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Background: Machine learning (ML) is combined with noninvasive parameters from coronary computed 
tomography angiography (CTA) to construct predictive models to identify culprit lesions that may lead to 
acute coronary syndrome (ACS).
Methods: We retrospectively analyzed 132 patients with ACS at the Fourth Affiliated Hospital of Harbin 
Medical University who had coronary CTA between 3 months and 3 years before the ACS event, with a 
total of 240 lesions. Lesions from 2020 (n=154) were included in the training set, and lesions from 2021 
(n=86) were included in the test set for internal validation. We evaluated the role of plaque characteristics, 
hemodynamic parameters and pericoronary adipose tissue (PCAT) attenuation from CTA in identifying 
culprit ACS lesions. In the training set, logistic regression was used to screen CTA-derived parameters 
with P values <0.05 for the model construction. Logistic regression, random forest, Bayesian and K-nearest 
neighbor algorithms were used to build classification models, and their performance was assessed using the 
test set. The following models were established to evaluate the effectiveness of different combinations of 
models to identify culprit lesions: Model 1 was established for plaque characteristics; Model 2 was established 
for hemodynamic parameters; Model 3 was established for PCAT attenuation; Model 4 was established for 
plaque characteristics and hemodynamic parameters; and Model 5 was established for plaque characteristics, 
hemodynamic parameters and PCAT attenuation.
Results: A total of ten high-risk factors were screened for the ML model construction, and the ML model 
based on the logistic regression algorithm had the best performance among the four algorithms (accuracy 
=0.721; sensitivity =0.892; specificity =0.592; positive prediction =0.623; and negative prediction =0.879). 
In this model, the minimum lumen area, positive remodeling and lesion-specific fat attenuation index 
(FAI) were the risk factors significantly associated with the culprit lesion. Analysis of the effect of different 
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Introduction

Acute coronary syndrome (ACS) is a disease mainly caused 
by atherosclerosis (more than 90%), which is characterized 
by an acute onset and many complications. Therefore, it 
is necessary to focus on atherosclerosis for this disease (1). 
Most ACS is not due to obstructive coronary disease but 
rather rupture of vulnerable plaques (2), indicating that 
it is important to identify vulnerable plaques for patients. 
Coronary computed tomography angiography (CTA) 
provides plaque information in a noninvasive imaging 
modality (3,4), providing clinical predictive value through 
quantification and analysis of plaques to identify adverse 
plaques. In addition, the advent of coronary computed 
tomography-derived fractional flow reserve (FFRCT) 
enables coronary CTA to combine detailed anatomical and 
physiological information in a single standard examination 
(5,6), which can further reflect the presence of ischemic 
symptoms at the lesion site. However, plaque rupture is 
a complex clinical process, and the advent of a plaque to 
rupture and cause ACS is affected by many factors. Vascular 
inflammation is a key factor leading to the formation and 
rupture of atherosclerotic plaques, which can lead to the 
occurrence of ACS (7). A correlation between inflammation 
and pericoronary adipose tissue (PCAT) has been 
established; pro-inflammatory factors are released from the 
inflamed vessel wall and propagate in a paracrine manner 
toward PCAT, which inhibits local adipogenesis in PCAT, 
and this process is detectable in CTA by quantifying the fat 
attenuation index (FAI) (8-10).

 Previous studies have shown that adding noninvasive 
hemodynamic parameters to anatomical and plaque 
characteristics improves the prediction of culprit lesions (11),  
and PCAT features have also been used to predict ACS (12).  
However, the predictive value of combining plaque 

characteristics, noninvasive hemodynamic parameters 
and PCAT for ACS has not been investigated. The use of 
machine learning (ML) on the basis of imaging can provide 
incremental value in cardiovascular disease diagnosis, 
facilitating faster and more accurate diagnosis and decision-
making, thereby significantly reducing the burden of disease 
(13-15). Therefore, the present study used machine learning 
to develop and validate models of culprit lesions based 
on plaque characteristics, hemodynamic parameters and 
PCAT attenuation of CTA to identify culprit lesions that 
cause subsequent ACS in the next 3 months to 3 years. The 
present study is performed in accordance with the TRIPOD 
reporting checklist (available at https://qims.amegroups.
com/article/view/10.21037/qims-22-1045/rc).

Methods

Study population

The study population was retrospectively recruited from the 
Fourth Affiliated Hospital of Harbin Medical University 
(HeiLongJiang Province, China) and included patients with 
well-documented ACS [unstable angina (UA), ST-elevation 
myocardial infarction (STEMI), and non-ST-elevation 
myocardial infarction (NSTEMI)] who underwent CTA 
at our hospital 3 months to 3 years ago due to symptoms, 
such as chest pain with suspected coronary artery disease 
(CAD). The diagnosis of ACS was based on the guidelines 
published by the 2020 ESC on the management of acute 
coronary syndromes (16). The patients included in this 
study had no clinically typical symptoms and definite 
evidence of ACS at the time of CTA examination. Invasive 
coronary angiography (ICA) was performed at the time of 
ACS, and culprit and nonculprit lesions were identified by 
interventional cardiologists who were unaware of the CTA 

combinations of models to identify culprit lesions showed that Model 5 had the best predictive effect (AUC 
=0.819 and 95% CI: 0.722–0.916).
Conclusions: ACS can be predicted using ML based on CTA parameters. Compared to other models, the 
model combining plaque characteristics, hemodynamic parameters and PCAT attenuation performed best in 
predicting the culprit lesion.
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evaluation results. Th exclusion criteria were as follows: 
(I) restenotic lesions after stenting at the time of ACS 
occurrence; (II) history of coronary artery bypass grafting 
(CABG) revascularization before ACS occurred; (III) 
implanted cardiac devices and abnormal coronary arteries 
confirmed by conventional CTA; and (IV) patients with 
poor-quality CTA images insufficient for hemodynamic and 
PCAT analysis. A total of 132 patients with 240 lesions were 
included in the present study. The lesions of patients from 
January to December 2020 (n=154) were included in the 
training set, and the lesions of patients from January to July 
2021 (n=86) were included in the test set in chronological 
order. The flow chart of the study design is shown in 
Figure 1. The present study was conducted in accordance 
with the Declaration of Helsinki (as revised in 2013), and 
it was approved by the Medical Ethics Committee of The 
Fourth Affiliated Hospital, Harbin Medical University 
(No. 2022-SCILLSC-11). Individual consent for this 
retrospective analysis was waived.

CTA acquisition

All scans were performed on a Toshiba 320-row computed 
tomography scanner (Aquilion ONE, Toshiba, Tokyo, 
Japan). A prospective ECG gating protocol was used for 
the CTA scan with the following scan parameters: tube 
voltage was 100 or 120 kV; tube current was determined by 
body mass index (300–500 mA); and time resolution was 275 
ms. Prior to contrast injection, the control heart rate was  
<80 beats/min, and patients with high heart rates underwent 
CTA after heart rate stabilization or were considered for beta 
blockers at the discretion of the treating physician. Then, 
60–70 mL of iodine contrast medium (350 mg/mL iodine-
containing ethanol solution) was injected at a flow rate of 
4.5–5 mL/s. The reconstructed image matrix was 512*512 
with a layer thickness of 0.5 mm and increments of 0.25 mm.

Coronary plaque analysis

All patient images were retrospectively analyzed using 

Patients with ACS diagnosed in our hospital from January 2020 to July 2021 were 
retrospectively analyzed, and invasive coronary angiography was performed when 

ACS occurred

Patients who underwent coronary artery computed CTA before ACS event  
(3 months-3 years) (Patient n=160)

Exclusion (Patient n=28):
1. Restenosis after stent
2. History of previous CABG revascularization
3. Implanted cardiac devices and abnormal coronary 

arteries confirmed by conventional CTA
4. Patients with poor CTA image quality and insufficient for 

hemodynamic and pericoronal adipose tissue analysis

Finally (Patient n=132, lesion n=240)

Training set (Patient n=80, lesion n=154)
Patients from January to December 2020

Test set (Patient n=52, lesion n=86)
Patients from January to July 2021

Nonculprit lesion
(Lesion n=84)

Culprit lesion
(Lesion n=70)

Nonculprit lesion
(Lesion n=49)

Culprit lesion
(Lesion n=37)

Figure 1 Flowchart of the study. CTA, computed tomography angiography; ACS, acute coronary syndrome; CABG, coronary artery bypass 
grafting.
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semiautomatic plaque analysis software (Vitrea version 
7.6; Vital Images). The software automatically extracted 
the coronary artery tree and automatically identified the 
inner and outer diameters of the lumen, and we performed 
manual correction when identifying errors (Figure 2A-2C). 
Plaque morphological features, including vessel location, 
diameter stenosis (DS), length, distance from the ostium, 
minimal lumen area (MLA) and spotty calcification, were 
measured (17). Low attenuation plaque (LAP) volume, 
fibrous plaque (FP) volume (medium attenuation plaque), 
calcified plaque (CP) volume and total plaque (TP) 
volume were also measured (17). Plaque burden (11), wall-
to-lumen volume ratio, remodeling index and positive 

remodeling were quantitatively calculated. A total of 13 
plaque parameters were analyzed. The detailed parameter 
definitions are provided in the Appendix 1.

Analysis of hemodynamic parameters of coronary CTA

For the hemodynamic analysis, a software model based on 
computational fluid dynamics (Shukun Technology) was 
used. In each subject, the fractional flow reserve at the 
lesion site was calculated (expressed as FFRCT), and the 
vessel FFRCT (VFFRCT) was defined as the minimum 
value of the distal FFRCT of the vessel encompassing the 
entire coronary artery (18). ∆FFRCT was defined as the 
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Figure 2 Representative cases. (A) Curved projection reformation map. The lesion area is located between the two blue lines. The green line 
is the reference point, and the red line is the narrowest position of the lesion. (B) Cross-sectional view of the narrowest position of the lesion. 
The green area is the lumen and represents the MLA, and the red area is the LAP. The blue area is the FP, and the yellow area is the CP. (C) 
Plaque analysis map. (D) Hemodynamic characteristic map. (E) Proximal FAI map of the lesion. (F) Lesion-specific FAI measurement map. 
(G) Cross-sectional view of lesion-specific FAI. Figure shows a typical case of the culprit lesion of ACS. CTA showed RCA lesion diameter 
stenosis of 58%, lesion length of 1.7 mm, distance from the opening of 45.05 mm, MLA of 2.8 mm2, remodeling index of 1.7, wall-to-lumen 
ratio of 1.68 and plaque load of 62.7% as well as LAP, FP, CP and TP volumes of 65.5, 176.5, 40 and 282 mm3, respectively, with no spotty 
calcification. FFRCT =0.9, ΔFFRCT =0.23, VFFRCT =0.64. The proximal FAI was −67, and the lesion-specific FAI was −45. At 283 days 
after CTA, the patient presented with ACS. DS, diameter stenosis; MLA, minimal lumen area; LAP, low attenuation plaque; FP, fibrous 
plaque; CP, calcified plaque; TP, total plaque; FAI, fat attenuation index; CTA, computed tomography angiography; ACS, acute coronary 
syndrome; RCA, right coronary artery; FFRCT, computed tomography-derived fractional flow reserve; ΔFFRCT, Delta FFRCT; VFFRCT, 
vessel FFRCT.

https://cdn.amegroups.cn/static/public/QIMS-22-1045-Supplementary.pdf
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subtraction value of the proximal and distal FFRCT of the 
lesion (19) (Figure 2D).

PCAT attenuation analysis

We recorded the proximal 40 mm segments of the three 
major coronary arteries [left anterior descending artery 
(LAD), left circumflex artery (LCX) and right coronary 
artery (RCA)] containing lesions (RCA analyzed vessels 10–
50 mm from the ostium), and we defined PCAT as the radial 
distance from the vessel wall equal to the vessel diameter 
for all voxels in the range of −190 to −30 HU (20). PCAT 
attenuation was calculated from the average attenuation of 
perivascular adipose tissue, and the fat attenuation index 
(FAI) was determined by quantifying weighted perivascular 
fat attenuation after adjustment for technical parameters. 
We used dedicated analysis software (Shukun Technology) to 
measure the proximal FAI of the vessel where the lesion was 
located (Figure 2E). In addition, we measured lesion-specific 
FAI (21), which was measured proximal and distal 5 mm  
from the center of the lesion as well as 10 mm in length and 
2 mm from the outer diameter of the vessel (Figure 2F,2G).

Machine learning model construction, validation and 
performance

In the development cohort, logistic regression analysis 
was performed to identify factors associated with culprit 
lesions, and parameters with P<0.05 were included in the 
model construction (Appendix 1). Logistic regression 
(LR), random forest (RF) (22), Bayesian (23) and K-nearest 
neighbor (KNN)(22) algorithms were applied in the training 
set to build models. The area under the receiver operating 
characteristic (ROC) curve (AUC) was used as an indicator 
of the predictive performance of the model. Decision 
curve analysis (DCA) was used to elucidate the overall 
benefit of different predictive models. The nomogram of 
the combined model was established to predict the future 
incidence of ACS culprit lesions in patients with coronary 
artery disease.

Statistical analysis

Statistical analysis was performed using R software (version 
4.1.0) and SPSS Statistics 25.0, and statistical significance 
was defined as two-sided P<0.05. Continuous variables with 
normal distribution are expressed as the mean ± standard 
deviation (SD), and nonnormal distributions are expressed 

as the median (25th and 75th). Categorical variables are 
expressed as number [n (%)]. T tests, Mann-Whitney U 
tests and chi-square tests were used to compare baseline 
characteristics of the cohorts.

Results

Baseline characteristics of patients

In this single-center retrospective study, a total of 160 
patients with ACS who had both prior CTA images and 
concurrent ICA examinations were included according to 
previous inclusion criteria. The following patients were 
excluded: eight patients with restenosis after stenting, five 
patients who had undergone CABG surgery, four patients 
with implanted cardiac devices or containing abnormal 
coronary arteries, three patients with poor image quality 
and eight patients who could not be identified by software 
and measured by FFRCT or FAI. Ultimately, a total of 
132 patients with 240 lesions (107 culprit lesions and 133 
nonculprit lesions) were included in the present study. The 
training set included 154 lesions (70 culprit lesions and 
84 nonculprit lesions), and the test set included 86 lesions 
(37 culprit lesions and 49 nonculprit lesions). The average 
interval between coronary CTA scan and ACS was 525.50 
(329.00–758.75) days (Table 1). The baseline characteristics 
of the patients did not significantly differ between the 
training set and test set (all P>0.05).

Comparison of CTA parameters for culprit and nonculprit 
lesions

Based on the training set, we compared the differences 
in plaque characteristics, hemodynamic parameters and 
PCAT attenuation between culprit and nonculprit lesions 
(Table 2). Compared to nonculprit lesions, culprit lesions 
had a smaller MLA, longer lesion length and larger LAP, 
FP and TP volumes (all P<0.05). In terms of hemodynamic 
parameters, the culprit lesions had lower VFFRCT values 
and higher ΔFFRCT values (both P<0.01), while there 
was no significant difference in FFRCT values between 
culprit and nonculprit lesions (P=0.191). Regarding the 
comparison of PCAT attenuation, both proximal FAI and 
lesion-specific FAI in culprit lesions were higher than those 
in nonculprit lesions [−86.81±10.50 vs. −90.33±10.00 HU  
(P=0.036) and −77.67±11.8 vs. −85.80±10.10 HU (P<0.001), 
respectively]. The results of the comparison of CTA 
parameters for the test set are shown in Table 2.

https://cdn.amegroups.cn/static/public/QIMS-22-1045-Supplementary.pdf
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CTA lesion characteristics to estimate the risk of culprit 
lesions

In the training set, univariate logistic regression analyses 
were performed to identify plaque characteristics, 
hemodynamic parameters and PCAT attenuation from CTA 
lesions associated with culprit lesions (Table 3) as well as to 
calculate odds ratios (ORs) expressed with 95% confidence 
intervals (CIs). The following ten high-risk factors (P<0.05) 
were identified (Table 3): DS, lesion length, MLA, low-
attenuation plaque, fibrous plaque, positive remodeling, 
VFFRCT, ∆FFRCT, proximal FAI and lesion-specific FAI. 
The above parameters were used to construct a predictive 
model for ACS culprit lesions.

Develop predictive models for ACS culprit lesions using 
machine learning

Based on machine learning, a multiparameter combined 
model with 10 lesion features was constructed. The 
measured AUC values were used to compare the ability 
of the models constructed by the four algorithms to 

distinguish the culprit lesions (Figure 3A,3B). During the 
training process, the AUC values of the LR model, RF 
model, Bayesian model and KNN model were 0.809 (95% 
CI: 0.739–0.878), 0.990 (95% CI: 0.976–1.000), 0.693 
(95% CI: 0.612–0.775), and 0.710 (95% CI: 0.628–0.793), 
respectively. In the test set, the LR model, RF model and 
Bayesian model had better predictive performance than 
the KNN model with AUC values of 0.819 [95% CI: 
0.722–0.916), 0.754 (95% CI: 0.646–0.861), 0.754 (95% CI: 
0.650–0.857) and 0.700 (95% CI: 0.586–0.815), respectively. 
It is worth noting that although the AUC value of the RF 
model was significantly higher than that of the LR model 
during training [AUC: 0.990 (95% CI: 0.976–1.000) vs. 
0.809 (95% CI: 0.739–0.878)], the result was the opposite 
in the test set [AUC: 0.754 (95% CI: 0.646–0.861) vs. 0.819 
(95% CI: 0.722–0.916)], which indicated that the RF model 
was overfitting during training.

In the DCA curve (Figure 3C,3D), excluding the 
overfitting of the RF model in the training set, the LR 
model had the highest clinical application value and the 
best overall benefit of the model followed by the Bayesian 
model (Figure 3D). In the performance comparison of the 

Table 1 Characteristics of the patients

Patients Total (N=132) Training (N=80) Test (N=52) P

Age (years) 63.70 (8.80) 64.10 (8.74) 63.10 (9.01) 0.510

Male 71 (53.8) 38 (47.5) 33 (63.5) 0.106

BMI (kg/m2) 25.30 (3.10) 25.60 (3.03) 24.80 (3.11) 0.145

The average interval between CTA and ACS (days) 525.50 [329.00, 758.75] 520.00 [365.00, 736.00] 557.00 [203.00, 802.00] 0.234

Cardiovascular risk factors

Hypertension 90 (68.2) 59 (73.8) 31 (59.6) 0.130

Hyperlipidemia 66 (50.0) 44 (55.0) 22 (42.3) 0.212

Diabetes mellitus 52 (49.4) 32 (40.0) 20 (38.5) >0.999

Smoking 46 (34.8) 27 (33.8) 19 (36.5) 0.887

History of drinking 22 (16.7) 11 (13.8) 11 (21.2) 0.381

Clinical presentation 0.542

UA 100 (75.8) 58 (72.5) 42 (80.8)

NSTEMI 17 (12.9) 12 (15.0) 5 (9.6)

STEMI 15 (11.4) 10 (12.5) 5 (9.6)

Table represents the baseline information for total patients, training set patients and test set patients. P values represent the difference 
between the training and test sets. Values are mean (SD), n (%), or median [25th, 75th]. BMI, body mass index; CTA, computed tomography 
angiography; ACS, acute coronary syndrome; UA, unstable angina; NSTEMI, non-ST-segment elevation myocardial infarction; STEMI, ST-
segment elevation myocardial infarction.
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four models (Table 4), the LR model had the best predictive 
performance with an accuracy, sensitivity, specificity, 
positive prediction and negative prediction 0.721, the 0.892, 
0.592, 0.623 and 0.879, respectively. Combining the above 
factors, the logistic regression model had the best overall 
prediction performance, and the algorithm was selected for 

ML model construction.

Evaluation and application of the ML model

We assessed the risk of ACS for each parameter in a 
combined prediction model containing ten parameters 

Table 2 Comparison of CTA parameters between culprit and nonculprit lesions

Characteristics
Training (N=154) Test (N=86)

P
Nonculprit (N=84) Culprit (N=70) P Nonculprit (N=49) Culprit (N=37) P

Vessel location 0.348 0.737 0.811

LAD 30 (35.7) 33 (47.1) 17 (34.7) 15 (40.5)  

LCX 25 (29.8) 18 (25.7) 17 (34.7) 10 (27.0)  

RCA 29 (34.5) 19 (27.1) 15 (30.6) 12 (32.4)  

DS 0.54 [0.38, 0.68] 0.65 [0.50, 0.77] 0.001 0.56 [0.45, 0.63] 0.64 [0.56, 0.86] 0.004 0.646

Lesion length 9.90 [7.40, 12.60] 12.10 [8.68, 17.10] 0.003 9.90 [7.50, 13.00] 13.9 [9.50, 18.10] 0.009 0.616

Distance from ostium 42.00  
[32.10, 61.90]

43.70  
[32.60, 59.10]

0.949 42.80  
[36.90, 61.50]

44.5  
[32.40, 60.40]

0.622 0.666

MLA 4.55 [3.10, 7.03] 2.90 [1.42, 5.25] 0.002 4.70 [3.10, 6.10] 2.50 [0.90, 4.00] 0.002 0.603

Low attenuation 
plaque

18.50  
[12.70, 39.30]

28.30  
[15.60, 42.70]

0.036 22.40  
[13.60, 35.20]

28.60  
[18.20, 53.80]

0.048 0.381

Fibrous plaque 46.40  
[30.20, 72.40]

66.90  
[46.00, 104.00]

0.003 51.80  
[30.60, 85.40]

74.00  
[46.00, 146.00]

0.009 0.346

Calcified plaque 35.60  
[13.70, 62.50]

36.60  
[11.40, 72.50]

0.795 25.90  
[9.80, 48.40]

40.00  
[20.90, 49.50]

0.186 0.282

Total plaque volume 104.00  
[65.80, 159.00]

129.00  
[82.20, 230.00]

0.039 107.00  
[59.00, 148.00]

151.00  
[94.00, 232.00]

0.015 0.845

Positive remodeling 23 (27.4) 31 (44.3) 0.043 10 (20.4) 12 (32.4) 0.310 0.171

Wall to lumen volume 
ratio

1.55 [1.12, 2.50] 1.80 [1.45, 2.30] 0.088 1.66 [1.12, 2.42] 2.12 [1.68, 3.08] 0.005 0.352

Plaque burden 0.61 (0.13) 0.65 (0.11) 0.080 0.60 (0.13) 0.68 (0.12) 0.003 0.668

Spotty calcification 12 (14.3) 16 (22.9) 0.245 8 (16.3) 4 (10.8) 0.677 0.508

FFRCT 0.92 [0.84, 0.97] 0.89 [0.82, 0.96] 0.191 0.94 [0.90, 0.97] 0.88 [0.73, 0.93] 0.001 0.841

VFFRCT 0.82 [0.72, 0.89] 0.71 [0.64, 0.85] 0.004 0.83 [0.75, 0.89] 0.69 [0.62, 0.79] <0.001 0.784

∆FFRCT 0.05 [0.02, 0.11] 0.08 [0.03, 0.20] 0.009 0.06 [0.03, 0.09] 0.10 [0.04, 0.18] 0.047 0.971

Proximal FAI −90.33 (10.00) −86.81 (10.50) 0.036 −87.53 (8.61) −83.78 (8.37) 0.046 0.026

Lesion specific FAI −85.80 (10.10) −77.67 (11.80) <0.001 −79.43 (11.90) −69.14 (12.40) <0.001  <0.001

Table shows the comparison of the differences in CTA parameters for the culprit lesions and nonculprit lesions in the training and test sets, 
and the p values in the last column represent the comparison of the differences between the training and test set data. Values are mean 
(SD), n (%), or median [25th, 75th]. CTA, computed tomography angiography; LAD, left anterior descending artery; LCX, left circumflex 
artery; RCA, right coronary artery; DS, diameter stenosis; MLA, minimal lumen area; FFRCT, computed tomography-derived fractional flow 
reserve; ΔFFRCT, delta FFRCT; VFFRCT, vessel FFRCT; FAI, fat attenuation index.
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(Appendix 1). In this model, MLA was a protective factor 
for ACS (OR =0.81, 95% CI: 0.68–0.95, P=0.01). Of note, 
higher values indicated lower risk of the lesion becoming a 
culprit lesion. Positive remodeling and lesion-specific FAI 
were risk factors for culprit lesions (OR =3.06, 95% CI: 
1.32–7.37, P=0.01; OR =1.10, 95% CI: 1.05–1.16, P<0.001, 
respectively) (Figure S1). In the nomogram (Figure 4), the 
visualization predicted the probability of future culprit 

lesions. The optimal cutoff value of the model was 0.408. 
When the Pr(label) value was greater than or equal to 0.408, 
the lesion prediction outcome was the culprit lesion, and 
when the Pr(label) value was less than 0.408, the lesion 
prediction outcome was the nonculprit lesion.

Comparison of the effects of different classification models 
in predicting ACS culprit lesions

In the test set, ten prediction parameters were formed into 
the following models according to categories to evaluate 
the plaque characteristics, hemodynamic parameters and 
PCAT attenuation for predicting the value of ACS: Model 
1 was established for plaque characteristics; Model 2 was 
established for hemodynamic parameters; Model 3 was 
established for PCAT attenuation; Model 4 was established 
for plaque characteristics and hemodynamic parameters; 
and Model 5 was established for plaque characteristics, 
hemodynamic parameters and PCAT attenuation.

Among the three single-category models (Models 1–3), 
the ROC curve showed that the prediction effect of the 
plaque characteristics (Model 1) (AUC =0.793) was better 
than that of Model 2 (AUC =0.738) and Model 3 (AUC 
=0.715). Combining hemodynamic parameters and plaque 
features (Model 4) did not significantly improve prediction 
(AUC =0.783), but the combined model (Model 5) had 
the best prediction performance for culprit lesions (AUC 
=0.819) (Figure 5A). The DCA curve showed that Model 5 
patients had the greatest net benefit followed by Model 4 
patients (Figure 5B). The calibration curves for the different 
models are shown in Figure S2.

Discussion

The present study used ML to investigate the diagnostic 
performance of CTA-derived plaque characteristics, 
hemodynamics and PCAT attenuation in predicting 
culprit ACS lesions. In the present study, a simple random 
grouping was not used due to an insufficient sample size, but 
the patients were divided into training and test sets based 
on the year of enrollment, which more objectively reflected 
the generalization of the constructed model. The present 
results showed that there were significant differences in 
MLA, lesion length, LAP volume, FP volume, TP volume, 
VFFRCT, proximal FFRCT, proximal FAI and lesion-
specific FAI between the culprit and nonculprit lesions (all 
P<0.05). Ten high-risk factors (all P<0.05) were screened 
from 18 CTA-derived parameters by logistic regression for 

Table 3 Plaque characteristics, hemodynamic parameters and 
PCAT attenuation of CTA predict the risk of culprit lesions

Characteristics OR 95% CI P

Plaque characteristics

Vessel location LAD Reference

Vessel location LCX 0.65 0.30–1.43 0.29

Vessel location RCA 0.60 0.28–1.27 0.18

DS 20.13 3.33–121.76 <0.001

Lesion length 1.07 1.01–1.12 0.01

Distance from ostium 1.00 0.99–1.01 0.61

MLA 0.85 0.76–0.95 <0.001

Low attenuation plaque 1.02 1.00–1.03 0.03

Fibrous plaque 1.01 1.00–1.02 <0.001

Calcified plaque 1.00 1.00–1.00 0.80

Total plaque volume 1.00 1.00–1.00 0.11

Positive remodeling 2.11 1.08–4.13 0.03

Wall to lumen volume ratio 1.07 0.84–1.35 0.60

Plaque burden 10.19 0.72–143.83 0.09

Spotty calcification 1.78 0.78–4.07 0.17

Hemodynamic parameters

FFRCT 0.15 0.01–3.55 0.24

VFFRCT 0.03 0.00–0.37 0.01

∆FFRCT 250.99 5.12–12,295.67 0.01

PCAT attenuation

Proximal FAI 1.03 1.00–1.07 0.04

Lesion specific FAI 1.07 1.04–1.11 <0.001

OR, odds ratio; CI, confidence interval; PCAT, pericoronary 
adipose tissue; CTA, computed tomography angiography; LAD, 
left anterior descending artery; LCX, left circumflex artery; RCA, 
right coronary artery; DS, diameter stenosis; MLA, minimal 
lumen area; FFRCT, computed tomography-derived fractional 
flow reserve; ΔFFRCT, delta FFRCT; VFFRCT, vessel FFRCT; FAI, 
fat attenuation index.

https://cdn.amegroups.cn/static/public/QIMS-22-1045-Supplementary.pdf
https://cdn.amegroups.cn/static/public/QIMS-22-1045-Supplementary.pdf
https://cdn.amegroups.cn/static/public/QIMS-22-1045-Supplementary.pdf
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ML model construction. The results showed that the ML 
model based on the LR algorithm was the best model. The 
comparison results of the combined models of different 
classifications showed that Model 5 had the best prediction 
effect (AUC =0.819).

Previous studies have suggested that ACS is associated 
with atherosclerotic plaque vulnerability (24). Identified 
high-risk plaque characteristics of CTA include LAP, spotty 
calcification, positive remodeling and napkin ring sign, and 
these characteristics are associated with the occurrence of 
ACS (25). Lee et al. (19) analyzed the predictive value of 

adverse plaque characteristics and hemodynamic parameters 
for ACS, and they reported that the relative importance 
of ∆FFRCT is higher than that of FFRCT, agreeing with 
the present results. In the present study, when adverse 
plaque and hemodynamic characteristics were added to the 
prediction model, the AUC continued to improve. The 
present study further investigated the predictive value of 
PCAT attenuation.

In addition to plaque characteristics and hemodynamic 
parameters, the discovery of PCAT attenuation provides 
more comprehensive inflammatory information for the 
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Figure 3 Comparison of the performance of the logical regression model, random forest model, Bayesian model and K-nearest neighbor 
model in predicting culprit lesions of ACS. ROC curve of four models in the training set (A) and test set (B) for predicting the culprit lesion 
of ACS. DCA curves of the four models in the training set (C) and test set (D). Blue lines, orange lines, green lines and red lines represent 
the logical regression model, random forest model, Bayesian model and K-nearest neighbor model, respectively. The ROC curve of the 
logical model shows that the AUC values of the training set and the test set are 0.809 and 0.819, respectively. The DCA curve shows the 
clinical utility of the model by comparing the net gain at different threshold probabilities. The solid gray line represents the assumption that 
all lesions are the culprit lesions of ACS, while the dashed gray line represents the assumption that no lesions are the culprit lesions of ACS. 
ACS, acute coronary syndrome; ROC, receiver operating characteristic; DCA, decision curve analysis; AUC, area under the ROC curve; 
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Table 4 Performance metrics for the four models in the training and test sets

Model 
characteristics

Training Test

LR RF Bayesian KNN LR RF Bayesian KNN

Accuracy 0.740 0.955 0.675 0.662 0.721 0.640 0.733 0.674

Sensitivity 0.714 0.914 0.557 0.514 0.892 0.676 0.622 0.649

Specificity 0.762 0.988 0.774 0.786 0.592 0.612 0.816 0.694

positive 
prediction

0.714 0.985 0.672 0.667 0.623 0.568 0.719 0.615

negative 
prediction

0.762 0.933 0.677 0.660 0.879 0.714 0.741 0.723

AUC (95% CI) 0.809  
(0.739–0.878)

0.990  
(0.976–1.000)

0.693  
(0.612–0.775)

0.710  
(0.628–0.793)

0.819  
(0.722–0.916)

0.754  
(0.646–0.861)

0.754  
(0.650–0.857)

0.700  
(0.586–0.815)

LR, logistic regression; RF, random forest; KNN, K-nearest neighbor; AUC, area under the ROC curve; CI, confidence interval; 
ROC, receiver operating characteristic.
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of 57.8 mm3, RI ≥1.1, VFFRCT of 0.95, ∆FFRCT of 0.01, proximal FAI of −74, lesion specific FAI of −72 and total score of 1.11. It was 
predicted that the lesion has a 0.615 chance of becoming a culprit lesion. In this case, the lesion became the culprit lesion of ACS after 512 days. 
In positive remodeling, 0 represents RI <1.1, and 1 represents RI ≥1.1. *, P=0.01; ***, P<0.001. DS, diameter stenosis; MLA, minimal lumen 
area; LAP, low attenuation plaque; ACS, acute coronary syndrome; LCX, left circumflex artery; FFRCT, computed tomography-derived 
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Figure 5 Comparison of different classification models for predicting culprit lesions in ACS. The ROC curve (A), DCA curve (B) and model 
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lesion characteristics (9). Goeller et al. (26) reported that 
PCAT attenuation is increased around culprit lesions 
compared to nonculprit lesions, suggesting that FAI may 
help identify vulnerable plaques. Based on the level of the 
lesion, the present study measured the FAI of the proximal 
vessel where the lesion was located and the lesion-specific 
FAI to predict whether the lesion would become the culprit 
lesion for ACS. According to the logistic regression analysis, 
both proximal and lesion-specific FAI were risk factors for 
secondary ACS (proximal FAI: OR =1.03, P=0.04; lesion-
specific FAI: OR =1.07, P<0.001), and the lesion-specific 
FAI had a higher value in predicting culprit lesions in the 
ML model (OR =1.1, P<0.001).

Plaque characteristics, hemodynamic parameters and 
PCAT attenuation all reflect the characteristics of lesions 
and provide corresponding clinical information for disease 
prediction. These parameters are all noninvasive parameters 
and do not require additional invasive examinations, 
thereby reducing harm to patients. In the present study, 
the plaque characteristics model (Model 1) outperformed 
Model 2 and Model 3, which may be due to the excessive 
number of parameters included in the plaque characteristics 
category. To the best of our knowledge, this study is the 
first to propose using ML combined with three-category 
CTA parameter characteristics to predict ACS culprit 
lesions based on lesion level. The present study investigated 

the direct correlation between the CTA parameter 
characteristics of each lesion and the culprit lesion to 
improve the identification of culprit lesions in patients 
prone to ACS. Early identification of culprit lesions will 
aid in timely preventive measures and interventions for 
treatment.

Limitations

The present study had some limitations. First, the present 
study was limited by retrospective study data, which may 
lead to inevitable bias. Further efforts to collect prospective 
data are necessary. Second, this was a single-center, single-
vendor study. The prediction of ACS by different image 
acquisition parameters and different computed tomography 
scanners requires further study. Third, due to technical 
limitations, we measured the lesion-specific FAI in an area 
including 2 mm of vessel wall expansion, and it is necessary 
to exclude the 1 mm area around the vessel wall (which 
may include the effect of the eccentric plaque) for further 
validation. Fourth, the ACS patients in the present mainly 
had unstable angina pectoris, indicating that additional 
patients with culprit lesions of myocardial infarction need 
to be verified in the future. Fifth, the preset study analyzed 
ACS culprit lesions, and due to the limited number of 
patients, we were unable to analyze the CTA parameter 
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characteristics for UA, NSTEMI, and STEMI subgroups to 
predict disease, indicating that further studies are needed. 
Sixth, the retrospective nature of the present study made it 
difficult to control the status of drug use from early CTA 
examination to ACS. However, changes in drug therapy 
during the clinical process were based on the actual patient 
situation, which is uncontrollable and unavoidable.

Conclusions

Using machine learning based on CTA parameters can 
predict ACS. Compared to other combined models, the 
model combining plaque characteristics, hemodynamic 
parameters and PCAT attenuation performed best in 
predicting culprit lesions of ACS.

Acknowledgments

Funding: This work was supported by the Beijing Cihua 
Medical Development Foundation Project (Research on 
CT-assisted diagnosis of coronary heart disease based 
on artificial intelligence), the Fourth Affiliated Hospital 
of Harbin Medical University (molecular imaging of 
myocardial oxidative stress response in obese states; No. 
HYDSYTB202228), and the Fourth Affiliated Hospital 
of Harbin Medical University (PD-L1 inhibitors in 
combination with targeted agents for kidney cancer 
treatment and molecular imaging; No. JD22C007).

Footnote

Reporting Checklist: The authors have completed the 
TRIPOD reporting checklist. Available at https://qims.
amegroups.com/article/view/10.21037/qims-22-1045/rc

Conflicts of Interest: All authors have completed the ICMJE 
uniform disclosure form (available at https://qims.
amegroups.com/article/view/10.21037/qims-22-1045/coif). 
MZ is a current employee of GE Healthcare. The other 
authors have no conflicts of interest to declare.

Ethical Statement: The authors are accountable for all 
aspects of the work in ensuring that questions related 
to the accuracy or integrity of any part of the work are 
appropriately investigated and resolved. The study was 
conducted in accordance with the Declaration of Helsinki (as 
revised in 2013). The study was approved by the Medical 
Ethics Committee of The Fourth Affiliated Hospital, 

Harbin Medical University (No. 2022-SCILLSC-11), and 
individual consent for this retrospective analysis was waived.

Open Access Statement: This is an Open Access article 
distributed in accordance with the Creative Commons 
Attribution-NonCommercial-NoDerivs 4.0 International 
License (CC BY-NC-ND 4.0), which permits the non-
commercial replication and distribution of the article with 
the strict proviso that no changes or edits are made and the 
original work is properly cited (including links to both the 
formal publication through the relevant DOI and the license). 
See: https://creativecommons.org/licenses/by-nc-nd/4.0/.

References

1. Tsao CW, Aday AW, Almarzooq ZI, Alonso A, Beaton 
AZ, Bittencourt MS, et al. Heart Disease and Stroke 
Statistics-2022 Update: A Report From the American 
Heart Association. Circulation 2022;145:e153-639.

2. van Veelen A, van der Sangen NMR, Delewi R, Beijk 
MAM, Henriques JPS, Claessen BEPM. Detection of 
Vulnerable Coronary Plaques Using Invasive and Non-
Invasive Imaging Modalities. J Clin Med 2022.

3. Abdelrahman KM, Chen MY, Dey AK, Virmani R, 
Finn AV, Khamis RY, Choi AD, Min JK, Williams MC, 
Buckler AJ, Taylor CA, Rogers C, Samady H, Antoniades 
C, Shaw LJ, Budoff MJ, Hoffmann U, Blankstein R, 
Narula J, Mehta NN. Coronary Computed Tomography 
Angiography From Clinical Uses to Emerging 
Technologies: JACC State-of-the-Art Review. J Am Coll 
Cardiol 2020;76:1226-43.

4. Moss AJ, Williams MC, Newby DE, Nicol ED. The 
Updated NICE Guidelines: Cardiac CT as the First-
Line Test for Coronary Artery Disease. Curr Cardiovasc 
Imaging Rep 2017;10:15.

5. Tesche C, De Cecco CN, Albrecht MH, Duguay TM, 
Bayer RR 2nd, Litwin SE, Steinberg DH, Schoepf UJ. 
Coronary CT Angiography-derived Fractional Flow 
Reserve. Radiology 2017;285:17-33.

6. Shi K, Yang FF, Si N, Zhu CT, Li N, Dong XL, Guo Y, 
Zhang T. Effect of 320-row CT reconstruction technology 
on fractional flow reserve derived from coronary CT 
angiography based on machine learning: single- versus 
multiple-cardiac periodic images. Quant Imaging Med 
Surg 2022;12:3092-103.

7. Sugiyama T, Kanaji Y, Hoshino M, Yamaguchi M, Hada 
M, Ohya H, Sumino Y, Hirano H, Kanno Y, Horie T, 
Misawa T, Nogami K, Ueno H, Hamaya R, Usui E, Murai 

https://qims.amegroups.com/article/view/10.21037/qims-22-1045/rc
https://qims.amegroups.com/article/view/10.21037/qims-22-1045/rc
https://qims.amegroups.com/article/view/10.21037/qims-22-1045/coif
https://qims.amegroups.com/article/view/10.21037/qims-22-1045/coif
https://creativecommons.org/licenses/by-nc-nd/4.0/


Quantitative Imaging in Medicine and Surgery, Vol 13, No 7 July 2023 4337

© Quantitative Imaging in Medicine and Surgery. All rights reserved.   Quant Imaging Med Surg 2023;13(7):4325-4338 | https://dx.doi.org/10.21037/qims-22-1045

T, Lee T, Yonetsu T, Sasano T, Kakuta T. Determinants of 
Pericoronary Adipose Tissue Attenuation on Computed 
Tomography Angiography in Coronary Artery Disease. J 
Am Heart Assoc 2020;9:e016202.

8. Margaritis M, Antonopoulos AS, Digby J, Lee R, Reilly 
S, Coutinho P, Shirodaria C, Sayeed R, Petrou M, De 
Silva R, Jalilzadeh S, Demosthenous M, Bakogiannis 
C, Tousoulis D, Stefanadis C, Choudhury RP, Casadei 
B, Channon KM, Antoniades C. Interactions between 
vascular wall and perivascular adipose tissue reveal novel 
roles for adiponectin in the regulation of endothelial nitric 
oxide synthase function in human vessels. Circulation 
2013;127:2209-21.

9. Oikonomou EK, Marwan M, Desai MY, Mancio J, Alashi 
A, Hutt Centeno E, et al. Non-invasive detection of 
coronary inflammation using computed tomography and 
prediction of residual cardiovascular risk (the CRISP CT 
study): a post-hoc analysis of prospective outcome data. 
Lancet 2018;392:929-39.

10. Si N, Shi K, Li N, Dong X, Zhu C, Guo Y, Hu J, Cui 
J, Yang F, Zhang T. Identification of patients with acute 
myocardial infarction based on coronary CT angiography: 
the value of pericoronary adipose tissue radiomics. Eur 
Radiol 2022;32:6868-77.

11. Park J, Lee JM, Koo BK, Choi G, Hwang D, Rhee TM, 
et al. Relevance of anatomical, plaque, and hemodynamic 
characteristics of non-obstructive coronary lesions in the 
prediction of risk for acute coronary syndrome. Eur Radiol 
2019;29:6119-28.

12. Shang J, Ma S, Guo Y, Yang L, Zhang Q, Xie F, Ma Y, Ma 
Q, Dang Y, Zhou K, Liu T, Yang J, Hou Y. Prediction of 
acute coronary syndrome within 3 years using radiomics 
signature of pericoronary adipose tissue based on 
coronary computed tomography angiography. Eur Radiol 
2022;32:1256-66.

13. Dey D, Slomka PJ, Leeson P, Comaniciu D, Shrestha 
S, Sengupta PP, Marwick TH. Artificial Intelligence in 
Cardiovascular Imaging: JACC State-of-the-Art Review. J 
Am Coll Cardiol 2019;73:1317-35.

14. Lin A, Kolossváry M, Motwani M, Išgum I, Maurovich-
Horvat P, Slomka PJ, Dey D. Artificial Intelligence 
in Cardiovascular Imaging for Risk Stratification in 
Coronary Artery Disease. Radiol Cardiothorac Imaging 
2021;3:e200512.

15. Lin A, Kolossváry M, Išgum I, Maurovich-Horvat P, 
Slomka PJ, Dey D. Artificial intelligence: improving the 
efficiency of cardiovascular imaging. Expert Rev Med 
Devices 2020;17:565-77.

16. Collet JP, Thiele H, Barbato E, Barthélémy O, Bauersachs 
J, Bhatt DL, et al. 2020 ESC Guidelines for the 
management of acute coronary syndromes in patients 
presenting without persistent ST-segment elevation. Eur 
Heart J 2021;42:1289-367.

17. Motoyama S, Sarai M, Harigaya H, Anno H, Inoue K, 
Hara T, Naruse H, Ishii J, Hishida H, Wong ND, Virmani 
R, Kondo T, Ozaki Y, Narula J. Computed tomographic 
angiography characteristics of atherosclerotic plaques 
subsequently resulting in acute coronary syndrome. J Am 
Coll Cardiol 2009;54:49-57.

18. Doris MK, Otaki Y, Arnson Y, Tamarappoo B, Goeller 
M, Gransar H, Wang F, Hayes S, Friedman J, Thomson 
L, Slomka P, Dey D, Berman D. Non-invasive fractional 
flow reserve in vessels without severe obstructive stenosis 
is associated with coronary plaque burden. J Cardiovasc 
Comput Tomogr 2018;12:379-84.

19. Lee JM, Choi G, Koo BK, Hwang D, Park J, Zhang J, et 
al. Identification of High-Risk Plaques Destined to Cause 
Acute Coronary Syndrome Using Coronary Computed 
Tomographic Angiography and Computational Fluid 
Dynamics. JACC Cardiovasc Imaging 2019;12:1032-43.

20. Lin A, Nerlekar N, Yuvaraj J, Fernandes K, Jiang C, 
Nicholls SJ, Dey D, Wong DTL. Pericoronary adipose 
tissue computed tomography attenuation distinguishes 
different stages of coronary artery disease: a cross-sectional 
study. Eur Heart J Cardiovasc Imaging 2021;22:298-306.

21. Ma R, van Assen M, Ties D, Pelgrim GJ, van Dijk 
R, Sidorenkov G, van Ooijen PMA, van der Harst 
P, Vliegenthart R. Focal pericoronary adipose tissue 
attenuation is related to plaque presence, plaque type, 
and stenosis severity in coronary CTA. Eur Radiol 
2021;31:7251-61.

22. Martin-Isla C, Campello VM, Izquierdo C, Raisi-
Estabragh Z, Baeßler B, Petersen SE, Lekadir K. Image-
Based Cardiac Diagnosis With Machine Learning: A 
Review. Front Cardiovasc Med 2020;7:1.

23. Brophy JM. Bayesian Analyses of Cardiovascular Trials-
Bringing Added Value to the Table. Can J Cardiol 
2021;37:1415-27.

24. Maurovich-Horvat P, Ferencik M, Voros S, Merkely B, 
Hoffmann U. Comprehensive plaque assessment by coronary 
CT angiography. Nat Rev Cardiol 2014;11:390-402.

25. Motoyama S, Ito H, Sarai M, Kondo T, Kawai H, 
Nagahara Y, Harigaya H, Kan S, Anno H, Takahashi H, 
Naruse H, Ishii J, Hecht H, Shaw LJ, Ozaki Y, Narula 
J. Plaque Characterization by Coronary Computed 
Tomography Angiography and the Likelihood of Acute 



Li et al. Using ML to predict culprit lesions based on coronary CTA4338

© Quantitative Imaging in Medicine and Surgery. All rights reserved.   Quant Imaging Med Surg 2023;13(7):4325-4338 | https://dx.doi.org/10.21037/qims-22-1045

Coronary Events in Mid-Term Follow-Up. J Am Coll 
Cardiol 2015;66:337-46.

26. Goeller M, Achenbach S, Cadet S, Kwan AC, 
Commandeur F, Slomka PJ, Gransar H, Albrecht MH, 
Tamarappoo BK, Berman DS, Marwan M, Dey D. 

Pericoronary Adipose Tissue Computed Tomography 
Attenuation and High-Risk Plaque Characteristics in Acute 
Coronary Syndrome Compared With Stable Coronary 
Artery Disease. JAMA Cardiol 2018;3:858-63.

Cite this article as: Li N, Dong X, Zhu C, Shi K, Si N,  
Shi Z, Pan H, Wang S, Zhao M, Zhang T. Model development 
and validation of noninvasive parameters based on coronary 
computed tomography angiography to predict culprit lesions 
in acute coronary syndromes within 3 years: value of plaque 
characteristics, hemodynamics and pericoronary adipose 
tissue. Quant Imaging Med Surg 2023;13(7):4325-4338. doi: 
10.21037/qims-22-1045



© Quantitative Imaging in Medicine and Surgery. All rights reserved.  https://dx.doi.org/10.21037/qims-22-1045

Supplementary

Appendix 1 CTA interpretation and ICA analysis

Considering that the interval between CTA and ICA was too short to demonstrate predictive value, we excluded patients 
with an interval of less than 3 months. All scanned datasets were subjected to curved projection reformation and volume 
reformation through a dedicated postprocessing workstation (Vitrea, version 7.6; Vital Images). The CTA dataset was 
evaluated by two local observers with extensive experience in cardiac imaging who were unaware of the patient’s clinical 
information, and lesions with DS ≥30% were included in subsequent studies. ICA was performed by two experienced 
interventional cardiologists according to local criteria and identified culprit and nonculprit lesions. If there were culprit 
lesions on one vessel, the most severe stenosis was selected as the measurement lesion of the blood vessel. Thus, the culprit 
lesion also represented the culprit vessel.

Coronary plaque analysis

The MLA was the narrowest luminal area of the plaque. The distance from the ostium was defined as the distance from the 
narrowest point of the plaque to the opening of the vessel. Spotty calcification was defined as calcifications <3 mm in diameter 
on multiple reconstructed images.

Regarding the definition of plaque components, plaques with CT attenuation <30 Hounsfield units (HU) were defined as 
LAP. CT values between 30 and 149 HU were defined as FP, and CT values ≥150 HU were defined as CP. TP was calculated 
using the following formula: TP = CP + noncalcified plaque (NCP); where NCP = LAP + FP volume. Wall-to-lumen volume 
ratio was calculated using the following formula: wall-to-lumen volume ratio = wall volume/lumen volume; where the wall 
is the space between the inner and outer contours, the wall volume is the vessel volume minus the lumen volume and the 
vessel volume is the volume within the outer wall contour of the affected segment of the lesion. The remodeling index (RI) 
was the ratio of the vessel area of the lesion (the area within the outer contour) divided by the vessel area of the proximal 
reference point, with positive remodeling when RI≥1.1. Plaque burden was calculated using the following formula: plaque 
burden=plaque volume×100%/vessel volume.

Analysis of hemodynamic parameters based on CFD

For the hemodynamic analysis, a software model based on the principles of computational fluid dynamics (CFD) (Shukun 
Technology) was used as described previously, and the calculation of fractional flow reserve was performed by an independent 
blinded analyst on a conventional CTA dataset. The software calculated the ratio of coronary pressure drop (Pd) across a 
stenosis to intra-aortic pressure (Pa) as a surrogate measure of ischemia and allowed physicians to create a patient-specific 
coronary vascular tree model. FFRCT and VFFRCT ≤0.8 were considered abnormal. Vessels were excluded from the analysis 
when the vessel diameter was less than 1.5 mm for which FFRCT could not be calculated.

Machine learning

With the rapid development of artificial intelligence in the field of medical imaging, machine learning (ML) has been 
introduced into cardiovascular imaging as a field of computer science, helping clinicians diagnose diseases more quickly and 
accurately as well as helping clinicians to perform risk assessment and outcome prediction with high efficiency. In the present 
study, noninvasive parameters from CTA were used in combination with ML to improve the ability of outcome prediction.
The predictive model of ACS was constructed based on the following ten risk factors: DS, lesion length, MLA, low 
attenuation plaque, fibrous plaque, positive remodeling, VFFRCT, ∆FFRCT, proximal FAI and lesion-specific FAI. The odds 
ratio of each parameter in the model is shown in Figure 1.

Logistic regression (LR), random forest (RF), Bayesian and K-nearest neighbor (KNN) algorithms were applied to build 
models. These algorithms can learn from the training set data to achieve the purpose of performing a given task and use the 
test set with no time overlap with the training set to validate the accuracy of the trained machine learning model.
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Predictive value of machine learning for ACS

As an algorithmic tool, ML has been frequently used in medical research in recent years. We used ML to predict ACS 
in coronary artery disease and obtained good prediction results. During this process, we built the model using four ML 
algorithms to make the model predictions the best. In the present results, the ROC curve and DCA curve of the RF model in 
the training set were significantly higher than those in the test set (AUC: 0.990 [95% CI: 0.976-1] vs. 0.754 [95% CI: 0.739-
0.878]). Because the difference was large, the RF model was rejected. If the branch of the decision tree model grows to far in 
the RF model, it may find irregularities in the training dataset, resulting in overfitting.

The final results showed that compared to the other candidate models in machine learning, the LR model provided better 
predictive performance in terms of discrimination and decision-making ability. Therefore, the ML model was a combined 
model based on the LR algorithm. At the same time, the prediction results of the ML combined model (Model 5) were 
better than those of the traditional classification prediction models (Models 1-4), but Model 1 had better prediction results 
than Model 2 and Model 3 in the single-classification model comparison, which may be due to the inclusion of too many 
parameters in the classification of plaque characteristics.

Figure S1 The risk of each parameter in the model built by machine learning. In positive remodeling, 0 represents RI <1.1, and 1 represents 
RI ≥1.1. DS: diameter stenosis, MLA: minimal lumen area, FFRCT: computed tomography-derived fractional flow reserve, VFFRCT: vessel 
FFRCT, ΔFFRCT: Delta FFRCT, FAI: fat attenuation index, RI: remodeling index.
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Figure S2 Calibration curves of different combination models in the training set (A) and test set (B). Model 1 includes plaque characteristics. 
Model 2 includes hemodynamic parameters. Model 3 includes PCAT attenuation. Model 4 includes plaque characteristics, hemodynamic 
parameters. Model 5 includes plaque characteristics, hemodynamic parameters and PCAT attenuation. Among the models, Model 5 was best 
calibrated in the training set and better calibrated in the test set. PCAT: pericoronary adipose tissue.


