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Background: The radiological features of computed tomography (CT) images and the sequence of 
radiomics signatures in continuous slices of lung CT lesions are helpful in identifying subtypes of lung 
adenocarcinoma. A model based on bidirectional long short-term memory (Bi-LSTM) and multihead 
attention can learn the rules of this sequence well.
Methods: In this study, 421 patients with 427 lesions confirmed as adenocarcinoma in situ (AIS), minimally 
invasive adenocarcinoma (MIA) or invasive adenocarcinoma (IAC) were recruited from three hospitals. The 
radiomics signatures of the identified lesion regions in each CT image were extracted using ‘PyRadiomics’ 
software, and the corresponding radiological features were subsequently documented and collected. Then, 
the top 100 features were extracted by the minimum redundancy maximum relevance (mRMR) feature 
ranking method. A model based on the radiological and imaging features was established to classify the 
lesions using Bi-LSTM and multihead attention. The diagnostic performance of the model was measured by 
the area under the curve (AUC) of the receiver operating characteristic (ROC).
Results: The model combined radiological features and radiomics signatures. The AUCs of the model in 
the training, testing, and validation groups were 0.985, 0.94 and 0.981, respectively, and the accuracy was 0.92, 
0.976 and 0.91, respectively. In addition, we trained two other models [convolutional neural network (CNN) 
+ multihead attention, long short-term memory (LSTM) + multihead attention] and compared them using 
the testing dataset. The precision of the two models was 0.89 and 0.88, respectively, and the accuracy was 0.88 
and 0.87, respectively.
Conclusions: Bi-LSTM and multihead attention based on radiomics signatures and radiological features 
provide a way to distinguish AIS, MIA, and IAC.
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Introduction

Lung cancer is the leading cause of cancer-related death 
and is one of the most commonly diagnosed human  
malignancies (1). Adenocarcinoma is the dominant 
histological type of lung cancer and has shown an 
increasing incidence in recent decades (2,3). According 
to the World Health Organization (WHO) classification, 
lung adenocarcinoma is categorized into preinvasive 
lesions, such as atypical adenomatous hyperplasia (AAH) 
and adenocarcinoma in situ (AIS); minimally invasive 
adenocarcinoma (MIA); and invasive adenocarcinoma 
(IAC) (4,5). With the popularization and revitalization of 
computed tomography (CT), the ability to screen pulmonary 
nodules has developed rapidly. Adenocarcinoma often 
manifests on CT scans as pulmonary nodules, including 
pure ground-glass nodules (pGGNs), mixed ground-
glass nodules (mGGNs), and solid nodules (SNs) (6).  
Radiologists identify the lesions by analyzing the changes 
in continuous layers of CT images and combining these 
changes with radiological features, which also provides an 
auxiliary diagnostic basis for clinical diagnosis. Imaging 
findings and pathological findings are not always equivalent, 
which affects the decision of diagnosis and treatment. The 
treatment schemes of AIS, MIA and IAC are quite different. 
Patients diagnosed with IAC of the lung typically undergo 
lobectomy (7-9), while those with AIS or MIA are managed 
with active surveillance or sublobar resection, respectively, 
due to differences in prognosis (10). If the results of image 
analysis are very similar to those of pathological analysis, 
this finding will play a positive guiding role in the choice of 
treatment or surgical plan. Low-dose computed tomography 
(LDCT) is one of the most popular lung cancer screening 
methods at present; it can realize the discovery of early 
cancer and has a positive effect on the reduction of lung 
cancer mortality. However, in recent years, many experts 
in this field have found that with the popularization of 
LDCT, excessive diagnosis and false-positive problems have 
inevitably arisen. For the first time, scholars have observed 
that the widespread use of LDCT screening could lead to 
overdiagnosis among young women who are nonsmokers 
and may lead to a large number of overdiagnoses and a 
falsely high 5-year survival rate (11-13). Computer analysis 
of CT image texture features can effectively assist doctors 
in determining subtypes, optimizing treatment plans and 
prognosis, and controlling overdiagnosis to a certain extent 
(14-17). The feature expression of CT images of lesions is 
a popular research topic at present, and disease recognition 

and diagnosis can be realized by analyzing these image 
features (18-20). Some studies analyzed a single CT image 
of a lesion and used algorithms such as convolutional 
neural network (CNN) to identify and diagnose the lesion 
by analyzing single-mode or multimode images (21,22). 
Research on neural network models based on 3D-CT 
images has also made many gratifying achievements in 
image calibration and diagnosis (23,24). Compared with 
the traditional analysis of imaging features and radiological 
features, the analysis of feature change trends and laws 
may be more accurate in identifying and diagnosing 
lesions. Thus, the purpose of this study was to develop a 
classification model based on Bi-LSTM and multihead 
attention using radiological features and radiomics signature 
sequences in continuous layers of CT images of lesions to 
assist radiologists in classifying MIA, AIS, and IAC. This 
study provides a new method for the auxiliary diagnosis 
of lung adenocarcinoma, which is closer to the diagnostic 
process of radiologists. The results of this study may also 
facilitate the mining and interpretability of diagnostic 
decision rules. We present this article in accordance with 
the TRIPOD reporting checklist (available at https://qims.
amegroups.com/article/view/10.21037/qims-22-848/rc).

Methods

This study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013). The study was 
approved by the ethics committee of Shanghai University 
of Medicine & Health Sciences, and the written informed 
consent of patients was waived by the ethics committee 
because the study was a retrospective experiment and did 
not involve patient privacy.

Patients

A retrospective analysis was conducted of 421 patients 
(427 nodules) in three hospitals (Hospital 1, Shanghai 
Public Health Clinical Center; Hospital 2, Shanghai Ruijin 
Hospital; Hospital 3, Ningbo Beilun No. 2 Hospital) who 
were diagnosed with pulmonary adenocarcinomas based 
on pathologic analysis of surgical specimens. The inclusion 
criteria for the study were as follows: (I) patients had 
undergone routine CT examination within one month prior 
to surgery or diagnosis; and (II) the CT scans were acquired 
with a layer thickness of less than 2 mm. In cases where 
multiple nodules were detected, each nodule was analyzed 
separately for further analysis. The exclusion criteria were 

https://qims.amegroups.com/article/view/10.21037/qims-22-848/rc
https://qims.amegroups.com/article/view/10.21037/qims-22-848/rc
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Figure 1 Flow chart of case sample selection. CT, computed tomography.
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CT layer thickness 
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Obvious artifacts
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as follows: (I) significant artifacts in the CT image and (II) 
contrast agent used in the CT examination. Patient clinical 
information was also included in the study dataset. The 
flowchart of patient selection is listed in Figure 1.

In Hospital 1, 339 patients were randomly selected, 
with 341 pulmonary nodules (MIA: 206, 60.4%; AIS: 57, 
16.7%; IAC: 78, 22.9%). In Hospitals 2 and 3, 82 patients 
with 86 pulmonary nodules were randomly selected (MIA: 
54, 62.8%; AIS: 10, 11.6%; IAC: 22, 25.6%). Overall, there 
were 227 patients with 227 lesions in the training cohort, 
112 patients with 114 lesions in the testing cohort, and 
82 patients with 86 lesions in the verification cohort. The 
patient information is listed in Table 1.

CT image acquisition

An unenhanced chest CT exam was performed for an entire 
lung scan of each patient in all three hospitals. At Hospital 1, 
the CT images were obtained by a United-Imaging 760 CT 
device (tube voltage of 120 kVp, tube current modulation 
of 42–126 mA, and 1.0 mm reconstructed slice thickness) 
and a Siemens Emotion 16 CT device (tube voltage of  
130 kVp, tube current modulation of 34–123 mA, and 

1.0 mm reconstructed slice thickness) with a 512×512 
resolution. At Hospitals 2 and 3, a Philips iCT 256 CT 
device (tube voltage of 120 kVp, tube current modulation 
of 161 mA, and 1.0 mm reconstructed slice thickness) and 
a Philips Brilliance 16 CT device (tube voltage of 120 kVp,  
tube current modulation of 219 mA, and 1.0 mm 
reconstructed slice thickness) were used to obtain CT 
images.

Radiomics signatures and radiological feature extraction

Preliminary segmentation of CT images was performed 
using internal semiautomatic segmentation software (25). 
A radiologist with 6 years of experience manually examined 
the segmentation results. Subsequently, the diagnosis 
was confirmed by another radiologist with 20 years of 
experience. After confirming the segmentation results, 
the lesion area CT image was analyzed by open-source 
software (PyRadiomics 3.0.1) (26), and 952 radiological 
features (including tumor size, shape, first-order statistics 
of descriptor values, and high-order texture features) were 
extracted.

The radiographic features were evaluated independently 
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Table 1 Patient characteristic information in the training cohort, testing cohort and validation cohort

Characteristics

Training cohort (n=227) Testing cohort (n=112) Validation cohort (n=86)

MIA/AIS 
(n=177)

IAC (n=50) P value
MIA/AIS 
(n=86)

IAC (n=28) P value
MIA/AIS 
(n=64)

IAC (n=22) P value

Age (years) 50.74±11 54.60±11 <0.05 51.43±11 53.28±11 <0.05 54.02±14 62.74±11 <0.05

Gender 0.21 0.19 0.12

Male 53 18 35 10 25 8

Female 124 32 51 18 39 14

Margin 0.83 0.99 0.49

Blurred 154 46 77 24 33 16

Clear 23 4 9 4 9 6

Lobulation <0.05 0.18 0.12

Present 134 40 58 23 22 5

Absent 43 10 28 5 42 17

Spiculation 0.46 0.63 0.17

Present 127 33 61 23 58 20

Absent 50 17 25 5 6 2

Pleural attachment <0.05 <0.05 0.3273

Present 28 23 19 15 28 12

Absent 149 27 67 13 36 10

Air bronchogram 0.09 <0.05 0.14

Present 85 27 45 16 34 6

Absent 92 23 41 12 30 16

Vessel change 0.63 0.58 <0.05

Present 121 37 69 25 52 19

Absent 56 13 17 3 12 3

Bubble lucency 0.19 0.18 0.09

Present 53 21 37 13 23 10

Absent 124 29 49 15 41 12

Average major axis (mm) 9.12±3.07 11.02±1.22 <0.05 9.10±2.62 11.38±2.17 <0.05 11.11±4.36 18.78±7.92 <0.05

Average minor axis (mm) 7.09±2.03 8.45±2.39 <0.05 6.27±1.99 9.61±2.40 <0.05 8.68±3.05 14.53±4.37 <0.05

Lobe 0.38 0.21 0.07

Left 74 23 40 12 20 13

Right 103 27 46 16 44 9

Classification <0.05 <0.05 <0.05

pGGN 135 21 67 9 55 7

mGGN 42 29 19 19 9 15

Numeric features are presented as the mean ± standard deviation. MIA, minimally invasive adenocarcinoma; AIS, adenocarcinoma in situ; 
IAC, invasive adenocarcinoma; pGGN, pure ground-glass nodule; mGGN, mixed ground-glass nodule.
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by two experienced radiologists, as mentioned previously. 
Any discrepancies in interpretation between the observers 
were resolved through consensus to ensure agreement. 
The radiological features of each lesion were documented 
and analyzed, including (I) margin (clear, blurred); (II) 
lobulation (absent, present); (III) spiculation (absent, 
present); (IV) pleural attachment, including pleural tag and 
indentation (absent, present); (V) air bronchogram (absent, 
present); (VI) vessel change (absent, present); (VII) bubble 
lucency (absent, present); and (VIII) nodule location (left/
right lobe, right upper lobe, right middle lobe, right lower 
lobe, left upper lobe, and left lower lobe). Finally, 963 
features were extracted from CT images of the lesions, 
including 11 radiological features and 952 radiomics 
signatures.

Feature selection

First, we calculated the variance of all radiomics signatures 
and removed features with values less than 1 (using the 
“VarianceThreshold” method in the “sklearn.feature_
selection” package in the Python 3.7 environment). Then, 
the correlation strength of the remaining radiological 
features was calculated, and the features with an absolute 
value greater than 0.9 were removed. In addition, 
the radiological features were assigned classification 
characteristics. The structure of each feature was considered 
too sparse if it was represented by a one-hot code. To 
merge the two types of features and reduce the impact of 
imaging features on the overall feature set, we used the 
‘leaveoneoutencoder’ method (in the ‘category_encoders’ 
package) to convert classified data into numerical data. 
To further address the problem of collinearity between 
features, a subset of features that were more relevant to the 
target was obtained. The minimum redundancy maximum 
relevance (mRMR) method was employed to identify the 
100 most relevant features from the dataset.

Dataset build

The dataset created based on the optimal 100 features was 
divided into a training cohort (80%) and a testing cohort 
(20%). We optimized the dataset to solve the problem 
of few data and increase the generalization ability of the 
trained model. Each sample in the training cohort was 
arranged in reverse order to double the amplification. Then, 
the data from each sample in the training cohort and testing 
set were supplemented to 25 rows (under the assumption 

that the CT image of each lesion had 25 layers), and the 
gap was filled with 0 s. Then, 30% of the columns of the 
samples in the training cohort were randomly selected 
and increased (multiplied by 1.3) or decreased (multiplied 
by 0.7). Next, the training cohort was doubled again. 
Finally, the optimized dataset was formed using radiomics 
signatures and radiological features.

Model structure

We proposed a Bi-LSTM and multihead attention-based 
model that was capable of classifying MIA, AIS, and IAC. 
Recurrent neural networks (RNNs) exhibit dynamic 
temporal behavior for a time sequence, as the connections 
between nodes form a directed graph along the sequence. 
The continuous CT images covering the lesion area are 
similar to the time-series data, where the time interval is 
represented by the slice thickness. Moreover, RNNs use 
an internal state to process input sequences, and they can 
connect previous information to the present task (27). 
Therefore, we hypothesized that features form “time series” 
in continuous CT layers. Compared with LSTM, Bi-
LSTM performs well not only in long-distance information 
acquisition but also in near-position information acquisition. 
By training the model based on the Bi-LSTM algorithm to 
capture the long- and short-distance information rules in 
the sequence, it can better carry out an auxiliary diagnosis. 
Multihead attention mainly addresses three issues: (I) 
solving the problem that the model pays too much attention 
to the position of information itself; (II) enhancing the 
expression ability of the model; and (III) preventing 
overfitting. Both methods have open-source code and 
encapsulation packages. Multihead attention can use the 
“MultiHeadAttention” function in the “keras_multi_head” 
package. Bi-LSTM can use the combined “Bidirectional” 
and “LSTM” functions in the “tensorflow. keras.layers” 
package.

First, the model used the Bi-LSTM layer (units =32, 
activation = ‘sigmoid’) to extract the changing state of 
features in continuous CT layers as much as possible. Then, 
the multihead attention layer (head =8, name = ‘Multi-Head’ 
in the ‘keras_multi_head’ package) was used to enhance 
the output state sequence. This layer could enhance the 
generalization ability of the model and reduce the risk of 
focusing on specific feature changes. Then, the flattened 
layer was used to flatten the sequence. Finally, a series of FC 
layers and dropout layers was used to output the prediction 
of classification results (Figure S1). The workflow of this 

https://cdn.amegroups.cn/static/public/QIMS-22-848-supplementary.pdf


Ren et al. A Bi-LSTM and multihead attention-based model4250

© Quantitative Imaging in Medicine and Surgery. All rights reserved.   Quant Imaging Med Surg 2023;13(7):4245-4256 | https://dx.doi.org/10.21037/qims-22-848

Input Input Input

Dense, 128 Max pooling Dense, 128

Multi-Head-Attention Max pooling Multi-Head-Attention

Dense, 32 LSTM Dense, 32

Bi-LSTM 3*3 conv, 6 LSTM

Dense, 64 LSTM Dense, 64

Flatten 3*3 conv, 16 Flatten

Dense, 3

Architecture A

Dense, 3

Architecture B

Dense, 3

Architecture C

Figure 2 Overview of the three architectures. Architecture A represents the Bi-LSTM with multihead attention architecture; architecture B 
represents the CNN with LSTM architecture; and architecture C represents the LSTM with multihead attention architecture. Bi-LSTM, 
bidirectional long short-term memory; CNN, convolutional neural network.

Table 2 Performance of the models in datasets

Models Precision Recall F1 Accuracy

Bi-LSTM+ multihead attention in training cohort 0.95 0.94 0.94 0.94

Bi-LSTM+ multihead attention in testing cohort 0.92 0.92 0.92 0.92

Bi-LSTM+ multihead attention in validation cohort 0.91 0.91 0.91 0.91

CNN+LSTM in testing cohort 0.89 0.84 0.86 0.88

LSTM+ multihead attention in testing cohort 0.88 0.87 0.86 0.87

Bi-LSTM, bidirectional long short-term memory; CNN, convolutional neural network.

Bi-LSTM and multihead attention-based model is shown 
in Figure 2. In addition, we also studied the performance of 
datasets in CNN+LSTM and LSTM+multihead attention 
models. The overall process of the project is shown in 
Figure S2.

Identification evaluation and comparison with other 
algorithms

Several evaluation criteria were utilized to evaluate the 
model’s performance, including precision, recall, f1 score, 
and accuracy, as shown in Table 2 (28-30). These metrics 
were calculated based on the number of true positives (TP), 
false positives (FP), true negatives (TN), and false negatives 
(FN), following established methods. In addition, we 
conducted tenfold cross-validation experiments to further 
verify the performance of the model.

We also evaluated the classification performance 
of the CNN+LSTM and LSTM+multihead attention 
methods after training on the same dataset. CNN+LSTM 
is a popular image feature analysis algorithm. In this 
experiment, we took the feature matrix of the lesion image 
group as an image and compared it with the change rules of 
lesion features to verify the model performance. The LSTM 
algorithm can also analyze the changes in lesion radiomics 
signatures. Here, we used it to test the performance of Bi-
LSTM in this model. To test the performance difference 
between our model and the traditional method, we also 
extracted the 3D radiomic signatures of the lesions and 
built a nomogram based on the 3D radiomic signatures 
and radiological features (Figure S2). To further analyze 
the auxiliary diagnosis performance of the model, we 
compared its results to those of the manual diagnosis of 
radiologists in the same field. One study collected disease 

https://cdn.amegroups.cn/static/public/QIMS-22-848-supplementary.pdf
https://cdn.amegroups.cn/static/public/QIMS-22-848-supplementary.pdf
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Figure 3 Training process of the model in the study.

images similar to ours. The model built in the study and the 
results of artificial diagnosis by three radiologists were used 
as reference values (31). We also compared our model with 
another study that developed a combined radiographic–
radiomics model for invasive prediction (32).

Results

Model training and performance

The categorical cross-entropy loss function was employed 
to calculate the loss during model training, with the Adam 
optimization algorithm utilized with a learning rate of 
0.001. After considering the balance between accuracy 
and overfitting, we selected the model trained at the 400th 
epoch as the final model, as depicted in Figure 3. The 
ROC curve was plotted to assess the model’s performance, 
as shown in Figure 4. The model training demonstrated 
robust identification efficiency, as evident from the results 
obtained (training AUC =0.985; testing AUC =0.981; 
validation AUC =0.976). The four evaluation indicators 
were 0.95, 0.94, 0.94 and 0.94 in the training cohort; 0.92, 
0.92, 0.92 and 0.92 in the testing cohort; and 0.91, 0.91, 
0.91 and 0.91 in the validation cohort. The calibration plot 
of the model and the results of the tenfold cross-validation 
experiment are shown in the supplementary materials 
(Figures S3,S4, and Table S1).

Performance of other models and artificial diagnosis

We trained the other two models and compared their 
performance in the testing cohort. The AUC of the 
CNN+LSTM model was 0.961, and its four evaluation 
indicators were 0.89, 0.84, 0.86 and 0.88. The AUC of 
the LSTM+multihead attention model was 0.947, and its 
four evaluation indicators were 0.88, 0.87, 0.86 and 0.87. 
The comparison results showed that the model developed 
in this study performed better than the other two in the 
same dataset (Table 2). The AUC of the nomogram model 
in the testing cohort was 0.864. The AUCs of the artificial 
diagnosis results of the three radiologists in another study 
were 0.692, 0.806 and 0.759, respectively (Figure S5). In 
this study, a nomograph model based on the GLCM was 
constructed. The AUC in the training cohort was 0.878, 
and that in the validation cohort was 0.923. The AUC of 
the combined radiographic–radiomics model was 0.80 in 
the training cohort, 0.77 in the validation cohort, and 0.82 
in the testing cohort.

Discussion

The analysis of imaging features has been widely used in 
the auxiliary diagnosis of lung cancer, and accurate auxiliary 
models can provide positive support for making decisions 
about treatment plans and saving medical resources (33-35). 

https://cdn.amegroups.cn/static/public/QIMS-22-848-supplementary.pdf
https://cdn.amegroups.cn/static/public/QIMS-22-848-supplementary.pdf
https://cdn.amegroups.cn/static/public/QIMS-22-848-supplementary.pdf
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The analysis of feature change trends may be closer to the 
diagnostic process of radiologists and may provide a new 
method for the exploration of decision rules (36,37).

In this study, we developed a deep learning network 
architecture specifically designed for feature learning and 
implemented the model for the classification of MIA, AIS, 
and IAC lung adenocarcinoma subtypes. Based on Bi-
LSTM, the change rules of selected radiomics signatures 
in the continuous layers of CT images of lesions were 
accurately learned. At the same time, multihead attention 
was used to strengthen the learning ability of the change 
rule sequence so that the model parameters had better 
generalization ability and overfitting was reduced. This 
approach is consistent with routine radiologist film reading 
and diagnostic procedures. It can effectively reduce the 
complexity of the model and increase the interpretability 
of the model results. The results show that the model 
based on multihead attention and Bi-LSTM achieved good 
performance in the classification of lung adenocarcinoma 
CT images. This indicates that the change rule of 
radiological features in CT images can well reflect the 
type of focus. Our model was superior to three comparison 

models in the same dataset and has certain advantages 
compared with other research models. In addition, 
comparison with the performance of three radiologists 
in another study shows that the model has good clinical 
auxiliary value.

Compared with nomograms, these methods obtain 
good results, and they can provide an interpretable scoring 
standard. However, they still lack the ability to identify 
disease subtypes. When radiologists observe medical images 
such as CT images, they look for diagnostic evidence by 
analyzing the image texture changes and feature changes in 
the focus area between layers to identify disease subtypes. 
Most of the current auxiliary diagnostic models for medical 
images train and learn on a single image or a whole 3D 
focus area. Most of these methods can obtain good results 
after training, but they lack the ability to interpret models 
and results, which is the focus of recent research.

In our research, we referred to the working methods 
of radiologists, analyzed and learned the texture changes 
between the focus image layers, and combined the imaging 
features to train the auxiliary diagnosis model. This is an 
innovative attempt, although there are still some defects 
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Figure 4 ROCs and AUCs of the three models. (A) The performance of the Bi-LSTM + multihead attention model in the training cohort; 
(B) the performance of the Bi-LSTM + multihead attention model in the testing cohort; (C) the performance of the Bi-LSTM + multihead 
attention model in the validation cohort; (D) the performance of the CNN + LSTM model in the testing cohort; (E) the performance of the 
LSTM + multihead attention model in the testing cohort. ROC, receiver operating characteristic; AUC, area under the curve; Bi-LSTM, 
bidirectional long short-term memory; CNN, convolutional neural network.
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in the interpretation ability. Compared with other models 
based on a single image or 3D region, we focused on the 
idea of image texture changes, which provides a feasible 
direction for later research on interpretable auxiliary 
diagnostic models. Analyzing the radiologic features 
and their changing rules and even mapping the signs of 
the lesions help to interpret the images and provide an 
interpretable auxiliary diagnostic basis.

We used semiautomatic segmentation software developed 
in house to extract the lesion area, calculate the radiologic 
features through the open source ‘PyRadiomics’ software 
package, and finally combine the features to create the 
model trained in the study. In this way, a feasible and robust 
workflow is constructed that can assist radiologists in their 
daily work and has higher advantages compared with the 
results of manual diagnosis. After locating the focus area, 
doctors can quickly obtain the segmented focus area and 
the auxiliary diagnosis evaluation provided by the model 
through this workflow.

Of the  top  10  fea tures  ( lobu la t ion ,  or ig ina l_
firstorder_90Percentile, pleural attachment, spiculation, 
air bronchogram, margin, bubble lucency, square_glcm_
ClusterProminence, square_glrlm_LongRunEmphasis, and 
wavelet-HL_firstorder_Energy), 60% were radiological 
features, and 40% were radiomics signatures. The 
“original_firstorder_90Percentile” feature refers to the 
calculated value representing the 90th percentile of 
the CT values within the lesion. The “square_glcm_
ClusterProminence” feature is a measure of the skewness 
and asymmetry of the gray level cooccurrence matrix 
(GLCM) features. The “square_glrlm_LongRunEmphasis” 
feature is a measure of the distribution of long run lengths, 
with a greater value indicative of longer run lengths and 
more coarse structural textures. Although CT values were 
not used as a factor in the model, all these features provide 
a detailed description of the CT value distribution and its 
trends in the lesion area. This indicates that radiological 
features are still important criteria for the diagnosis of lung 
adenocarcinoma. At the same time, radiomics signatures 
supplement the basis of diagnosis results from more 
high-dimensional perspectives, such as morphology and 
grayscale. The comparison with the results of other models 
shows that, compared with a single feature, the feature 
change rules can better assist radiologists in diagnosis. 
This may provide a new method for radiologic features to 
participate in auxiliary diagnosis.

However, this study has some deficiencies. First, 

the dataset used in this study is small, which may affect 
the feature extraction and value setting during the 
transformation of radiological classification features. In 
addition, there are certain fluctuations in model training. 
However, this model classifies the lesions by analyzing 
the change rules of each feature, so the difference in 
these values will not have a great impact on the results. 
In addition, the study also has limitations. First, it is 
undeniable that the extraction of radiologic features is 
affected by many aspects, such as different computing 
software packages and inconsistent extracted lesion regions. 
These problems reduce the robustness of the model and 
affect the results of the auxiliary diagnosis. Second, although 
the study has preliminarily verified that the analysis of 
feature change trends can identify lesions well, there is still a 
large gap among the realization of the provision of a clinical 
auxiliary diagnosis basis, the discovery of decision rules and 
interpretability. Third, the research team has analyzed the 
image feature changes of the lesion image. Although it is 
convenient for the subsequent extraction of decision rules, 
these artificial intervention processes may cause the rules 
to deviate from the facts. In the future, we will expand the 
dataset and look for more radiomics signature calculation 
packages that can calculate more features to reflect the 
focus as comprehensively as possible. In addition, we will 
also analyze the relationship between features, especially 
the relationship between radiological features and radiomics 
signatures, and optimize the feature set to enhance the 
interpretability of the model and results.

Conclusions

In this study, a model based on Bi-LSTM and multihead 
attention was developed to classify CT images of lung 
adenocarcinoma by analyzing the change rules of radiological 
and radiomics features in CT images of lesions. The 
results showed that the analysis of the changes in radiomics 
signatures in the CT images of the lesions had a positive 
effect on the differentiation of lung adenocarcinoma 
subtypes. This method provides a new method for CT image 
classification of lesions and has a certain clinical value.
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PyRadiomics
PyRadiomics is a Python-based open-source package designed for extracting radiomics features from medical imaging data. 
The official website link is https://pyradiomics.readthedocs.io.

Contents of the params.yaml file
setting:

  binWidth: 25

  label: 1

  interpolator:'sitkBSpline' # This is an enumerated value; None is not allowed

  resampledPixelSpacing: # This disables resampling, as it is interpreted as None; to enable it, specify spacing in x, y, z as [x, y, z]

  weightingNorm: # If no value is specified, it is interpreted as None

# Image types to use: "Original" for unfiltered image; for possible filters, see documentation.

# Some feature extraction requirements are added here

imageType:

  Original: {} # for dictionaries/mappings, None values are not allowed, '{}' is interpreted as an empty dictionary

  LoG: {}

Wavelet: {}

  Square: {}

  SquareRoot: {}

  Logarithm: {}

Exponential: {}

  Gradient: {}

LBP3D: {}

# Feature classes, from which features must be calculated. If a feature class is not mentioned, no features are calculated for that class. 

Otherwise, the specified features are calculated, or if none are specified, all are calculated (excluding redundant/deprecated features).

featureClass:

  # redundant Compactness 1, Compactness 2 and Spherical Disproportion features are disabled by default, they can be enabled by 

specifying individual feature names (as is done for glcm) and including them in the list.

  shape:

  shape2D:

  firstorder: [] # specifying an empty list has the same effect as specifying nothing.

  glcm:  # Disable SumAverage by specifying all other GLCM features available

  glrlm: # for lists, None values are allowed; in this case, all features are enabled

  glszm:

  gldm: # contains deprecated features, but as no individual features are specified, the deprecated features are not enabled

  ngtdm:

Feature classes and filters

1. First Order Features ----First-order statistics describe the distribution of voxel intensities within the image region defined 
by the mask through commonly used and basic metrics.

2. Shape Features (3D)-----In this group of features, we included descriptors of the three-dimensional size and shape of the 
ROI. These features are independent to the gray level intensity distribution in the ROI and are therefore only calculated on 
the nonderived image and mask.

3. Gray Level Co-occurrence Matrix (GLCM) Features-----A gray level co-occurrence matrix (GLCM) of size Ng×Ng 

Supplementary
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describes the second-order joint probability function of an image region constrained by the mask and is defined as P(i,j|δ,θ).

4. Gray Level Size Zone Matrix (GLSZM) Features-----A gray level size zone matrix (GLSZM) quantifies gray level zones in 
an image. A gray level zone is defined as the number of connected voxels that share the same gray level intensity.

5. Gray Level Run Length Matrix (GLRLM) Features-----A gray level run length matrix (GLRLM) quantifies gray level 
runs, which are defined as the length, in number of pixels, of consecutive pixels that have the same gray level value.

6. Neighboring Gray Tone Difference Matrix (NGTDM) Features—A neighboring gray tone difference matrix quantifies the 
difference between a gray value and the average gray value of its neighbors within distance δ.

7. Gray Level Dependence Matrix (GLDM) Features-----A gray level dependence matrix (GLDM) quantifies gray level 
dependencies in an image. A gray level dependency is defined as the number of connected voxels within distance δ that are 
dependent on the center voxel.

Aside from the feature classes, there are also some built-in optional filters:

1. Laplacian of Gaussian (LoG, based on SimpleITK functionality)-----Applies a Laplacian of Gaussian filter to the input 
image and yields a derived image for each sigma value specified. A Laplacian of Gaussian image is obtained by convolving the 
image with the second derivative (Laplacian) of a Gaussian kernel.

2. Wavelet (using the PyWavelets package)-----Applies wavelet filter to the input image and yields the decompositions and 
the approximation.

3. Square-----Computes the square of the image intensities.

4. Square Root----- Computes the square root of the absolute value of image intensities.

5. Logarithm----- Computes the logarithm of the absolute value of the original image + 1.

6. Exponential----- Computes the exponential of the original image.

7. Gradient----- Computes and returns the gradient magnitude in the image.

8. Local Binary Pattern (3D)----- Computes and returns the local binary pattern (LBP) in 3D using spherical harmonics.

The features extracted in the study are as follows:

14 original_shape features; 18 original_firstorder features; 24 original_glcm features; 16 original_glrlm features; 16 original_
glszm features; 14 original_gldm features; 5 original_ngtdm features; 744 wavelet and subclass filters features; 93 square filters 
features; 93 squareroot filters features; 93 logarithm filters features; 93 exponential filters features; 93 gradient filters features; 
279 lbp-3D and subclass filters features; and 5 diagnostics_Image/Mask features.
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Table S1 Results of the tenfold cross-validation experiment

Precision Recall F1 Acc

First experiment

Training cohort 0.98 0.98 0.98 0.99

Testing cohort 0.84 0.89 0.84 0.84

Second experiment

Training cohort 0.95 0.93 0.98 0.93

Testing cohort 0.87 0.85 0.84 0.85

Third experiment

Training cohort 0.98 0.98 0.98 0.98

Testing cohort 0.93 0.93 0.92 0.93

Fourth experiment

Training cohort 0.99 0.99 0.99 0.99

Testing cohort 0.91 0.89 0.89 0.89

Fifth experiment

Training cohort 0.99 0.99 0.99 0.99

Testing cohort 0.91 0.90 0.91 0.91

Sixth experiment

Training cohort 0.99 0.99 0.99 0.99

Testing cohort 0.98 0.98 0.98 0.98

Seventh experiment

Training cohort 0.99 0.99 0.99 0.99

Testing cohort 0.90 0.88 0.88 0.88

Eighth experiment

Training cohort 0.98 0.97 0.97 0.97

Testing cohort 0.90 0.89 0.89 0.89

Ninth experiment

Training cohort 0.99 0.99 0.98 0.99

Testing cohort 0.95 0.95 0.96 0.95

Tenth experiment

Training cohort 0.99 0.99 0.99 0.99

Testing cohort 0.93 0.92 0.92 0.92

The dataset was split into 10 equal parts. Two parts were randomly selected as the testing cohort each time, and the remaining 8 were the 
training cohort.
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Figure S1 Detailed structure of the model in this study.
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Figure S2 The nomogram for predicting IAC risk was constructed based on 3D radiomic signatures and radiological features. IAC, invasive 
adenocarcinoma.
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Figure S3 The ROC curves of the training set and test set in each tenfold cross-validation experiment. Subgraph (1) in each group 
represents the ROC curve of the training cohort, and subgraph (2) represents the ROC curve of the testing cohort.
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Figure S4 Calibration plot of the model in three data cohorts. A represents the calibration plot in the training cohort. B represents the 
calibration plot in the testing cohort. C represents the calibration plot in the verification cohort.
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Figure S5 Overall study design flowchart for the training, testing, and validation cohorts and diagnostic performance by each approach.


