemic rat brain became stable and converged to 
the voxelwise LD, and the contrast maps were close to 
the traditional LD, as shown in Figure 4C, when the final 
cluster number was >330 at K=35. Although the increase in 
the K value costs more computation time, it is acceptable 
and still on the time scale of seconds given the small matrix 
size of the rat brain.

KALE with 5-pool LF

KALE was further integrated with 5-pool LF and tested on 
stroke rats with the same K value and clustering termination 
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Figure 3 Evaluation of KALE on human data with different noise levels. (A) B0 map; (B) T1W map, the red line highlights the ROIs analyzed 
in (F,G); (C) T2W map; (D,E) amide (3.5 ppm) and NOE (−3.5 ppm) maps of the traditional method and our method (LDvoxel-k, voxelwise 
LD result; LDgroup-k, groupwise LD result). (F,G) COV of amide (3.5 ppm) and NOE (−3.5 ppm) in the ROIs for three methods, where the 
traditional method is denoted in red lines, LDgroup-k in blue and LDvoxel-k in green. (H) The statistical result of the computing time for the five 
subjects. P value by the paired t-test in Prism (***, P<0.001). LD, Lorentzian difference; NOE, nuclear Overhauser effects; COV, coefficient 
of variation; KALE, K-means clustering method for accelerated Lorentzian estimation; ROI, region of interest.
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criteria as the KALE_LD animal experiments. As shown 
in Figure 5 and Figure 6A, KALE improved the image 
quality of the amplitude maps, and the contrast-to-noise 
ratio (CNR) (44) between lesion and contralateral tissue 
was significantly improved for all six rats on two sets of 
ROIs, as shown in Figure S3. Additionally, the fitted offset 
and linewidth maps were more homogeneous and less 

noisy in KALE (Figure 6B,6C), especially for the MT pool. 
The goodness of fit was then assessed by the COV of the 
ROI plotted on the normal hemisphere and R2 (43) of the 
whole brain for both methods among the 6 rats. KALE 
had a smaller COV and higher R2 than the traditional 
method for the five pools (Figure 6B,6C). The R2 contrast 
maps of the two methods are shown in Figure S4, where 

https://cdn.amegroups.cn/static/public/QIMS-22-1379-supplementary.pdf
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Figure 4 LD analysis of ischemic stroke rat data. (A) The T2W image with an ROI on the lesion side (ROI1, red circle) and a contralateral 
ROI (ROI2, blue circle). (B) B0 map obtained by WASSR. (C) Top: the contrast map at 3.5 ppm by traditional LD analysis, voxelwise KALE 
(LDvoxel-k) and groupwise KALE (LDgroup-k). Bottom: the contrast map at −3.5 ppm, same layout as the top row. (D) The statistical result of 
computing time for six rats. P value by the paired t-test in Prism (***, P<0.001). (E) ROI plotted to analyze the performance of groupwise 
KALE. (F) The averaged value by groupwise KALE with the final cluster number of the ROI on the APT and NOE contrast maps. LD, 
Lorentzian difference; NOE, nuclear Overhauser effects; ROI, region of interest; APT, amide proton transfer; WASSR, water saturation 
shift referencing; KALE, K-means clustering method for accelerated Lorentzian estimation.
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two ROIs were drawn on the region with a higher value 
on the contrast map of KALE. Since the difference in the 
fitted spectra by the two methods (Figure S4) showed a 
larger variance for offsets within 1 to 5 ppm, the magnified 
spectra from 1 to 5 ppm are plotted in Figure S4, where 
KALE fitted the original data around 2 ppm better than 
the traditional method in ROI1, as indicated by the 
arrow. In addition to the improved fitting performance, 
the average computation time of 6 rats in KALE was  
0.41 minutes (24.6 s), drastically decreased from that of 8.27 
minutes by the traditional method (Figure 6C).

Discussion

CEST quantification approaches based on LF are 
increasingly employed in the research community, but 
traditional voxelwise fitting is sensitive to noise and 
initial parameters, with the computation time increasing 
dramatically with the number of voxels and fitting 

parameters. The developed KALE framework provides a 
fast and accurate method for CEST quantification maps 
by employing data-driven voxel grouping and parameter 
updating hierarchically. At each hierarchical level, voxels 
within a group are intelligently subgrouped by K-means 
clustering according to their Z-spectra similarity; then, 
only one fitting process is conducted in a subgroup using 
the groupwise optimized parameters. Tests on both the 
ischemic rat brain and healthy human brain demonstrated 
comparable or even superior CEST contrast maps with 
significantly reduced computation time compared to 
traditional voxelwise fitting. Smart and hierarchical data-
driven voxel clustering and parameter updates may facilitate 
more preclinical and clinical CEST applications.

Since traditional voxelwise fitting methods fit the 
spectrum of each voxel separately, the computation time 
increases with the image size. Furthermore, the fitting 
process uses the same fixed parameters for all voxels, 
without taking into account the correlation and diversity 

https://cdn.amegroups.cn/static/public/QIMS-22-1379-supplementary.pdf
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Figure 5 The parameter maps of KALE with 5-pool Lorentzian fitting and the traditional one. Each column from left to right, the amide 
pool (3.5 ppm), NOE pool (−3.5 ppm), amine pool (2 ppm), water pool and MT pool. (A) The amplitude contrast maps of traditional 5-pool 
Lorentzian fitting (first row) and KALE (second row). (B) Linewidth maps of traditional 5-pool Lorentzian fitting (first row) and KALE 
(second row). (C) The offset maps of traditional 5-pool Lorentzian fitting (first row) and KALE (second row). KALE, K-means clustering 
method for accelerated Lorentzian estimation; NOE, nuclear Overhauser effects; MT, magnetic transfer.
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among voxels. Therefore, for some voxels, many iteration 
steps are required to reach the optimized targets. Since 
KALE updates the parameters multiple times with varied 
initial values, the fitting process undergoes fewer iterations. 
For the rat data, the average number of iterations is 14–41 
for the traditional LD and 5–10 for KALE. Apart from the 
computation time of the fitting process, KALE also requires 
time for clustering. However, the average clustering time 

is almost negligible compared to the time required for the 
fitting process and is only ~17 s for 1,961 final clusters of 
a human brain slice. Therefore, KALE can dramatically 
reduce the computation time by reducing both the number 
of fits and the number of iterations for each fit.

For each clustering level, KALE fits an averaged 
experimental spectrum of all voxels within the cluster, 
leading to improved noise reduction performance over 
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Figure 6 Statistical comparison of traditional 5-pool Lorentzian fitting (black bars) and KALE (gray bars) on data from 6 ischemic rats. 
(A) The CNR of the two methods for each pool was evaluated on the amplitude map using two sets of ROIs for each rat (as displayed in 
Figure S3, n=12). (B) The COV of the two methods for each pool was evaluated on the amplitude map for the ROI plotted on the normal 
hemisphere in red (n=6). (C) The brain average R2 of the two methods on data from the six rats (n=6). The average R2 is 0.993506 for KALE 
and 0.993438 for the traditional method. (D) The computation time of the two methods on the data from the six rats (n=6). The average 
computation time is 8.27 minutes for the traditional method and 24.6 seconds for KALE. P value by paired t-test in Prism (*, P<0.05; **, 
P<0.01; ***, P<0.001). CNR, contrast-to-noise ratio; NOE, nuclear Overhauser effects; MT, magnetic transfer; KALE, K-means clustering 
method for accelerated Lorentzian estimation; COV, coefficient of variation; ROI, region of interest; R2, goodness of fit.
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traditional voxelwise LD (Figure 3D,3E). This study 
illustrates the denoising performance by adding simple 
Gaussian noise directly to the reconstructed magnitude 
images of the CEST series. However, real MR images 
contain noise from multiple sources and have complicated 
distributions, especially for multichannel readouts. More 
dedicated evaluations may be necessary in the future, e.g., 
utilizing Rician noise and Rician-bias correction.

Compared with the previous IDEAL approach, 
which performed fitting by the fixed ratio of squarish 
downsampling, KALE uses the same idea of voxel grouping 
to maintain the denoising performance. However, superior 
to IDEAL, KALE is more intelligent by clustering the 
voxels according to their Z-spectral similarity. Therefore, 
KALE achieves more accurate quantification maps with 
small structural details by avoiding contrast dilution from 
the voxel average (Appendix 1, Figures S5,S6). Note that 

the quantification accuracy and image detail of groupwise 
KALE is affected by the final cluster number, which is 
mainly determined by the K value and by the cluster 
termination criteria. Herein, different K values were 
investigated to determine the optimal final cluster number, 
as adjusting the termination criteria may cause clustering 
failure. The rat dataset suggested that K=35 could provide 
groupwise KALE with comparable results to the traditional 
method.

When implemented with multipool LF, KALE achieved 
quantification maps with higher CNR and better fitting 
goodness than the traditional voxel-by-voxel fitting 
approach, using only 1/20 of the computational time (0.41 
vs. 8.27 minutes). This further illustrated KALE’s advantage 
in complicated multiparameter fitting, where 15 parameters 
were required for a 5-pool model, by updating both the 
initial values of the fitting parameters and their boundaries 
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at each level of K-means clustering. The boundary 
constraints mainly included the standard deviation of voxels 
within each cluster among all offsets in the original Z-spectra 
(Eq. [4]). Thus, the possible abnormality of voxelwise 
fitting can be constrained by the groupwise information of 
neighboring voxels. KALE produced more homogeneous 
contrast maps compared to the results of the traditional 
method, as shown in Figure 5, with significantly reduced 
computation time.

In addition, the results on the ischemic rat data by KALE 
clearly showed half hemispheric hypointensity on the amide 
amplitude map (Figure 5), which was consistent with the 
results of previous studies (26,45,46). The lesion area on 
the amine contrast map showed a lower signal in a smaller 
area than on the amide map and is in agreement with the 
findings of Wu et al. (45) and Cui et al. (26). However, the 
opposite hyperintensity of the lesion was reported on the 
amine map (26,46). As discussed in Cui et al. (26), several 
effects at neighboring offsets also contributed to the signal 
at 2 ppm, which cannot be fully modeled by a single pool. 
Although the overall fitting performance was improved, 
with a lower COV in the normal region and higher R2 
(Figure 6), the extraction of signals was limited by the fitting 
model.

Currently, several machine learning-based methods 
have been proposed for CEST quantification (47-49). 
Although the online steps of machine learning-based 
methods are fast, the resulting contrast images are highly 
dependent on the training set or offline dictionary. Model-
based fitting is currently the most widely used method for 
in vivo experiments. The basic idea of KALE, to update 
the fitting parameters in a groupwise manner based on 
the similarity within the same tissues or structures, could 
be implemented on other quantification methods such as 
polynomial and Lorentzian fitting (PLOF) (26,50), LAREX 
omega-plot analysis (51), and Bloch-McConnell fitting. 
Although KALE was only evaluated on brain images in 
this work, its robustness to outlier pixels such as vessels 
was demonstrated, as shown in Figure S6, suggesting 
the promising potential application of KALE on other 
structures. Notably, although motion correction was not 
required in this study, for application to other structures 
that are more prone to motion artifacts, motion correction 
methods (52) could be applied prior to the KALE approach 
to ensure performance.
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Appendix 1 

The code was uploaded to GitHub: https://github.com/easyCEST/KALE.git.
As shown in Figure S1, the Z-spectra image stack was clustered into three groups in Layer 1, while only the background 

was fine-clustered. Then, the other two groups were further clustered with the LF parameters, Para, passed to the next layer 
as the initial values of fitting. Finally, after five layers of clustering, all subclusters were fine-clustered.

Compared to voxelwise LF, which uses fixed initial values and boundaries for all voxels, KALE has varied initial values and 
boundaries among clusters, and these values are optimized and updated progressively as the cluster size decreases. Figure S4 
illustrates more clearly that the voxelwise LF could have inaccurate fitting in some voxels. In comparison, KALE allows for 
more adaptive and intelligent fitting through multilevel voxel clustering.

IDEAL produced smoother amplitude maps than the traditional method. The CNR of IDEAL is comparable to that of 
KALE for the NOE contrast map, ~1.47 lower for amides and ~0.40 higher for amines (Figure S5E). Compared to IDEAL, 
the principle of the SNR improvement through the regional updating of fitting parameters is the same. However, KALE 
is slightly more intelligent because it clusters the voxels according to their structural correlations, while the smoothness of 
IDEAL was squarish in some areas. The R2 values of IDEAL, the traditional LF method and KALE were 0.9605, 0.9924 and 
0.9928, respectively. The computation times of IDEAL and KALE were 65.14 s and 20.98 s on data from this rat.

We used the unmasked brain image with muscles and vessels to test the performance of KALE on outlier voxels. As 
demonstrated in Figure S6, the internal carotid artery (circle 1) and the vertebral arteries (circle 2) show high intensity in 
both the traditional LD APT contrast map and the APT map of KALE. The unmarked side of the internal carotid artery 
shows lower intensity, probably due to the partial volume effect. For groupwise and voxelwise KALE, clustering was robust to 
outlier voxels.

LD results on data from all rats (Rat 1 in Figure 3).

Supplementary
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Five-pool Lorentzian fitting results on data from all rats (Rat 2 in Figure 5).
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Figure S1 A demonstration of KALE implemented on data from an IR rat brain. The blue background represents fine-clustered groups. 
The black background denotes groups that need to be further clustered. In the BFS strategy, each layer produces an image merged from 
fine-clustered groups in the layer and is integrated with the fine-clustered image generated from the previous layers.
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Figure S2 The raw data and the spectra of the two ROIs plotted in Figure 3A. (A) The fitted Lorentzian line shape and the corresponding 
Lorentzian difference spectra by traditional LD. (B) The fitted Lorentzian line shape and the corresponding Lorentzian difference spectra 
by voxelwise KALE (LDvoxel-k). (C) The fitted Lorentzian line shape and the corresponding Lorentzian difference spectra by the groupwise 
KALE (LDgroup-k). The ROI on the lesion side (ROI1)-related data are colored red, and the contralateral ROI (ROI2) is colored blue. The 
raw data are plotted as circles. The Lorentzian fitting (LF) is plotted as dashed lines. The Lorentzian difference (LD) is plotted as solid lines 
on the right vertical axis.
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Figure S3 ROIs for CNR calculation. Two sets of ROIs for each rat.

Figure S4 The R2 maps of the two methods in five-pool fitting and the fitted spectra. (A) The R2 map of KALE and the traditional method. 
ROI1 plotted on KALE marked the region with a higher R2 value on the KALE map. ROI2 plotted on the region with comparable R2 for 
the two methods. (B) ROI1: The original data points (red circle), the fitted spectrum by KALE (orange line), the fitted spectrum by the 
traditional method (blue line), and the difference in the spectrum obtained by the two methods (dash line) plotted by the right vertical axis. 
(C) Data within 1 to 5 ppm of (B). (D) ROI2: The original data points (red circle), the fitted spectrum by KALE (orange line), the fitted 
spectrum by the traditional method (blue line), and the difference in the spectrum obtained by the two methods (dash line) plotted by 
the right vertical axis. (E) Data within 1 to 5 ppm of (D). The arrows in (C,E) indicate the different fitting performance of the traditional 
method around 2 ppm on different voxels.
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Figure S5 The amplitude maps and the corresponding R2 maps of the three methods. Each row from left to right, the amide, NOE  
(-3.5 ppm), amine (2 ppm), water and MT amplitude map, and the R2 map. (A) Results of IDEAL. (B) Results of the traditional LD method. 
(C) Results of KALE. (D) Four sets of ROIs plotted on the lesioned (solid lines) and normal (dashed lines) hemispheres. (E) CNR of the 
three methods on the amide, NOE and amine amplitude contrast maps. Blank bars denote the traditional method, blue bars denote IDEAL 
and red bars denote KALE.

Figure S6 Experiments on the data from the whole brain of a rat. (A) The saturated image at 3.5 ppm. (B) From left to right, APT contrast 
maps by the traditional LD method, groupwise KALE, and voxelwise KALE. (C) The saturated image at -3.5 ppm. (D) NOE contrast maps 
with the same layout as in (B).
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