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Background: Automatic segmentation of knee cartilage and quantification of cartilage parameters are 
crucial for the early detection and treatment of knee osteoarthritis (OA). The aim of this study was to 
develop an automatic cartilage segmentation method for three-dimensional water-selective (3D_WATS) 
cartilage magnetic resonance imaging (MRI) and conduct cartilage morphometry and magnetic susceptibility 
measurements such as cartilage thickness, volume, and susceptibility values for knee OA assessment.
Methods: Sixty-five consecutively sampled subjects, who had undergone health checks at our hospital, were 
enrolled in this cross-sectional study and were divided into three groups: 20 normal, 20 mild OA, 25 severe 
OA. Sagittal 3D_WATS sequence was used to image cartilage at 3T. The raw magnitude images were used 
for cartilage segmentation and the phase images were used for quantitative susceptibility mapping (QSM)-
based assessment. Manual cartilage segmentation was performed by two experienced radiologists, and the 
automatic segmentation model was constructed using nnU-Net. Quantitative cartilage parameters were 
extracted from the magnitude and phase images based on the cartilage segmentation. Pearson correlation 
coefficient and intra-class correlation coefficient (ICC) were then used to assess the consistency of obtained 
cartilage parameters between automatic and manual segmentation. Cartilage thickness, volume, and 
susceptibility values among different groups were compared using one-way analysis of variance (ANOVA). 
Support vector machine (SVM) was used to further verify the classification validity of automatically extracted 
cartilage parameters.
Results: The constructed cartilage segmentation model based on nnU-Net achieved an average Dice score 
of 0.93. The consistency of cartilage thickness, volume, and susceptibility values calculated using automatic 
and manual segmentations ranged from 0.98 to 0.99 (95% CI: 0.89–1.00) for the Pearson correlation 
coefficient, and from 0.91–0.99 (95% CI: 0.86–0.99) for ICC, respectively. Significant differences were found 
in OA patients; including decreases in cartilage thickness, volume, and mean susceptibility values (P<0.05), 
and increases in standard deviation (SD) of susceptibility values (P<0.01). Moreover, the automatically 
extracted cartilage parameters can achieve an AUC value of 0.94 (95% CI: 0.89–0.96) for OA classification 
using the SVM classifier.
Conclusions: The 3D_WATS cartilage MR imaging allows simultaneously automated assessment of 
cartilage morphometry and magnetic susceptibility for evaluating the severity of OA using the proposed 
cartilage segmentation method.
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Introduction

Knee osteoarthr i t i s  (KOA) i s  the  most  common 
degenerative joint disorder leading to chronic pain and 
disability (1,2). Although KOA involves the whole joint, 
cartilage degeneration was deemed as KOA’s hallmark (3). 
Thus, early detection and accurate quantification of cartilage 
morphological and compositional changes are necessary 
to appropriately treat KOA. Magnetic resonance imaging 
(MRI) is a non-invasive method that can visualize cartilage 
directly and help diagnose articular cartilage disorders (4). 
MRI-based morphologic quantitative parameters (thickness 
and volume) and compositional data (e.g., relaxometry) are 
considered as important image biomarkers for the diagnosis 
and tracking of OA progression (5-7). However, this 
promising technique is not easy for clinical translation due 
to: (I) relatively long image acquisition time, and (II) time-
consuming image post-processing, especially in cartilage 
segmentation, which is often performed manually or semi-
automatically.

Quantitative susceptibility mapping (QSM) is a modern 
MR imaging technique that estimates the voxel-wise spatial 
distribution of magnetic susceptibility based on gradient 
recalled echo (GRE) sequence. QSM’s high sensitivity to 
dominant magnetic susceptibility sources in tissue (e.g., 
deoxyhemoglobin, iron deposit, proteins, the orientation 
of collagen fiber) has been shown and used in studies of 
knee cartilage (8-11). According to previous studies, the 
susceptibility value diversity in cartilage was attributed to 
different alignment angles of collagen relative to the B0 
field. Nykänen et al. (10) showed that QSM was sensitive 
to the integrity of the collagen network based on bovine 
cartilage specimens. Wei et al. (9) demonstrated that the 
arrangement of collagen fibrils is the dominant source of 
magnetic susceptibility anisotropy, and QSM is sensitive to 
collagen network damage or degeneration based on knee OA 
patients. In contrast to another quantitative MR sequence (T2 
relaxation, T1ρ, 23Na, etc.), QSM does not need to add extra 
image acquisition time or special sequence. The acquired 
cartilage GRE images could be separated into magnitude and 
phase images. The magnitude images were used for cartilage 

segmentation and morphologic measurement, whereas the 
raw phase images were used to obtain the susceptibility 
via image post-processing. Therefore, QSM is expected 
to be a promising clinical quantitative MR technique to 
simultaneously assess cartilage anatomical parameters and 
cartilage biochemical composition.

Although manual cartilage segmentation is currently 
considered the gold standard, it is laborious and time-
consuming and the results obtained are subject to analyst 
bias and error. In recent years, deep learning has become 
a powerful approach and primary option in medical 
image segmentation (12). Unlike traditional machine 
learning techniques, deep learning depends on the 
concept of building the neural network, which is inspired 
by the biological neural network, comprised of a large 
number of identical and linked simple computational 
units to achieve high performance on complex tasks with 
powerful electronic computers. Currently, Many network 
structures are explored and applied in deep learning, 
including convolutional neural networks (CNNs) (13), 
fully convolutional networks (FCN) (14), recurrent neural 
networks (RNNs) (15), and U-Net (16,17). nnU-Net 
(no-new-U-Net), which is a UNet-based segmentation 
model, can automatically configure itself without tuning 
any hyperparameter. Currently, nnU-Net has achieved 
better performance than highly specialized solutions in 
the 23 public datasets used in international biomedical 
segmentation competitions (18). However, nnU-Net has 
seldom been applied to knee cartilage segmentation based 
on MR images. Thus, we hypothesized that nnU-Net 
model could automatically segment knee cartilage and 
quantify cartilage parameters based on three-dimensional 
water-selective (3D_WATS) MR cartilage images. 

The two main goals of this study were as follow: (I) to 
develop an automatic cartilage segmentation method based 
on the nnU-Net model for 3D_WATS MR cartilage images; 
and (II) to obtain the cartilage parameters representing its 
morphometry and magnetic susceptibility information, such 
as cartilage thickness, volume, and susceptibility values, and 
evaluate them for KOA severity analysis. We present the 
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Patients who complained of knee joint pain and 

doubted of cartilage injury from September 2020 to 

May 2021 (n=169)

Received 3D_WATS cartilage magnetic resonance 

imaging (n=102)

Exclude

•	Patients with OA secondary to fracture (n=13)

•	Rheumatoid arthritis (n=8)

•	Osteonecrosis (n=4)

•	Patients with knee operations (n=10)

•	Poor image quality (n=2)

Study cohort (n=65)

Figure 1 Flow diagram of the selecting process in this study. 3D_WATS, three-dimensional water selective; OA, osteoarthritis.

following article in accordance with the STARD reporting 
checklist (available at https://qims.amegroups.com/article/
view/10.21037/qims-22-1245/rc).

Methods

Subjects 

Participating subjects were individuals who had undergone 
health checks at our hospital from September 2020 to 
May 2021 and volunteered to participate in this study. All 
participants were recruited by one orthopedic surgeon with 
10 years of experience (LW). Those who had OA secondary 
to fracture, rheumatoid, arthritis, and osteonecrosis or 
had knee operations were excluded. Flow diagram of the 
selecting process has been illustrated in Figure 1. A total of 
65 consecutive human subjects (52.2±15.1 years, 34 males) 
were enrolled in this study. Identification of OA was based 
on an anterior-posterior weight bearing knee radiograph. 
The severity of OA was assessed using the X-ray based 
Kellgren-Lawrence (KL) scale (19). According to the KL 
grade and clinical symptoms, subjects were divided into 
three groups: normal control (n=20, KL0), mild OA (n=20, 
KL1-2), and severe OA (n=25, KL3-4). The heights and 
weights of the participants were recorded at the time of 
examination. All participants completed the standardized 
Western Ontario and McMaster Universities Arthritis Index 
questionnaire for pain, stiffness, and functional impairment. 
This study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013). The protocol 

was approved by the institutional review board of Shanghai 
Ninth People’s Hospital (No. SH9H-2020-T395-2) and 
written informed consent was obtained from all participants. 

MRI examinations

The whole knee joint (35 right, 30 left) of all participants 
were scanned using a 3T MRI scanner (Achieva 3.0TX; 
Philips Healthcare, Best, Netherlands) with an eight-
channel knee coil (Philips Healthcare). The knee flexion 
angle was adjusted to 20–30°, and an immobilization sponge 
was used to increase participant comfort and reduce motion 
artifacts. The sagittal fat-suppressed 3D_WATS sequence 
[repetition time (TR)/echo time (TE) = 20/6.0, field-of-
view (FOV) =14 cm, matrix =640×640, flip angle =30°, pixel 
size =0.35 mm × 0.35 mm, slice thickness =1.5 mm, SENSE 
=2, scan time =5 min 40 s] was used for imaging cartilage. 
The acquired images were separated into magnitude and 
phase images. The raw magnitude images were used for 
cartilage segmentation and morphologic measurement, 
while the raw phase images were used for QSM via image 
post-processing. 

Automatic cartilage segmentation 

Sixty-five patients’ MR magnitude images with a size of  
528×528×120 were obtained. The 2D nnU-Net model was 
used to perform automatic cartilage segmentation. Details 
of the 2D nnU-Net model architecture were discussed 

https://qims.amegroups.com/article/view/10.21037/qims-22-1245/rc
https://qims.amegroups.com/article/view/10.21037/qims-22-1245/rc
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in (20), and the segmentation model was constructed 
as follows: first, 21 subjects were randomly selected for 
manual cartilage segmentation by a radiologist (CLL,  
12 years of experience), and the cartilage masks were input 
into the nnU-Net as ground truth for training. Second, 
the 3D sagittal MR magnitude images as well as the 
corresponding cartilage masks were broken into 2D images 
slice by slice and then used for training the 2D nnU-Net 
model. After that, the remaining subjects’ MR magnitude 
images were run in the well-trained U-Net model as the 
reference, and corresponding cartilage masks were obtained 
automatically. Five compartments of cartilage regions were 
labeled using the method of 3D connected component 
analysis based on Python (21) as ROIs: lateral femoral 
condyle (LFC), medial femoral condyle (MFC), lateral tibial 
plateau (LT), medial tibia plateau (MT), and patella (P). 

Manual cartilage segmentation 

To assess the inter-user viability of manual cartilage 
segmentation, 17 subjects (KL0=5, KL1–2=5, KL3–
4=7) were randomly selected from all subjects to be 
manually segmented again by two radiologist (JLG,  
5 years of experience and CLL, 12 years of experience). The 
operator delineated the cartilage margin of each of the five 
compartments of the joint slice by slice. A case of cartilage 
segmentation required approximately 120 slices of image 
processing. The manual segmentation was implemented 
using ITK-SNAP, which is a free open-source software tool 
(www.itk-snap.org). Intra-class correlation coefficient (ICC) 
was used to assess the consistency of quantitative cartilage 
parameters between the two manual segmentations obtained 
by two radiologists.

Cartilage morphological measurement 

Cartilage thickness was determined for five distinct 
compartments  using the Knee Segmentation and 
Registration Toolkit (KSRT) (https://bitbucket.org/
marcniethammer/ksrt/wiki/Home), which draws a medial 
line in each compartment of the cartilage on the input 
2D mask images and determining the cartilage thickness 
by calculating the minimal distance from each point 
on the medial line to the cartilage boundary (22). The 
corresponding thickness image was obtained automatically 
based on the cartilage mask images. The average thickness 
of each cartilage was determined by averaging all the non-
zero pixels’ values of the thickness image. The cartilage 

volume of each compartment was calculated by multiplying 
the total number of voxels encompassing the cartilage by 
the volume of each voxel (23). 

QSM reconstruction 

The raw phase images derived from cartilage imaging 
were used for QSM. Firstly, phase images were unwrapped 
using a Laplacian operator (24). The unwrapped phase 
was then input to the projection onto the dipole field 
(PDF) algorithm (25) to remove the background phase and 
estimate the tissue phase data (the effect can be checked in 
Figure S1). Finally, a field-to-source inversion algorithm 
(STAR-QSM) (26) was applied to the tissue phase image 
to calculate the quantitative susceptibility map. During the 
background phase removal and susceptibility calculation, 
a binary mask was used to define the region of interest by 
thresholding the magnitude image. The mean value and 
standard deviation (SD) of susceptibility values derived from 
the QSM using the STISuite V3.0 (https://people.eecs.
berkeley.edu/~chunlei.liu/software.html) for each cartilage 
compartment (27). 

Statistical analysis

All statistical processing was performed using the software 
SPSS27 (IBM, Armonk, NY, USA). The normality of 
distributions for continuous variables was tested using 
the Kolmogorov-Smirnov (KS) test. One-way analysis 
of variance (ANOVA) and the post–hoc Fisher’s least 
significant difference (LSD) test were used to compare the 
difference in age, body mass index (BMI), and cartilage 
parameters among three groups. Categorical data were 
compared using the chi-square test or Fisher’s exact test. 
Dice scores were calculated to evaluate the consistency 
between manual and automatic cartilage segmentation. 
Pearson correlation coefficient and ICC were used to 
assess the consistency of quantitative cartilage parameters 
between the automatic and manual segmentation methods, 
and between two manual segmentations obtained by 
two radiologists. For cartilage parameters, ANOVA, 
with taking the significant demographic characteristics 
as covariates were performed to assess the differences in 
cartilage thickness, cartilage volume, and susceptibility 
values between the three groups. Support vector machine 
(SVM) was used to further verify the classification validity 
of automatically extracted cartilage parameters. Five-fold 
cross-validation and a grid search method (28) were used 

http://www.itk-snap.org
https://bitbucket.org/marcniethammer/ksrt/wiki/Home
https://bitbucket.org/marcniethammer/ksrt/wiki/Home
https://cdn.amegroups.cn/static/public/QIMS-22-1245-supplementary.pdf
file:///C:\Users\86198\Desktop\(https:\people.eecs.berkeley.edu\~chunlei.liu\software.html)
file:///C:\Users\86198\Desktop\(https:\people.eecs.berkeley.edu\~chunlei.liu\software.html)


Zhang et al. Automatic segmentation to determine QSM and morphometry3512

© Quantitative Imaging in Medicine and Surgery. All rights reserved.   Quant Imaging Med Surg 2023;13(6):3508-3521 | https://dx.doi.org/10.21037/qims-22-1245

Figure 2 The workflow of image processing and parameters analysis. **, P<0.01; ***, P<0.001. OA, osteoarthritis; SVM, support vector 
machine.
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to determine the best SVM hyperparameters including 
the kernel, and values of C and gamma. P<0.05 denoted 
statistical significance. 

The workflow of image processing and parameters 
analysis is illustrated in Figure 2.

Results

Subject characteristics

The summary of the baseline characteristics of all subjects 
was shown in Table 1. The mild-OAs and severe-OAs had 

significantly higher age (P<0.001), whereas the gender, 
weight, height, and BMI were not significantly different 
between groups (P>0.05).

Segmentation performance

As shown in Figure 3, nnU-Net provided visually accurate 
and acceptable cartilage segmentation, which was similar 
to the manual segmentation provided by the radiologist. 
Strong inter-observer agreements were shown in Table 2. 
The ICC of two radiologists ranged from 0.91–0.99 (95% 
CI: 0.86–0.99). 

Table 1 Subjects baseline characteristics

Variables Total (n=65)  Normal (n=20) Mild-OAs (n=20) Severe-OAs (n=25) P value

Age (years) 52.2±15.1 37.8±11.9 55.1±11.9 61.5±10.7 <0.001

Gender 0.11

Male 34 (52.3) 13 (65.0) 12 (60.0) 9 (36.0)

Female 31 (47.7) 7 (35.0) 8 (40.0) 16 (64.0)

Weight (kg) 68.9±8.7 67.9±7.6 70.5±8.9 68.4±9.5 0.61

Height (cm) 167.7±7.7 168.9±5.2 168.8±6.7 165.9±9.8 0.84

BMI (kg/m2) 24.4±2.4 23.7±1.7 24.6±2.4 24.8±2.8 0.31

Knee 0.21

Left knee 30 (46.2) 6 (30.0) 11 (55.0) 13 (52.0)

Right knee 35 (53.8) 14 (70.0) 9 (45.0) 12 (48.0)

Continuous variables are expressed as the mean ± standard deviation. Categorical variables are presented as N (%). OA, osteoarthritis; 
BMI, body mass index. 
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Figure 3 Examples of cartilage segmentation and thickness mapping in the sagittal view for three subjects. (A) In a healthy 32-year-old 
female, the average dice score of five cartilage compartments is 0.95. (B) In a mild-OA 57-year-old male, the average dice score is 0.92. (C) 
In a severe-OA 71-year-old male, the average score is 0.75. There are few segmentation errors in the automatic segmentation of severe-OA 
subjects, within one or two sub-regions. The arrows in the (C) indicate the cartilage is missing and the corresponding thickness is zero. OA, 
osteoarthritis.
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Dice scores for the whole cartilage and five distinct 
compartments were shown in Table 3. Mean dice scores for 
manual and automatic segmentation ranged from 0.90–0.97 
for five distinct compartments and the average was 0.93 for 
the whole cartilage. Specifically, our segmentation model 
based on nnU-Net achieved mean dice scores for all severe-
OAs of 0.95 (LFC), 0.92 (MFC), 0.85 (LT), 0.90 (MT), and 
0.85 (P); with the average value 0.89. In addition, mean dice 
values between two radiologists for all subjects ranged from 
0.95–0.97 and for severe-OAs ranged from 0.92 to 0.96.

Quantitative cartilage parameters

The mean and SD of cartilage thickness, cartilage volume, 
and QSM parameters on each compartment for the three 
groups from automatic segmentation are summarized in 
Table 4. Figure 4 shows the scatter plots for these parameters 
between automatic and manual segmentations, with 
corresponding Pearson correlation coefficients ranging 
from 0.98 to 0.99 (95% CI: 0.89–1.00). 

Performance in OA evaluation

Comparisons between the three groups in terms of 

cartilage thickness, cartilage volume, and QSM parameters 
are illustrated in Figure 5. Highly significant decreases 
in cartilage thickness as well as in cartilage volume were 
observed as the OA severity increased (P<0.05). Few 
significant differences were found in the mean and SD of 
susceptibility value, with an increasing trend respectively 
[overall average QSM mean (ppm): −0.03±0.01, −0.03±0.01, 
−0.04±0.02 for normal controls, mild-OAs, and severe-
OAs; overall average QSM SD (ppm): 0.09±0.01, 0.09±0.01, 
0.11±0.02 for normal controls, mild-OAs, and severe-OAs]. 
Examples of magnitude image, phase image and QSM 
mapping for each OA class are illustrated in Figure 6. 

Prediction performance evaluation

To further verify the validity of automatically extracted 
cartilage parameters, multi-class SVM was used to construct 
the predictive model for the classification of three OA 
classes. After evaluating the diagnostic performance of 
SVM models with the five-fold cross-validation, the SVM 
hyperparameters were set as kernel = ‘RBF’, C = 1 and 
gamma = 0.1. The classification results were shown in 
Figure 7. The cut-off points of the optimal prediction model 
have been determined by maximizing the Youden index and 
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Table 2 Inter-observer reliability of cartilage thickness, volume, 
and QSM parameters calculated using the manual segmentations of 
two radiologists. All ICC values show highly statistical difference 
with P<0.001

Compartments Radiologist 1 Radiologist 2 ICC value

Average thickness (mm)

Femur

MFC 2.30 2.30 0.99

LFC 2.11 2.13 0.99

Tibia

MT 2.48 2.61 0.91

LT 2.20 2.34 0.92

Patella 2.21 2.27 0.95

Average volume (mm3)

Femur

MFC 4486 4472 0.99

LFC 3654 3645 0.98

Tibia

MT 1750 1744 0.99

LT 1515 1521 0.98

Patella 1901 1910 0.98

Average QSM mean (ppm)

Femur

MFC −0.04 −0.04 0.99

LFC −0.03 −0.03 0.99

Femur

MT −0.03 −0.03 0.99

LT −0.02 −0.02 0.99

Patella −0.01 −0.01 0.99

Average QSM SD (ppm)

Femur

MFC 0.11 0.11 0.99

LFC 0.09 0.09 0.99

Femur

MT 0.08 0.08 0.99

LT 0.09 0.09 0.99

Patella 0.08 0.07 0.98

QSM, quantitative susceptibility mapping; ICC, intra-class 
correlation coefficient; MFC, medial femoral condyle; LFC, 
lateral femoral condyle; MT, medial tibial plateau; LT, lateral tibial 
plateau; SD, standard deviation.

circled (green) in the Figure 7B. The constructed model 
based on cartilage morphological parameters (thickness 
and volume) obtained AUC was 0.89 (95% CI: 0.85–0.92), 
whereas combined with QSM a relatively higher AUC score 
can be achieved, with a value of 0.91 (95% CI: 0.87–0.93). 
Taking age as covariate, the constructed model achieved 
AUC 0.92 (95% CI: 0.88–0.94) and 0.94 (95% CI: 0.89–
0.96), correspondingly.

Discussion

In this study, we performed a fully automated cartilage 
segmentation and quantification method based on the 
nnU-Net model and extracted quantitative parameters 
including cartilage morphometry and QSM at 3T. The 
results showed that nnU-Net model provided high mean 
dice scores (>0.90) for cartilage segmentation and obtained 
high Pearson correlation coefficients for cartilage thickness, 
cartilage volume, and susceptibility values compared with 
manual segmentation; indicating that this model was able 
to segment cartilage accurately. Significant decreases in 
cartilage thickness and volume, as well as increases in mean 
and SD of susceptibility values, were observed in mild OA 
and severe OA compared with normal control. Additionally, 
The model achieved higher classification validity by 
integrating QSM. These results suggest the potential of 
QSM as an important complementary image biomarker for 
the comprehensive evaluation of OA in clinical practice.

The performance of nnU-Net model for cartilage 
segmentation was evaluated using manually generated 
labels by the experienced radiologist as ground truth. Two 
radiologists segmented the knee cartilage independently 
and we obtained high ICC values between the two manual 
segmentations, ranging from 0.91 to 0.99, and high Dice 
scores with an average value of 0.96. This indicates the high 
accuracy and consistency of manual segmentation. Dice 
scores were calculated to assess the accuracy of automatic 
cartilage segmentation. Our results showed that nnU-Net 
model provided high mean dice scores (>0.90) for cartilage 
segmentation in different knee compartments. In normal and 
mild OA, our automatic segmentation method has achieved 
dice scores of 0.96 and 0.93, respectively. Xue et al. (29)  
designed a transfer learning-based U-Net CNN model and 
performed automatic segmentation on knee cartilage. The 
average dice score was 0.82±0.08. Zhou et al. (30) used a 
segmentation pipeline based on a semantic segmentation 
CNN and 3D fully connected CRF, and achieved dice 
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Table 3 Mean dice scores were calculated to evaluate the consistency using manual segmentation and automatic segmentation

Group LFC MFC LT MT P Average

Rad 1 vs. Auto Normal control group 0.98 0.97 0.96 0.97 0.94 0.96 

Mild-OA group 0.93 0.92 0.94 0.96 0.95 0.94 

Severe-OA group 0.95 0.92 0.85 0.90 0.85 0.89 

All subjects’ 0.97 0.96 0.90 0.94 0.90 0.93 

Rad 1 vs. Rad 2 Normal control group 0.97 0.97 0.97 0.95 0.96 0.96 

Mild-OA group 0.95 0.94 0.98 0.96 0.93 0.95 

Severe-OA group 0.96 0.94 0.93 0.95 0.92 0.94 

All subjects’ 0.97 0.97 0.96 0.96 0.95 0.96 

All subjects involve the healthy subjects, mild-OAs and severe-OAs. The Dice score value ranged between 0 and 1 with a value of 1 
indicating a perfect segmentation and a value of 0 indicating no overlap at all. LFC, lateral femoral condyle; MFC, medial femoral condyle; 
LT, lateral tibial plateau; MT, medial tibial plateau; P, Patella; Rad, Radiologist; Auto, Automatic method using nnU-Net; OA, osteoarthritis.

Table 4 Mean and SD of articular cartilage parameters derived from auto segmentation: comparison between two patients groups and one control 
group without (ANOVA) and with adjustment for age (AVCOVA)

Compartment Parameters
Normal controls 

(N) (n=20)
Mild-OA  

(M) (n=20) 
Severe-OA 
(S) (n=25)

Raw P value Adjusted P value

N-M N-S M-S N-M N-S M-S

LFC Thickness (mm) 2.41±0.20 2.33±0.15 2.15±0.16 0.475 <0.001*** 0.006** 0.674 0.003** 0.013*

Volume (mm3) 5,103±1130 4,521±802 3,925±923 0.225 0.001** 0.185 0.450 0.041* 0.346

QSM mean (ppm) −0.04±0.01 −0.05±0.01 −0.05±0.01 0.735 0.112 0.949 0.694 0.332 0.745

QSM SD (ppm) 0.11±0.01 0.11±0.02 0.127±0.03 1.000 0.337 0.873 >0.99 0.539 0.783

MFC Thickness (mm) 2.23±0.17 2.17±0.13 1.93±0.14 0.714 <0.001*** <0.001*** 0.714 0.001** 0.022*

Volume (mm3) 4,141±817 4,010±628 3,004±673 1.000 <0.001*** <0.001*** >0.99 0.009** 0.045*

QSM mean (ppm) −0.04±0.01 −0.05±0.01 −0.07±0.03 0.198 0.033* 0.140 0.410 0.089 0.470

QSM SD (ppm) 0.10±0.01 0.10±0.01 0.13±0.04 0.964 0.059 0.094 0.901 0.182 0.320

LT Thickness (mm) 2.64±0.23 2.54±0.21 2.36±0.23 0.597 0.001** 0.051 0.872 0.015* 0.163

Volume (mm3) 1,977±488 1,799±299 1,521±375 0.545 0.002** 0.103 0.673 0.048* 0.402

QSM mean (ppm) −0.03±0.01 −0.03±0.01 −0.03±0.01 0.759 >0.99 0.781 0.801 >0.99 0.671

QSM SD (ppm) 0.08±0.01 0.08±0.01 0.09±0.01 0.922 0.404 0.582 0.712 0.602 0.781

MT Thickness (mm) 2.36±0.17 2.33±0.16 2.03±0.21 1.000 <0.001*** <0.001*** >0.99 0.029* 0.039*

Volume (mm3) 1,786±334 1,761±356 1,257±449 1.000 <0.001*** 0.001** >0.99 0.006** 0.013*

QSM mean (ppm) −0.02±0.01 −0.03±0.01 −0.04±0.03 1.000 0.038* 0.055 >0.99 0.130 0.028

QSM SD (ppm) 0.09±0.01 0.09±0.01 0.01±0.02 0.999 0.274 0.249 >0.99 0.583 0.491

P Thickness (mm) 2.75±0.29 2.10±0.37 1.78±0.40 0.000*** <0.001*** 0.025* 0.015* 0.003** 0.192

Volume (mm3) 2,468±608 1,713±569 1,205±626 0.001** <0.001*** 0.036* 0.041* 0.009** 0.083

QSM mean (ppm) −0.03±0.01 −0.03±0.02 −0.039±0.07 1.000 0.938 0.941 >0.99 0.993 0.910

QSM SD (ppm) 0.06±0.01 0.08±0.02 0.09±0.03 0.116 0.002** 0.310 0.311 0.008** 0.493

Data are shown as mean ± SD. P values below 0.05 were considered statistically significant. *, P<0.05; **, P<0.01; ***, P<0.001. SD, 
standard deviation; ANOVA, one-way analysis of variance; OA, osteoarthritis; LFC, lateral femoral condyle; MFC, medial femoral condyle; 
LT, lateral tibial plateau; MT, medial tibial plateau; P, patella; QSM, quantitative susceptibility mapping.
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Figure 4 Scatter plots for average values of (A) cartilage thickness, (B) cartilage volume, (C) QSM mean, and (D) QSM SD were obtained 
with manual and automatic segmentations, respectively. QSM, quantitative susceptibility mapping; SD, standard deviation.
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Figure 5 Thickness, volume, mean and SD of QSM were calculated for five cartilage compartments of both manual (A-D) and automatic 
(E-H) segmentations, in normal controls, compared with mild-OAs and severe-OAs using the one-way ANOVA analysis. *, P<0.05; **, 
P<0.01; ***, P<0.001. SD, standard deviation; QSM, quantitative susceptibility mapping; OA, osteoarthritis; ANOVA, one-way analysis of 
variance; LFC, lateral femoral condyle; MFC, medial femoral condyle; LT, lateral tibial plateau; MT, medial tibial plateau; P, Patella.
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Figure 7 ROC curves and AUC of OA classification using SVM with or without age adjustment. (A) without taking age as covariate, the 
red line is input only cartilage morphometry parameters (cartilage thickness and volume) and the blue line is input combined with QSM. (B) 
Taking age as covariate, age is taken as an additional parameter for the classification. The cut-off points (green circles in B) of the optimal 
prediction model have been determined by maximizing the Youden index. ROC, receiver operating characteristic; AUC, area under ROC; 
SVM, support vector machine; QSM, quantitative susceptibility mapping.
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Figure 6 Examples of QSM in the sagittal view for three subjects: (A) a healthy 32-year-old female, (B) a mild-OA 57-year-old male, 
(C) a severe-OA 71-year-old male. In the colormap, the blue represents the smaller susceptibility value and the red represents the bigger 
susceptibility value. The overall susceptibility value is getting smaller as the severity increases. QSM, quantitative susceptibility mapping; 
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coefficients between 0.8 and 0.9 including the femoral 
cartilage (0.806±0.062), tibial cartilage (0.801±0.052), and 
patellar cartilage (0.807±0.101). In the 2019 International 
Workshop on Osteoarthritis Imaging (IWOAI) knee 
segmentation challenge (31), six networks from different 

teams were evaluated for their segmentation performance 
on a dataset consisting of 3D knee MRI from 88 subjects. 
The best Dice scores among these networks ranged from 
0.81 to 0.90, for femoral cartilage (using 2D DeeplabV3+ 
Densenet, Dice =0.90±0.02), tibial cartilage (using 2D 
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multi-planar U-Net, Dice =0.89±0.03) and patellar cartilage 
(using 3D V-Net, Dice =0.86±0.07). In comparison to 
these methods, our method for automatic knee cartilage 
segmentation achieved better dice scores indicating higher 
accuracy. In severe-OAs, however, our method’s dice scores 
were lower with average values of 0.89, and 0.85, 0.90, and 
0.85 in LT, MT, and P respectively. This may be attributed 
to cartilage thinness or local loss due to cartilage attrition 
in these areas with a high incidence of lesions. Even though 
degenerative cartilage compartments segmentation in 
some of the sever-OAs was relatively inaccurate, all dice 
scores were higher than 0.85 and the segmentation result 
did not have a significant impact on subsequent parameter 
calculations.

In our study, cartilage thickness and cartilage volume 
significantly decrease in all knee compartments compared 
with normal controls, especially in the medial knee joint, 
which may be attributed to the prevalence of varus knee. 
More loading forces concentrated in the medial joint lead 
to medial cartilage degeneration. This result was consistent 
with previous research (5,32). In terms of QSM, significant 
decreases in mean susceptibility values were found in MFC 
and MT compared with normal controls, and significant 
increases in SD of susceptibility values were found within 
MFC and P in OA patients, respectively. Variation of QSM 
was attributed to the loss of organization in the collagen 
fibrils, cartilage attrition, or degeneration that affects QSM 
contrast (33). In addition, we calculated simple global mean 
values in different knee compartments, which may lead 
to collagen fibril heterogeneity due to different degrees 
of cartilage attraction. In the future, the sub-regions of 
the knee joint compartment or different cartilage layers 
should be assessed to ensure QSM accuracy. Few studies 
were published for the evaluation of OA using QSM. Wei 
et al. (9,33) have demonstrated that magnetic susceptibility 
has the potential to demonstrate a visible contrast change 
of degenerative cartilage in patients with OA and may 
provide information about the change in collagen that may 
exist before structural changes in cartilage thickness. Our 
results indicated that the increasing variance of magnetic 
susceptibility value is proportional to the thinning of 
cartilage. This means that quantitative susceptibility 
mapping is a useful biomarker for the evaluation of OA 
progression. 

To further  ver i fy  the c lass i f icat ion val idi ty  of 
automatically extracted cartilage parameters, a linear SVM 
model was used to construct the predictive model for 
OA classification. Our results showed that automatically 

extracted cartilage parameters using nnU-Net model had 
high validity for the OA classification. The constructed 
model based on cartilage morphological parameters 
(thickness and volume) and age obtained AUC was 0.92 
(95% CI: 0.88–0.94); whereas, by integrating QSM, we 
achieved a relatively higher AUC with a value of 0.94 (95% 
CI: 0.89–0.96). These results suggest that QSM has the 
potential for clinical translation for the comprehensive 
evaluation of OA.

While our initial results are promising, several potential 
limitations exist in our study. First, the single center and 
small sample size may result in biased conclusions. Further 
validation in a larger sample size is needed. Second, we 
used the 2D nnU-Net, instead of 3D nnU-Net, to train 
the decomposing labeled slices from the 3D MR images. 
Although the nnU-Net model for cartilage segmentation 
results was successful, there is still a need to investigate 
the optimal sample size to train the network for robust 
segmentation, especially in severe OA. Third, there was a 
lack of real ground truth. We used manual segmentation 
as the reference standard which may change because of 
user variability. Fourth, the cartilage MR imaging was not 
isotropic. Thus, the relatively poor slice resolution, and 
the curved cartilage surface may result in partial volume 
artifacts; affecting cartilage segmentation and quantitative 
cartilage parameters. Finally, we only calculated a simple 
global mean value of cartilage parameters in different knee 
compartments. In the future, the sub-regions of the knee 
joint compartment or different cartilage layers should be 
assessed to ensure QSM accuracy.

Conclusions

The proposed cartilage segmentation and quantification 
method for 3D_WATS cartilage images based on nnU-
Net can produce reliable segmentation of five major 
compartments in cartilage regions. The automatic 
extraction of QSM and cartilage morphometry parameters 
showed high validity for OA classification. This suggests 
that 3D_WATS cartilage imaging has the potential for 
clinical translation for the comprehensive evaluation of OA.
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Figure S1 An example which illustrates how the background field is removed from the unwrapped phase image with our single-echo 3D 
GRE sequence with fat saturation, using PDF algorithm. (C) Background filed is a subtraction of the (A) Unwrapped phase image and (B) 
Tissue phase image. 
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