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Background: The present study aimed to establish a robust predictive model based on a machine learning 
(ML) algorithm providing preoperative noninvasive diagnosis and to further explore the contribution of 
each magnetic resonance imaging (MRI) sequence to the classification to help select images for future model 
development.
Methods: This was a retrospective cross-sectional study, and consecutive patients with histologically 
confirmed diffuse gliomas in our hospital from November 2015 to October 2019 were recruited. The 
participants were grouped into a training and testing set based on a ratio of 8:2. Five MRI sequences were 
employed to develop the support vector machine (SVM) classification model. An advanced contrast analysis 
of single-sequence-based classifiers was performed, according to which different sequence combinations were 
tested, and the best one was selected to form an ultimate classifier. Patients whose MRIs were acquired with 
other types of scanners formed an additional, independent validation set.
Results: A total of 150 patients with gliomas were used in the present study. Contrast analysis revealed 
that the contribution of the apparent diffusion coefficient (ADC) was the most significant [accuracies were as 
follows: histological phenotype, 0.640; isocitrate dehydrogenase (IDH) status, 0.656; and Ki-67 expression, 
0.699] and that of T1 weighted imaging was limited (accuracies were as follows: histological phenotype, 
0.521; IDH status, 0.492; and Ki-67 expression, 0.556). The ultimate classifiers for IDH status, histological 
phenotype, and Ki-67 expression achieved promising performances with area under the curve (AUC) values 
of 0.88, 0.93, and 0.93, respectively. The classifiers for the histological phenotype, IDH status, and Ki-67 
expression correctly predicted 3 of 5 subjects, 6 of 7 subjects, and 9 of 13 subjects in the additional validation 
set, respectively.
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Introduction

Diffuse glioma, the most common primary brain neoplasia, 
has a relatively poor prognosis. The 2016 World Health 
Organization (WHO) classification of tumors of the central 
nervous system (CNS) (1) advanced the classification of 
CNS tumors, and the entity was classified according to 
the integrated phenotypic and genotypic parameters. The 
most remarkable refinement of the upgraded classification 
was to regard isocitrate dehydrogenase (IDH) as an 
important genetic factor for diagnosing diffuse glioma, 
which highlighted an important role of IDH mutation 
in tumor metabolism, genesis, and proliferation (2-5). 
Histological phenotype is also a basic factor for defining 
glioma. Lower-grade glioma (LGG; WHO II and WHO 
III) has a slower progression than glioblastoma (GBM) and 
responds differently to therapeutic strategies. The Ki-67 
labeling index (LI), a widely known index that reflects the 
proliferation of tumors, is of noticeable value. Many studies 
have reported the relationship between glioma grade and Ki-
67 LI. In general, tumors with a higher WHO grade have a 
higher Ki-67 LI (6). Diffuse gliomas with a higher Ki-67 LI 
suggest a lower overall survival (7) and a worse response to 
clinical treatment, such as the relief of seizures after surgery, 
even if the neoplasms are of the same grade (8). However, 
predicting these gene characteristics before surgery is 
difficult based only on conventional image characteristics. 

The radiogenomics-based classification model is 
an alternative that noninvasively and preoperatively 
distinguishes the histological and molecular factors of 
gliomas, and researchers have made progress on this model 
(9,10). Compared to computed tomography (CT) and 
positron emission tomography (PET), magnetic resonance 
imaging (MRI) achieves high tissue contrast without 
radiation. Conventional head MRI, which is widely used 
in clinical practice, has become a fundamental method 
for these studies. A previous study has demonstrated 

that among conventional MRI sequences, a T1C-based 
classifier achieves the highest predictive performance to 
identify the histological phenotype, but the best sequence 
combinations have not yet been recommended (11). For the 
classification of the IDH status in LGG, a previous study 
has demonstrated that T2-weighted images (T2WI) may be 
more important (12). Therefore, the actual contribution of 
different MRI sequences needs further exploration to build 
more precise models. In addition, the classification of IDH 
and WHO grade has been separately investigated in most 
studies. Due to unbalanced sampling because GBM with 
IDH mutation is rare in clinical practice, it is difficult to 
build an appropriate model to classify the IDH and WHO 
grade at the same time.

The present study aimed to build a radiogenomics-based 
classification model with machine learning (ML) to predict 
the IDH mutation status, histological phenotype, and Ki-67 
expression level for diffuse glioma. In addition, we further 
explored the disparate contribution of different MRI 
sequences to the classification. Finally, we aimed to develop 
a full four-subtype classification system in terms of the 
WHO classification of CNS tumors to compensate for the 
unbalanced distribution of sampling that widely occurs at 
the histological and IDH levels. The present study was both 
a development and internal validation study. We present the 
following article in accordance with the TRIPOD reporting 
checklist (available at https://qims.amegroups.com/article/
view/10.21037/qims-22-887/rc).

Methods

Patients

The present study was a retrospective cross-sectional 
study. Consecutive patients with suspected glioma in the 
First Medical Center of Chinese PLA General Hospital (a 
tertiary care center) from November 2015 to October 2019 

Conclusions: The present study showed satisfactory performance in predicting the IDH genotype, 
histological phenotype, and Ki-67 expression level. The contrast analysis revealed the contribution of 
different MRI sequences and suggested that the combination of all the acquired sequences was not the 
optimal strategy to build the radiogenomics-based classifier.
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were recruited, and those with histologically confirmed 
diffuse gliomas were included. The present study was 
conducted in accordance with the Declaration of Helsinki 
(as revised in 2013). The study was approved by the Ethics 
Committee of the First Medical Center of Chinese PLA 
General Hospital. Individual consent for this retrospective 
analysis was waived.

The inclusion criteria were as follows: (I) adult patients 
aged more than 18 years; (II) available conventional head 
MR images 2 weeks before surgical resection; (III) no 
biopsy, radiotherapy, chemotherapy, or any other clinical 
intervention before MRI scan; and (IV) patients with one 
of the required statuses, namely, histologically confirmed 

WHO grade results, immunohistochemically analyzed 
IDH1 status, and Ki-67 LI results. The exclusion criteria 
were as follows: (I) patients with marked artifacts on MR 
images; and (II) any of T1-weighted images (T1WI), T2WI, 
diffusion-weighted images (DWIs; two sequences with  
b value equal to 0 and 1,000), or postcontrast T1WI (T1C) 
missing. The detailed patient selection workflow is shown 
in Figure 1.

A total of 150 cases, including the validation set, were 
evaluated in the present study. A total of 123, 125, and  
135 patients had histological results, IDH status results, 
and Ki-67 expression results, respectively. Thirteen patients 
whose MRIs were produced by different types of scanners 

Inclusion:
•	 Adult patients (above 18 years old)
•	 Available conventional head MR images before surgery
•	 No biopsy, radiotherapy, chemotherapy or other clinical 

intervention before MR scan 
•	 At least one of the required statues (histologically confirmed 

WHO grade results, immunohistochemically analyzed IDH1 
status and Ki-67 LI results) were available 

Exclusion:
•	 Patients with marked artifacts on MR images (n=13)
•	 Any of T1WI, T2WI, DWIs (two sequences with b value equal 

to 0 and 1000 respectively) or T1C being missing (n=23)

13 patients whose MRIs were produced by 
different types of scanner were selected
5 with histology labeling
7 with IDH status labeling
13 with Ki-67 expression level labeling

532 patients with clinical suspected glioma from November 2015 to October 2019 were recruited

186 patients were included

150 patients were selected 
for final analysis

Extra 
validation

3 independent classifiers:

123 patients for histology

Predictive performance: area under curve (AUC), accuracy (ACC) on testing set and training 
set, sensitivity (SEN), specificity (SPE), p value (P)

125 patients for IDH 135 patients for Ki-67

ClassifierClassifier Classifier

Figure 1 Patient workflow. MR, magnetic resonance; WHO, World Health Organization; IDH, isocitrate dehydrogenase; LI, labeling 
index; T1WI, T1-weighted image; T2WI, T2-weighted image; DWI, diffusion-weighted image; T1C, postcontrast T1-weighted image. 
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were included in the validation group (5 patients with 
histological results, 7 patients with IDH status results, and 
13 patients with Ki-67 expression results).

Histology and immunohistochemistry

The standard protocols of histological analysis and EnVision 
Plus immunohistochemical staining were conducted to 
examine IDH1 mutation, histologic phenotype, and Ki-
67 LI. Gliomas with histologically confirmed WHO 
II and WHO III were defined as LGG. The following 
antibodies were used: R132H-mutant IDH and UMAB107 
(Zhongshanjinqiao, Beijing, China). Because different cutoff 
values have been utilized in previous studies (13,14), we set 
two different thresholds (10% and 25%) to classify Ki-67 
LI in the present study. Ki-67 protein expression in glioma 
cells lower than the threshold (10% or 25%) was defined 
as low-Ki-67 expression; otherwise, it was defined as high-
Ki-67 expression.

MRI acquisition

The MRI data were mainly produced using three types of 
scanners as follows: 1.5 T Signa HDxt, Discovery MR750w, 
and Discovery MR750 (GE Healthcare, Milwaukee, WI, 
USA). The remaining cases were acquired with several other 
types of scanners that were also used in our hospital as follows: 
3.0 T Signa HDxt and 1.5 T Signa Excite (GE Healthcare); 
and uMR770 and uMR560 (United Imaging, Shanghai, 
China). T1WI, T2WI, T1C, and DWI images were 
acquired using routine diagnostic procedures using 3.0 T  
and 1.5 T MRI scanners with eight-channel head coils. 
Detailed information on scanner parameters is provided 
in the Supplementary Materials (Appendix 1). T1C was 
acquired from T1WI in axial planes. The apparent diffusion 
coefficient (ADC) maps were calculated from DWI using 
an in-house method described in Supplementary Materials 
(Appendix 2). The DWIs whose b value were equal to 1,000 
were used to extract features and build classifiers.

Data postprocessing

In the present study, manual segmentation of the tumor 
was used. Radiologist No. 1, with neuroradiological 
experience of more than 6 years, delineated the tumors 
without knowing the histological and immunohistochemical 
results using 3D-slicer on every slice of T2W images. 
Peritumor edema was carefully avoided. A total of  

40 patients were randomly selected to repeat the delineation 
process. Radiologist No. 1 repeated the process with an 
interval of more than 1 month. Radiologist No. 2, with 
neuroradiology experience of more than 4 years, repeated 
the same delineation process and was blinded to the 
segmentation results of radiologist No. 1. The radiomics 
features extracted from these 40 patients on the region of 
interest (ROI) were assessed using the intraclass correlation 
coefficient (ICC). Examples of MRI images and manual 
segmentation of ROIs are shown in Figure 2.

A postprocessing pipeline was built to minimize the 
heterogeneity caused by scanners and other protocols, 
thus improving the general predictive performance of the 
classification model. The original images were processed 
using Statistical Parametric Mapping Software (SPM12) 
slice by slice to perform a full MRI scan first and then 
after slice-timing and motion correction. The other four 
sequences of MRI were then coregistered to the T2WI 
based on FLIRT, which is an available tool within the 
FMRIB Software Library (FSL). The image resolution was 
then adjusted by resampling all voxel sizes to 1×1×1 mm3.

A mask was generated based on the brain extraction tool 
(BET) in FSL to cover the brain area, and all the following 
postprocessing operations were performed under this mask. 
The bias field generated from the inhomogeneity of the 
magnetic field, which may be harmful to the radiogenomics-
based classification, was corrected by the advanced 
normalization tool (ANT) with N4 bias field correction. 
Noise reduction and intensity normalization were then 
conducted on the marked area.

Feature extraction

Several derived images were calculated from the original 
image with a particular computational operation. 
Including the original images, 14 types of images were 
produced as follows: wavelet-filtered images (with the 
high- and low-spatial-frequency filters applied on each 
dimension, resulting in a total of 8 derived images in 
various combinations); Gaussian-filtered images (with a 
Laplacian of Gaussian filter applied on the original image, 
allowing an image with an enhanced edge to be produced); 
square images; square-root images; exponential images; 
and logarithmic images. The 18 first-order and 75 texture 
features, including 24 gray-level cooccurrence matrix 
features, 16 gray-level run-length matrix features, 16 gray-
level size zone matrix features, 14 gray-level dependence 
matrix features, and 5 neighboring gray-tone difference 

https://cdn.amegroups.cn/static/public/QIMS-22-887-Supplementary.pdf
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matrix features, were then extracted from the original 
image and derived images. Additionally, 14 shape features 
were independently calculated from the original image. 
Finally, 1,316 MRI radiomics features (93 texture and first-
order features in each of 14 types of images plus 14 shape 
features) were extracted from each sequence of the MRI 
scan. All the radiomic features were normalized before they 
were input into the selection pipeline. The calculations 
of MRI radiomics employed in the present study were 
performed using the Pyradiomics Python package (https://
pyradiomics.readthedocs.io/). The magnetic resonance 
(MR) radiomics platform also supported all the calculations 
as a standalone tool.

Feature selection

In the present study, a two-stage feature selection pipeline 
was built, including univariate feature selection and 
dimension reduction. First, for the univariate feature 
selection, we analyzed the potential contribution of each 
feature to the classification model. A Mann-Whitney U 
test was performed, and features with a P value <0.05, 
representing a significant difference in groups by status, 
were selected. The least absolute shrinkage and selection 
operation was used to screen out the most predictive 
features. Second, redundant features were eliminated in 
the dimension reduction stage to further avoid overfitting. 

A B C

D E F

Figure 2 An example of MR images and manual segmentation on an ROI. (A) T1WI; (B) T2WI; (C) postcontrast T1WI; (D) apparent 
diffusion coefficient map; (E) diffusion-weighted image; (F) ROI segmentation (the green area). MR, magnetic resonance; ROI, region of 
interest; T1WI, T1-weighted image; T2WI, T2-weighted image. 

https://pyradiomics.readthedocs.io/
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A collinearity test was performed. Pearson correlation 
coefficients between features were calculated, and highly 
correlated features were eliminated according to the 
matrix. Recursive feature elimination with cross-validation 
(RFECV) was performed, and the feature combination was 
determined. The classification algorithm in the present 
study was an estimator to adjust RFECV. An extra reliability 
analysis was conducted when the final feature combination 
was determined to confirm that all the features were valid 
with the ICC of both intrarater and interrater reproductivity 
analyses greater than 0.7. An overview of the customized 
pipeline is shown in Figure 3. All the source codes of this 
pipeline were uploaded for reproducibility purposes (https://
github.com/LUKEDUDE/GliomasExperimentMRI).

Classification algorithm

Three independent classifiers were built to predict three 
different characteristics, namely, histological phenotype, 
IDH mutation status, and Ki-67 expression level. Different 
MR sequence combinations were used to develop the best 

classifier for each characteristic. Feature selection was 
conducted separately for the classifiers with different MR 
sequence combinations. Stochastic gradient descent was 
used as an approach to fitting the linear classifier, and it was 
implemented under different convex loss functions, such 
as support vector machine (SVM) and logistic regression. 
In the present study, the best loss function was selected 
from the following nine different functions: hinge (known 
as soft-margin SVM), log, modified Huber, squared hinge, 
perceptron, squared loss, Huber, epsilon insensitive, 
and squared epsilon insensitive. Regularization was also 
conducted on the loss function to penalize complexity 
and avoid overfitting. The regularizer was built using the 
squared Euclidean norm L2 or the absolute norm L1 or a 
combination of both (Elastic Net) (15). All ML algorithms 
were implemented based on the Sklearn Python package 
(https://scikit-learn.org/stable/). The Statistics and 
Machine Learning Toolbox in the MATLAB environment 
(MathWorks, Inc. Natick, MA, USA), as a standalone tool, 
also supported the aforementioned functions, including 
feature selection.

Figure 3 An overview of the customized pipeline in the present study. (A) Postprocessing was performed on original images to unify the 
protocol and reduce heterogeneity. (B) Radiomics features were extracted from derived images and original images within the region of 
interest (the green area). (C) A two-stage feature selection settled the final feature combination for classifiers. MR, magnetic resonance; 
LoG, Laplacian of Gaussian; RFECV, recursive feature elimination with cross-validation; LASSO, least absolute shrinkage and selection 
operator.
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Random grouping

The involved participants were grouped into a training-
testing set, 80% of which was used for training and 20% 
for testing. All feature selection and training processes 
were performed independently every time according 
to the training set. We simulated a shifting distribution 
and repeatedly performed it to obtain an overview of the 
predictive performance of the pipeline. This random 
grouping test was repeated 30 times to minimize the 
randomness caused by the ML-based procedure and the 
heterogeneity of datasets.

Statistical analysis

The chi-squared test was performed to assess the difference 
in field strength in each population. The following indices 
were calculated to evaluate the classification model: area 
under the curve (AUC), accuracy (ACC; ACC values 
on both the training and testing sets were calculated), 
sensitivity (SE), specificity (SP), precision, F1 score, and P 
value. The mean and 95% confidence interval (CI) of each 
index within 30 random grouping tests were calculated. The 
P value was calculated from the permutation test (16), which 
was used to obtain an overview of the efficiency of the 
current model. With the shuffled status label, the training 
process was repeated with 1,000 epochs. The P value was 
then calculated, representing the ranking percentage of 
the testing ACC of the current model within 1,000 epochs. 
Bonferroni correction was used for adjustment. A P value 
<0.05 indicated a significant difference. All statistical 
analyses were performed based on Python and Statistical 
Product Service Solutions.

Advanced contrast analysis
First, an advanced contrast analysis was conducted to 
compare the performance of single-sequence-based 
classifiers. In the contrast analysis, the nonparametric test 
and pairwise comparison were employed to compare the 
testing ACCs of the random grouping tests of each single-
sequence-based classifier.

Ultimate classifiers
According to the results of the contrast analysis, different 
sequence combinations were tested before the final 
combination with the best performance selected. The 
classifier under the final combination with the best 
performance was used as the ultimate classifier for each 

task. The Hosmer-Lemeshow (H-L) goodness of fit test 
was conducted for these three classifiers. A small fraction 
of participants whose MRI images were acquired from 
different types of scanners was used as a validation dataset.

Four-subtype classification
We integrated two independent classifiers for histological 
phenotype and IDH status to compensate for the 
unbalanced sampling distribution at the histological and 
IDH levels as well as to generate a complete four-subtype 
classification (LGG with IDH-mut, LGG with IDH-wild, 
GBM with IDH-mut, and GBM with IDH-wild).

Comparisons of LI thresholds
Additional classifiers were trained for Ki-67 expression 
with an LI threshold of 25%, and random grouping tests 
were conducted 30 times. The results were then compared 
with those of the classifiers with a threshold of 0.1. The 
classifiers were under the same-sequence combination. The 
Mann-Whitney U test was used to compare the testing 
ACC of Ki-67 classifiers under different thresholds.

Results

Characteristics of the study population

Table 1 lists the fundamental information of the included 
participants with certain status and produced by main 
scanners. No significant difference was found in field 
strength between the two groups in each population 
(histological phenotype, P=0.080; IDH status, P=0.825; Ki-
67 expression, P=0.089). For the four-subtype classification, 
118 participants with both histologic and IDH mutational 
labels were selected simultaneously. The classification 
contained 43 (36.44%) LGGs with IDH mutation, 22 
(18.64%) LGGs with IDH wild-type, 6 (5.08%) GBMs 
with IDH mutation, and 47 (39.84%) GBMs with IDH 
wild-type. Furthermore, 20% of participants of each type 
were randomly selected to form the testing set.

Advanced contrast analysis

In the present study, hinge was used as a loss function to 
build linear classifiers for histology and IDH status, which 
achieved a testing ACC of 0.84±0.05 for the histological 
phenotype and 0.75±0.06 for the IDH status using all five 
MRI modalities, indicating a more promising loss function 
compared to other loss functions. A squared hinge was 
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also selected for Ki-67, and it achieved a testing ACC 
of 0.69±0.09. The elastic net was conducted on the loss 
function across all the tasks, and classifiers based on a 
single MRI sequence were built. The results of the contrast 
analysis are shown in Figure 4. The detailed results are 
shown in Supplementary Materials (Appendix 3). 

For the histological phenotype (Figure 4A,4B), the ADC- 
and T1C-based classifiers had better predictive performance 
and showed significant differences compared to the T1WI- 
and DWI-based classifiers (ADC vs. T1WI: 0.640 vs. 0.521, 
P=0.001; ADC vs. DWI: 0.640 vs. 0.543, P=0.007; T1C 
vs. T1WI: 0.655 vs. 0.521, P<0.001; T1C vs. DWI: 0.655 
vs. 0.543, P=0.001); the T2WI-based classifiers showed a 
secondary performance (ACC =0.604).

For the IDH status (Figure 4C,4D), the ADC-based 
classifiers showed a dominant predictive performance, 
which was significantly different from that of the T1WI-,  
T2WI-, and DWI-based classifiers (ADC vs. T1WI: 
0.656 vs. 0.492, P<0.001; ADC vs. T2WI: 0.656 vs. 0.561, 
P=0.009; ADC vs. DWI: 0.656 vs. 0.549, P=0.001). The 
T1C-based classifiers also showed a difference compared to 
the T1WI-based classifiers (T1C vs. T1WI: 0.601 vs. 0.492, 
P=0.005), but they were not as competitive as the ADC-
based classifiers.

For the Ki-67 LI (Figure 4E,4F), the T2WI-, ADC-,  
and T1C-based classifiers shared a similar predictive 
performance and showed significant differences compared 
to the T1WI-based classifiers (T2WI vs. T1WI: 0.657 vs. 

0.556, P=0.001; ADC vs. T1WI: 0.699 vs. 0.556, P<0.001; 
T1C vs. T1WI: 0.670 vs. 0.556, P<0.001); the DWI-based 
classifiers showed a moderate performance (ACC =0.627).

The predictive performance of classifiers under several 
sequence combinations is demonstrated in Figure 5, and the 
detailed results are provided in Supplementary Materials 
(Appendix 3). Based on the results of the contrast analysis, 
we formulated three different sequence combinations for 
each task, with sequences gradually involving the main 
contributing sequences to the multisequence combinations 
(all five sequences). The ultimate classification model for 
each task was produced using the best combination that had 
the highest overall AUC and ACC as follows: a combination 
of all five sequences was employed for histological 
phenotype; a combination of ADC and T1C was employed 
for the IDH status; and a combination of T2WI, ADC, 
T1C, and DWI was employed for Ki-67 LI. The predictive 
performance of the final sequence combination is shown in 
Table 2.

Performance of the ultimate classifiers

The performance of the ultimate classifiers is shown in 
Table 3, and the receiver operating characteristic (ROC) 
curve is shown in Figure 6 for all three tasks (P values <0.05; 
within 1,000 epochs of testing, the testing ACC of the 
current classifier reached the top 50; P values >0.05 in H-L 
goodness of fit tests). In the independent validation of extra 

Table 1 Clinical characteristics of the included participants

Characteristics 

Histological phenotype (n=123) IDH status (n=125) Ki-67 expression (n=135)

LGG,  
n=68 (55%)

GBM,  
n=55 (45%)

IDH mutant,  
n=51 (41%)

IDH wild-type, 
n=74 (59%)

Low expression, 
n=47 (35%)

High expression, 
n=88 (65%)

Age (mean ± SD) (years) 44.647±12.174 52.345±13.197 41.471±11.366 52.162±12.864 43.468±11.319 50.182±13.834

Gender (n)

Male 42 27 32 39 26 49

Female 26 28 19 35 21 39

Type of scanner (n)

A 15 20 14 19 9 29

B 31 23 21 35 22 39

C 22 12 16 20 16 20

The participants were involved in the main training-testing procedure produced by the following scanners: A (1.5 T Signa HDxt), B (Discovery 
MR 750), and C (Discovery MR 750w). The remaining participants were examined with several other types of scanners, which represented 
a small fraction of the overall population. These participants formed an extra, independent validation set. LGG, lower-grade glioma; GBM, 
glioblastoma; IDH, isocitrate dehydrogenase; SD, standard deviation.
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Figure 4 Predictive performance of single-sequence-based classifiers and the contrast analysis. The distribution of testing ACC and AUC 
within 30 random grouping tests for the following classifiers: histological phenotype (A), IDH status (C), and Ki-67 expression (E). Contrast 
analysis based on the nonparametric test and later pairwise comparison (P value) as follows: histological phenotype (B), IDH status (D), and 
Ki-67 expression (F). The P value is shown in the box. The box is highlighted when the P value is less than 0.05, representing a significant 
difference between two groups of classifiers based on each single MRI sequence. ACC, accuracy; AUC, area under the curve; ADC, apparent 
diffusion coefficient; T1C, postcontrast T1-weighted image; DWI, diffusion-weighted image; IDH, isocitrate dehydrogenase; MRI, 
magnetic resonance imaging.
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Figure 5 ACC and AUC of different sequence combinations for each task. Histological phenotype: A (ADC and T1C), B (ADC, T2WI, and 
T1C), and C (all five sequences). IDH status: A (ADC), B (ADC and T1C), and C (all five sequences). Ki-67 expression: A (ADC, T2WI, 
and T1C), B (ADC, T2WI, T1C, and DWI), and C (all five sequences). A slight enhancement occurred in the prediction of histological 
phenotype, but a decline occurred in the IDH status and Ki-67 expression when all the acquired MRI sequences were combined. ACC, 
accuracy; AUC, area under the curve; ADC, apparent diffusion coefficient; T1C, postcontrast T1-weighted image; T2WI, T2-weighted 
image; DWI, diffusion-weighted image; IDH, isocitrate dehydrogenase; MRI, magnetic resonance imaging.

Table 2 Predictive performance of classifiers under a specific final sequence combination

Variables Histological phenotype, mean (95% CI) IDH status, mean (95% CI) Ki-67 expression, mean (95% CI)

AUC 0.7228 (0.6912–0.7543) 0.7098 (0.6782–0.7413) 0.7899 (0.7559–0.8239)

ACC1 0.9755 (0.9622–0.9887) 0.8966 (0.8729–0.9204) 0.9888 (0.9831–0.9945)

ACC2 0.6746 (0.6505–0.6988) 0.6733 (0.6432–0.7033) 0.7333 (0.7040–0.7626)

SE 0.6168 (0.5651–0.6685) 0.7176 (0.6760–0.7592) 0.8259 (0.7954–0.8586)

SP 0.7246 (0.6787–0.7705) 0.6065 (0.5428–0.6701) 0.5662 (0.5092–0.6232)

P value 0.0700 (0.0524–0.0877) 0.1239 (0.0822–0.1657) 0.0549 (0.0367–0.0732)

CI, confidence interval; IDH, isocitrate dehydrogenase; AUC, area under the curve on the testing set; ACC1 represents accuracy on the 
training set, whereas ACC2 represents accuracy on the testing set; SE, sensitivity on the testing set; SP, specificity on the testing set; P, 
calculated from the permutation test.

Table 3 Predictive performance of the ultimate classifiers

Variables AUC ACC1 ACC2 SE SP P value EV

GBMs/LGGs 0.933 0.969 0.800 0.800 0.800 0.024 3/5

IDH mutation/IDH wild-type 0.881 0.950 0.840 0.812 0.888 0.015 6/7

Ki-67 high expression/low expression 0.931 0.953 0.888 1.000 0.727 0.008 9/13

AUC, area under the curve on the testing set; ACC1 represents accuracy on the training set, whereas ACC2 represents accuracy on the 
testing set; SE, sensitivity on the testing set; SP, specificity on the testing set; P, calculated from the permutation test; EV, extra validation, 
the EV results are listed below (correct predictions/all predictions); GBMs, glioblastomas; LGGs, lower-grade gliomas; IDH, isocitrate 
dehydrogenase.
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cases, the classifier for the histological phenotype correctly 
predicted 3 of 5 (60%) participants [3.0 T Signa HDxt (n=2) 
and uMR770 (n=3)], and the classifier for the IDH status 
correctly predicted 6 of 7 participants (85.7%) [3.0 T Signa 
HDxt (n=2), uMR770 (n=4), and 1.5 T Signa Excite (n=1)]. 
In addition, the Ki-67 classifier correctly predicted 9 of 13 
subjects (69%) [3.0 T Signa HDxt (n=5), uMR770 (n=4), 
1.5 T Signa Excite (n=2), uMR560 (n=1), and Skyra (n=1)]. 
Finally, 32, 21, and 13 selected MR features were used to 
build the ultimate classifiers for histological phenotype, 
IDH mutation, and Ki-67 LI. Detailed information on 
these radiomics features is listed in the Supplementary 
Materials (Appendix 4).

Four-subtype classification

The four-subtype classification based on two independent 
classifiers for the histological phenotype and IDH status 
achieved a testing ACC of 95.6%. Only one participant in 
the testing set was wrongly classified as follows: a GBM 
wild-type was wrongly regarded as a GBM mutation.

Different thresholds of Ki-67 LI

A significant difference was found between the predictive 
performance of Ki-67 classifiers (using ADC, T2WI, 
T1C, and DWI as the final sequence combinations) when 
10% and 25% were considered as the thresholds (ACC: 
0.733±0.08 vs. 0.597±0.08, P<0.001). The detailed results 
are provided in the Supplementary Materials (Appendix 3).

Discussion

In the present study, we developed three independent 
classifiers to differentiate glioblastomas from LGGs, IDH 
mutant from IDH wild-type, and high expression of Ki-
67 from low expression of Ki-67. All three tasks achieved 
promising performance. In addition, a relatively precise 
prediction was made in the additional independent validation 
set, indicating that a satisfying performance was achieved 
using the present algorithm on heterogeneous data.

According to the advanced contrast analysis, the radiomics 
extracted from ADC maps had a major contribution to 
the construction of the classification model. The ADC-
based classifiers significantly outperformed most of the 
other classifiers for all three tasks. ADC maps quantitatively 
reflect the density of tumor cells (16), which is critical 
for estimating the proliferation and growth of glioma. 
In the present study, it was presumed that ADC-related 
features support the prediction of IDH mutation and Ki-67 
expression, both of which have a strong association with the 
proliferation and growth of gliomas (17-19). Many previous 
studies have suggested the contribution of ADC maps to 
the prediction of tumor grade (20), IDH status (21), and Ki-
67 expression (22) for gliomas. Second, the T1C-related 
features also significantly contributed to the classification. 
T1C images have been recognized as the most reliable 
conventional head MRI sequences to visually estimate 
malignancy and proliferation in practice (23,24). These 
features can reflect a disruption of the blood-brain barrier 
and angiogenesis of neovascularity in the tumor region (25). 
Glioblastomas and IDH wild-type, which are commonly 
related to a more aggressive growth pattern, have an intense 
and irregular enhancement pattern; otherwise, other tumors 
have a mild enhancement pattern (26,27). Other studies 
have revealed an association between T1C imaging features 
and the development of glioma, including angiogenesis, 
cell proliferation, and cell migration (28). Although it 
was used in many previous studies (11,29,30), the present 
study suggested that T1WI did not largely contribute to 
developing a radiogenomics-based classifier.

Several other studies have investigated the contribution 
of radiomics derived from different MRI sequences to ML-
based classification (31-33). These analyses were commonly 
performed using the ultimate multisequence-combined 
classifiers and lacked a real influence on clinical practice. 
Frequency analysis (31,34) or SE analysis (35), which 
focus on individual features, was used as a supplement. In 
the study, we conducted an advanced contrast analysis to 

Histological phenotype (AUC =0.93)
IDH (AUC =0.88)
Ki-67 (AUC =0.93)
Chance

1.0

0.8

0.6

0.4

0.2

0.0

0.0 0.2 0.4 0.6 0.8 1.0

S
en

si
tiv

ity

1−Specificity

Figure 6 Receiver operating characteristic curve of the ultimate 
classification model for histological phenotype, IDH status, 
and Ki-67 expression. AUC, area under curve; IDH, isocitrate 
dehydrogenase.
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compare the predictive performance of single-sequence-
based classifiers before combining all the acquired sequences 
and attempted to identify the most contributing sequence. 
Several sequence combinations were tested. Considering 
that the decline occurred when all five MRI sequences 
were utilized for IDH and Ki-67 classification, the present 
findings suggested that it is not ideal to combine all the 
acquired MRI sequences to develop a radiogenomics-based 
classifier.

Many studies have focused on molecular prediction 
in glioma. For histological phenotype, radiologists tend 
to use postcontrast MRI to identify the tumor grade in 
clinical practice. A previous study has used the contrast-
to-noise ratio of postcontrast images to differentiate high- 
and lower-grade glioma, resulting in an AUC, sensitivity, 
and SP of 0.88, 82.6%, and 91.7%, respectively (36). The 
present method achieved better performance. Logistic 
regression analysis and the deep learning method have been 
used, showing remarkable performance using radiomics 
features from conventional head MRIs (37,38). It has been 
demonstrated that when a large sample is available, a model 
based on T2WI achieves a high ACC (98.25%) (38). In 
addition, a previous study has found that the T1C-based 
classifier achieves the highest predictive performance in the 
histological phenotype among conventional MRI sequences, 
but this study did not recommend any optimal sequence 
combinations (11). IDH, as the most important molecular 
characteristic for glioma, has also been investigated, and 
several models have been built based on different sequences. 
A present study has demonstrated that models based on 
features from multiple conventional sequences achieve a 
good performance compared to those based on radiological 
characteristics with an ACC of 0.813, and this value can 
be increased when combined with age (39). Another study 
has shown that T1WI has the highest grading efficacy 
among single sequences (AUC =0.92), and combining all 
conventional MRIs with fraction anisotropy mapping from 
diffusion tensor imaging achieves a higher performance 
(AUC =0.97) (40). When study participants have LGGs, 
T2WI may be more important, resulting in an ACC of 
84.9% (12). When arterial spin labeling (ASL) is combined 
with other sequences, the performance is higher (31,41). 
Combining advanced MRIs may improve the prediction 
performance, but they are not commonly used sequences 
in clinical practice. Hence, an optimal strategy to utilize 
conventional sequences is necessary. For predicting Ki-67 
expression, a previous study has used features from T2WI 
to build a model in WHO II and WHO III grade gliomas, 

resulting in AUC and ACC values of 0.916 and 0.886, 
respectively (42). This previous study demonstrated that 
radiomics features can make a difference in the prediction 
of Ki-67 expression, but these researchers only used one 
sequence, and the contribution of different MRI sequences 
was not clear. Another study has used multiple conventional 
MRI sequences and ASL for Ki-67 expression prediction, 
demonstrating that the T2-fluid-attenuated inversion 
recovery (FLAIR)-based classifier has the highest predictive 
performance followed by ADC-based and T1WI-based 
classifiers. This previous study also demonstrated that the 
model based on multiple sequences has a higher predictive 
performance (AUC =0.881) than the models based on 
a single sequence (13), but this previous study did not 
investigate a combination with different sequences. In the 
present study, the optimal model had a higher AUC when 
three specific sequences were used after sequence selection 
instead of the model with all sequences.

Some previous studies focusing on the classification 
under the 2016 WHO classification of CNS tumors were 
confined to unbalanced sampling because GBM with IDH 
mutation is rare in clinical practice (1,43). For example, the 
study by Lu et al. (44) comprised only 8 participants with 
GBM IDH mutation, but they included 98 participants with 
GBM IDH wild-type in their training set for the classifier 
on the IDH status in GBMs, resulting in a deficient sample 
to differentiate the IDH mutation after classifying LGG 
and GBM even though the sample size was relatively 
large. The present method may solve this dilemma. In the 
present study, a four-subtype classification was proposed 
after integrating two independent classifiers for histological 
phenotype and IDH status. Instead of predicting IDH 
mutation using two separate classifiers under LGG and 
GBM, only one independent classifier was built in the 
present study. Moreover, the present classification only 
needed two binary classifiers instead of three to fulfill a 
four-subtype classification task, implying that few training 
samples were needed.

For identifying the Ki-67 expression level, the classifiers 
with a threshold of 10% significantly outperformed those 
with a threshold of 25%. Ki-67 LI is commonly used 
to estimate the proliferation of tumors, and a higher LI 
suggests poor progression. A previous study has suggested 
that 25% is close to the mean LI for a group of GBMs, 
and 10% of the Ki-67 LI is closely related to high-grade 
gliomas (WHO III and IV) (45). Another study has revealed 
that 10% may be a significant borderline to suggest a 
longer progression-free survival in LGGs (WHO II) (46). 
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Considering this strong association between Ki-67 LI and 
WHO grade, we reasonably presumed that more significant 
differentiation between the participants occurred when the 
threshold was 10%.

The present study had several limitations. First, it was 
comprised of only 150 participants, and no independent 
validation dataset from different sources was employed. 
Restricted by the five MRI sequences required at the 
beginning, we were unable to collect a larger population or 
make use of any other publicly available dataset. Second, 
the IDH status was confirmed by the immunohistochemical 
method instead of sequence analysis, and only the IDH1 
mutation was confirmed. IDH1 and IDH2 mutations, 
which are commonly tested in clinical practice, are the most 
common IDH mutations, and the IDH1 mutation accounts 
for 71% of IDH mutations in diffuse gliomas (2).

Conclusions

In conclusion, the present algorithm effectively and 
noninvasively predicts histological phenotype and IDH 
mutational status. In the present study, a precise four-
subtype classification was generated. The present algorithm 
showed promising performance in predicting the Ki-67 
expression level, with a significant differentiation based 
on a threshold of 10%. Contrast analysis suggested a 
dominant contribution made by ADC maps and T1C to the 
development of an effective classifier for all three tasks, but 
no substantial support was provided by T1WI and DWI. 
The present findings suggested that it is not always optimal 
to build an ML-based classifier by employing all acquired 
MRI sequences. Because the present study involved 
multiple scanners, the image quality was different among 
different scanners to some extent, which may have affected 
the assessment of the contribution of the MR sequences, 
especially DWI. However, some sequences may be sound 
options to develop robust classifiers when multiple scanners 
are involved.
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Supplementary

Appendix 1: MR scanner settings

Parameters of the sequences were as follows:
T1WI: repetition time (TR) = 1750–1821 ms; echo time (TE) = 24–27 ms; slice thickness = 5.0–6.0 mm; slice gap =  

1–2 mm; number of slices = 20–22; field of view (FOV) = 24 × 24 cm2; matrix = 320 × 320; NEX = 1; T2WI: TR = 5741–4440 
ms; TE = 93–102 ms; slice thickness = 5.0–6.0 mm; slice gap = 1–2 mm; number of slices =20–22; FOV = 24 × 24 cm2; matrix 
= 320 × 320; NEX = 1; DWI: TR = 3000–6000 ms; TE = 110–90 ms; slice thickness = 5.0–6.0 mm; slice gap = 1–2 mm; 
number of slices = 20–22; FOV = 24 × 24 cm2; matrix = 320 × 320; NEX = 1.

Appendix 2: Method of calculating the apparent diffusion coefficient maps

Based on the diffusion-weighted images (with b equal to 0 and 1000), the apparent diffusion coefficient (ADC) maps were 
calculated using the following formula:

0
0

1 lnb ADC DWI
DWI

SS S e ADC
b S

− ⋅  
= → = −  

 
	 [1]

where SDWI is the value in a volume in the DWI with b equal to 1000; and S0 is value in a volume in the DWI with b equal to 0. 
ADC is produced for the value in volume.

Appendix 3: Detailed results of the experiments

AUC, area under curve; ACC1 represents accuracy on the training set, whereas ACC2 represents accuracy on the testing set; 
SEN, sensitivity; SPE, specificity; P value, calculated from the permutation test. All the results are presented as the mean and 
95% confidence interval.

Results of classifiers based on a single sequence

Table C.1. ACCs and AUCs of classifiers based on a single sequence

Histological phenotype IDH status Ki-67 expression

ACC AUC ACC AUC ACC AUC

T1WI 0.5213  
(0.4805–0.5622)

0.5470  
(0.5036–0.5903)

0.4920  
(0.4548–0.5292)

0.5044  
(0.4661–0.5427)

0.5556  
(0.5166–0.5945)

0.5490  
(0.5065–0.5914)

T2WI 0.6040  
(0.5653–0.6427)

0.6326  
(0.5855–0.6777)

0.5613  
(0.5249–0.5978)

0.5524  
(0.5148–0.5899)

0.6568  
(0.6251–0.6884)

0.7032  
(0.6639–0.7424)

ADC 0.6400  
(0.6089–0.6711)

0.6909  
(0.6538–0.7281)

0.6560  
(0.6214–0.6906)

0.7034  
(0.6644–0.7425)

0.6988  
(0.6649–0.7326)

0.7556  
(0.7128–0.7984)

T1C 0.6547  
(0.6229–0.6864)

0.6876  
(0.6553–0.7199)

0.6013  
(0.5599–0.6427)

0.6336  
(0.5962–0.6709)

0.6704  
(0.6417–0.6990)

0.7077  
(0.6561–0.7593)

DWI 0.5247  
(0.5053–0.5800)

0.5507  
(0.5108–0.5906)

0.5493  
(0.5154–0.5833)

0.5439  
(0.5014–0.5864)

0.6272  
(0.5920–0.6624)

0.6573  
(0.6069–0.7077)
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Results of the classifiers based on different sequence combinations

Table C.2. Histological phenotype (glioblastomas vs. LGG)

A B C

AUC 0.7086 (0.6754–0.7418) 0.7181 (0.6825–0.7536) 0.7228 (0.6912–0.7543)

ACC1 0.8697 (0.8455–0.8938) 0.9210 (0.9002–0.9419) 0.9755 (0.9622–0.9887)

ACC2 0.6680 (0.6405–0.6954) 0.6733 (0.6439–0.7026) 0.6746 (0.6505–0.6988)

SEN 0.6377 (0.5837–0.6917) 0.6227 (0.5674–0.6780) 0.6168 (0.5651–0.6685)

SPE 0.6910 (0.6466–0.7354) 0.7079 (0.6670–0.7488) 0.7246 (0.6787–0.7705)

P value 0.0908 (0.0593–0.1222) 0.0955 (0.0601–0.1309) 0.0700 (0.0524–0.0877)

Note: A (ADC and T1C); B (ADC, T2, and T1C); and C (all five sequences).

Table C.3. IDH status (IDH mutation vs. IDH wild-type)

A B C

AUC 0.7034 (0.6666–0.7402) 0.7098 (0.6782–0.7413) 0.6865 (0.6441–0.7289)

ACC1 0.7586 (0.7206–0.7967) 0.8966 (0.8729–0.9204) 0.9563 (0.9394–0.9731)

ACC2 0.6560 (0.6234–0.6885) 0.6733 (0.6432–0.7033) 0.6466 (0.6087–0.6845)

SEN 0.7277 (0.6771–0.7783) 0.7176 (0.6760–0.7592) 0.7366 (0.6936–0.7796)

SPE 0.5679 (0.4993–0.6364) 0.6065 (0.5428–0.6701) 0.5221 (0.4481–0.5960)

P value 0.1156 (0.0670–0.1641) 0.1239 (0.0822–0.1657) 0.1517 (0.0783–0.2250)

Note: A (ADC); B (ADC and T1C); and C (all five sequences).

Table C.4. Ki-67 expression level (high expression vs. low expression, threshold =0.1)

A B C

AUC 0.7783 (0.7515–0.8050) 0.7899 (0.7559–0.8239) 0.7858 (0.7606–0.8111)

ACC1 0.9512 (0.9315–0.9709) 0.9888 (0.9831–0.9945) 0.9873 (0.9824–0.9922)

ACC2 0.7246 (0.6989–0.7504) 0.7333 (0.7040–0.7626) 0.7320 (0.7108–0.7533)

SEN 0.7914 (0.7579–0.8248) 0.8259 (0.7954–0.8586) 0.8085 (0.7722–0.8448)

SPE 0.6105 (0.5537–0.6672) 0.5662 (0.5092–0.6232) 0.6013 (0.5423–0.6603)

P value 0.0363 (0.0187–0.0539) 0.0549 (0.0367–0.0732) 0.0320 (0.0230–0.0410)

Note: A (ADC, T2, and T1C); B (ADC, T2, T1C, and DWI); and C (all five sequences).
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Results of the classifiers on Ki-67 expression level (threshold =0.25) 

Table C.5. Predictive performance of classifiers under certain 
sequence combinations

B (ADC, T2, T1C, and DWI)

AUC 0.6206 (0.5762–0.6650)

ACC1 0.8686 (0.8367–0.9004)

ACC2 0.5974 (0.5653–0.6295)

SEN 0.4904 (0.4308–0.5501)

SPE 0.6753 (0.6283–0.7224)

P value 0.3222 (0.2648–0.3795)

Note: B (ADC, T2, T1C, and DWI) is the final sequence combination 
used in the Ki-67 classification based on threshold =0.1.

Table C.6. Predictive performance of the ultimate classifier

AUC ACC1 ACC2 SEN SPE P value

Ki-67 expression level 0.899 0.883 0.846 0.769 0.923 0.03

Note: AUC, area under the curve; ACC1 represents accuracy on the training set, whereas ACC2 represents accuracy on the testing set; 
SEN, sensitivity; SPE, specificity; P_value, calculated from the permutation test.
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Appendix 4: Selected features in the ultimate classifiers

IDH genotype Histological phenotype Ki-67 expression level

The selected 
features

ADC_wavelet-LLH_firstorder_Mean 
ADC_wavelet-LLH_glszm_SizeZoneNonUniformityNormalized 
ADC_wavelet-HHL_gldm_LowGrayLevelEmphasis 
ADC_wavelet-LLL_glszm_GrayLevelNonUniformity 
ADC_log-sigma-3-0-mm-3D_glcm_ClusterShade 
ADC_log-sigma-3-0-mm-3D_glszm_GrayLevelVariance 
ADC_squareroot_firstorder_InterquartileRange 
T1C_original_shape_Elongation 
T1C_original_firstorder_Skewness 
T1C_wavelet-LLH_glszm_SmallAreaLowGrayLevelEmphasis 
T1C_wavelet-LHL_firstorder_Kurtosis 
T1C_wavelet-LHL_glcm_Imc2 
T1C_wavelet-LHL_glcm_MCC 
T1C_wavelet-HLL_firstorder_10Percentile 
T1C_wavelet-HLL_firstorder_MeanAbsoluteDeviation 
T1C_wavelet-HLL_firstorder_RootMeanSquared 
T1C_wavelet-HLH_glszm_ZonePercentage 
T1C_wavelet-LLL_glrlm_LongRunEmphasis 
T1C_log-sigma-3-0-mm-3D_firstorder_TotalEnergy 
T1C_log-sigma-3-0-mm-3D_glrlm_GrayLevelVariance 
T1C_logarithm_glrlm_LongRunEmphasis

ADC_original_firstorder_InterquartileRange 
ADC_wavelet-HLL_glszm_HighGrayLevelZoneEmphasis 
ADC_wavelet-HLL_glszm_LowGrayLevelZoneEmphasis 
ADC_wavelet-HLL_glszm_SmallAreaLowGrayLevelEmphasis 
ADC_wavelet-HLH_firstorder_Kurtosis 
ADC_wavelet-LLL_firstorder_InterquartileRange 
ADC_log-sigma-3-0-mm-3D_glcm_MaximumProbability 
ADC_log-sigma-3-0-mm-3D_glszm_LowGrayLevelZoneEmphasis 
ADC_log-sigma-3-0-mm-3D_ngtdm_Contrast 
ADC_square_firstorder_10Percentile 
ADC_logarithm_firstorder_InterquartileRange 
DWI_wavelet-HHH_firstorder_Kurtosis 
DWI_logarithm_firstorder_Median 
T1_wavelet-LHH_firstorder_Median 
T1_wavelet-HLL_glcm_DifferenceEntropy 
T1_wavelet-HLL_glcm_DifferenceVariance 
T1_wavelet-HHL_glszm_LowGrayLevelZoneEmphasis 
T1_logarithm_glrlm_ShortRunHighGrayLevelEmphasis 
T1C_wavelet-LLH_glcm_Imc1 
T1C_wavelet-HHL_glcm_Autocorrelation 
T1C_wavelet-HHL_glcm_ClusterProminence 
T1C_wavelet-HHL_glcm_ClusterTendency 
T1C_wavelet-HHL_glcm_Correlation 
T1C_wavelet-HHH_glcm_ClusterTendency 
T1C_exponential_firstorder_MeanAbsoluteDeviation 
T1C_logarithm_glcm_ClusterShade 
T2_wavelet-HLL_firstorder_Kurtosis 
T2_wavelet-HHL_firstorder_Median 
T2_wavelet-HHL_glszm_LowGrayLevelZoneEmphasis 
T2_log-sigma-3-0-mm-3D_glszm_GrayLevelNonUniformityNormalized 
T2_log-sigma-3-0-mm-3D_glszm_GrayLevelVariance 
T2_log-sigma-3-0-mm-3D_glszm_SmallAreaHighGrayLevelEmphasis

ADC_wavelet-LHL_glcm_MaximumProbability 
ADC_wavelet-HLL_gldm_DependenceVariance 
ADC_exponential_firstorder_10Percentile 
ADC_logarithm_firstorder_InterquartileRange 
DWI_wavelet-LLH_gldm_DependenceNonUniformityNormalized 
DWI_wavelet-HHH_firstorder_MeanAbsoluteDeviation 
DWI_log-sigma-3-0-mm-3D_firstorder_Minimum 
DWI_log-sigma-3-0-mm-3D_firstorder_Skewness 
T1C_wavelet-LLH_glrlm_HighGrayLevelRunEmphasis 
T1C_square_firstorder_Range 
T2_wavelet-HLL_glszm_SmallAreaLowGrayLevelEmphasis 
T2_log-sigma-3-0-mm-3D_glszm_GrayLevelNonUniformityNormalized 
T2_square_firstorder_Minimum


