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Automatic segmentation of the female pelvic floor muscles on 
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Background: Pelvic organ prolapse (POP) is a pelvic floor dysfunction disease which affects females. The 
volume of pelvic floor muscle, especially the levator ani muscle (LAM), is an important indicator of pelvic 
floor function. However, muscle volume measurements depend on manual segmentation, which is clinically 
time-consuming. In this work, we present an efficient automatic segmentation model of pelvic floor muscles 
with magnetic resonance imaging (MRI) based on DenseUnet, to achieve muscle volume calculation and 
provide a reference for the assessment of pelvic floor function.
Methods: A total of 49 female pelvic floor magnetic resonance (MR) series were retrospectively enrolled 
from the First Affiliated Hospital of Army Military Medical University between 2013 and 2021, including 
21 normal participants and 28 patients with stage 1–4 POP. The LAM, internal obturator muscle (IOM), 
and external anal sphincter (EAS) were manually segmented. An improved DenseUnet was proposed for 
automatic segmentation of these 3 muscles. The Dice similarity coefficient (DSC), Hausdorff distance 
(HD), and average symmetrical surface distance (ASSD) were used to evaluate segmentation results. The 
segmentation performance of the improved DenseUnet was compared with those of standard DenseUnet, 
ResUnet, Unet++, and Unet.
Results: The improved DenseUnet showed a good performance. The average DSC and standard deviation of 
the LAM, IOM, and EAS was 0.758±0.151, 0.716±0.173, and 0.810±0.147, respectively. The average HD was 
22.41, 19.00, and 36.01 mm, respectively; and the average ASSD was 3.66, 3.80, and 5.23 mm, respectively. The 
average DSC and standard deviation of the normal group and POP group was 0.779±0.166 and 0.757±0.154, 
respectively. There was no significant difference between the muscle volume of the improved DenseUnet and 
manual segmentation (all P values >0.05). The average total segmentation time for 1 case was 10.18 s on our setup, 
which is much lower than the manual segmentation time of 45 minutes.
Conclusions: The improved DenseUnet segments the pelvic floor muscles in MRI quickly and efficiently, 
with good precision and faster speed than those of manual segmentation. This can assist doctors in quickly 
segmenting pelvic floor muscles, calculating muscle volume, and further evaluating pelvic floor function.
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Introduction

Pelvic organ prolapse (POP) is a pelvic floor dysfunction 
disease affecting women. Childbirth injury, prolonged 
increased abdominal pressure, and obesity are the main 
causes of the disease. These conditions can result in weak 
or injured pelvic floor muscles, leading to POP. The 
decline and displacement of pelvic organs caused by POP 
can seriously affect women’s daily lives and work. About 
20% of women have undergone POP surgery during their 
lifetime (1). Therefore, the condition of the pelvic floor 
muscles is critical for women. The main muscles of the 
female pelvic floor muscles include the levator ani muscle 
(LAM), coccygeus muscle, anal sphincter complex, and 
urethral sphincter complexes (2,3). These muscles are the 
main structures of support for the pelvic organs including 
the bladder, urethra, uterus, vagina, and rectum, and 
control defecation (4,5). If these muscles become injured 
or atrophied, they lose the ability to adequately support 
the pelvic organs. This will result in POP or compromised 
bowel control, leading to problems such as urinary and fecal 
incontinence. 

The LAM is the main component of the pelvic floor 
and has the crucial function of providing support to the 
pelvic viscera. The 3-dimensional (3D) shape of the LAM 
is funnel-like. Anteriorly to posteriorly, the upper end is 
attached to the posterior pubic bone, internal obturator 
muscle (IOM), and lateral ischium, adjacent to the 
external anal sphincter (EAS) and urethral sphincter. The 
connections and orientation of the 3 pelvic floor muscles 
are shown in Figure 1. The LAM and EAS dominate pelvic 
organ support, and their morphological recognition and 
3D reconstruction are important for the diagnosis and 
reconstructive surgery planning of POP. The severity of 
POP is closely related to the injury and volume of the LAM 
(6,7). Therefore, segmentation and 3D reconstruction 
of the LAM and its adjacent EAS and IOM in magnetic 
resonance imaging (MRI) can provide a morphological 
reference for doctors to assess the degree of injury and 
function in the pelvic floor muscles, which is helpful for the 

surgical planning of POP.
However, the composition, 3D anatomical morphology, 

and spatial relationship of pelvic floor muscles are 
complicated. It is difficult for doctors to accurately identify 
and define their boundaries on tomographic images (8). 
Moreover, the process is time-consuming and wastes medical 
resources. Therefore, an automatic segmentation algorithm 
would be valuable in reducing the manual segmentation 
time and improving the efficiency of segmentation for pelvic 
floor muscles (9). Currently, the performance of existing 
segmentation algorithms for pelvic structures depends on 
image quality and patients’ health status (10). The reliability 
of the algorithms needs to be improved, particularly for the 
segmentation of pelvic floor muscles.

Convolutional neural networks (CNNs) have been widely 
used in the processing of medical images, such as object 
detection, segmentation, and classification (11-14). Shen  
et al. (15) used a CNN model to segment abdominal skeletal 
muscle and fat automatically, which performed well in 
segmentation. However, pelvic structures are very complex 
and consist of many tissues and organs with different 
anatomical morphologies and spatial relationships, making 
them difficult to distinguish and segment. Based on pelvic 
floor ultrasound, many studies (16-20) have quantitatively 
assessed the pelvic floor function by automatic detection or 
segmentation of pelvic floor structures. Bonmati et al. (21) 
presented a self-normalizing CNN to segment the pelvic 
floor levator hiatus automatically in ultrasound images, 
achieving an accuracy equivalent to that of a previous 
semiautomatic approach. van den Noort et al. (22,23) 
trained a CNN to segment the puborectalis muscle and 
urogenital hiatus in the plane of minimal hiatal dimensions. 
In addition, they used these segmentations to measure 
relevant clinical parameters, including hiatus length, width, 
and area, which showed good agreement with manual 
segmentation. He et al. (24) proposed a distinctive curve-
guided fully convolutional network that was accurate 
and robust for pelvic organ segmentation in computed 
tomography (CT) images. In order to perform qualitative 
or quantitative assessments of pelvic function, many 
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researchers (25-27) have tried to segment pelvic structures 
such as muscle, adipose tissue, and bone through machine 
learning or deep CNNs. However, these studies simply 
divided the pelvic floor muscles as a whole and did not 
separately segment and quantify the pelvic floor muscles 
such as the LAM and EAS. Moreover, to date, few studies 
have used deep learning algorithms to accurately segment 
the LAM and its adjacent muscles in pelvic MRI. 

Based on the Chinese Visible Human datasets (28), we 
have studied the location, 3D anatomical morphology, 
and spatial relationship of pelvic floor muscles, including 
the LAM, anal sphincter complex, IOM, and urethral 
sphincter complex (4,5,29). We thus were able to identify 
the boundaries of the pelvic floor muscles in MRI more 
accurately. 

In this retrospective study, we created an improved 
DenseUnet to automatically segment the female pelvic floor 
muscles including the LAM and EAS, and its adjacent IOM 
in pelvic MRI, aiming to segment more of the main pelvic 
floor muscles and improve the efficiency of segmentation 

compared with previous research. Based on the automatic 
and manual segmentation, we reconstructed the 3D 
models of the 3 muscles to perform 3D morphometric 
quantification of muscle volume, which is expected to 
provide a morphological reference for assessing the degree 
of injury of the pelvic floor muscles and the severity of POP. 
We present this article in accordance with the STARD 
reporting checklist (available at https://qims.amegroups.
com/article/view/10.21037/qims-22-1198/rc). 

Methods

Image acquisition

The female pelvic floor MR series were collected from 
the First Affiliated Hospital of Army Military Medical 
University between 2013 and 2021. According to the 
inclusion and exclusion criteria, 21 normal participants and 
28 patients with various degrees of POP, including POP 
patients with stage 1 (1 case), stage 2 (4 cases), stage 3 (21 

Figure 1 The connections and orientation of the 3 pelvic floor muscles. Column 1 displays different 3D views of CVH5 pelvis, column 2 
shows different slices of CVH5 pelvis including the uteral, upper vaginal, middle vaginal, and lower vaginal section, column 3 shows the 
MR images of corresponding sections in 1 normal case. a: uteral section. b: upper vaginal section. c: middle vaginal section. d: lower vaginal 
section. LAM, levator ani muscle; IOM, internal obturator muscle; EAS, external anal sphincter; 3D, 3-dimensional; CVH5, the fifth 
Chinese Visible Human dataset; MRI, magnetic resonance imaging.
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cases), and stage 4 (2 cases), were enrolled in this study. The 
POP stages were assessed through the POP quantification 
(POP-Q) examination (30). The inclusion criteria were 
as follows: (I) images with no obvious noise or artifacts, 
(II) patients whose POP stages were determined by 2 
gynecologists according to POP-Q examination, and (III) 
patients without stress urinary incontinence. The exclusion 
criteria were as follows: (I) images with very poor quality 
and (II) patients without POP-Q examination. The normal 
participants in this study comprised patients who did not 
experience pelvic floor prolapse. Participants enrolled in 
this study formed a random series. The participant selection 
process is displayed in Figure S1.

Imaging data were acquired using a 3.0 T MRI scanner, 
the Siemens 3.0 Trio (Siemens Healthineers, Erlangen, 
Germany), using a 4-channel surface coil. Approximately 
30 minutes before the acquisition, the participants 
emptied their bladder. All women were placed in a supine 
position and relaxed their pelvic floor muscles during 
MRI examination. The MRI scans ranged from the 
sacral promontory to the lower edge of the perineum. A 
standardized protocol with the following parameters was used: 
turbo spin-echo sequences, a repetition time of 8,610 ms,  
an echo time of 9.8 ms, an axial slice orientation with a field of 
view of 280 mm × 280 mm, a pixel size of 0.55 mm × 0.55 mm,  
an image matrix of 512×512, and a slice thickness of 2 mm. 
The acquisition time of the sequence for 1 person was about 
30 minutes. 

Manual segmentation

Manual segmentation is recognized as the reference 
standard to evaluate automatic segmentation. As accurate 
manual segmentation is time-consuming for professional 
doctors; increasingly, studies are using manual segmentation 
as the standard to train deep learning models to achieve 
automatic segmentation in order to facilitate doctors’ 
accurate manual segmentation and improve segmentation 
efficiency. In image segmentation, the region of interest 
(ROI) refers to the area that is segmented manually from 
the processed image in the form of irregular boundaries. 
Consequently, the ROIs of the pelvic floor muscles in our 
study were the LAM, IOM, and EAS. The 3 pelvic floor 
muscles were manually segmented under the guidance of 2 
gynecologists with more than 10 years of clinical experience 
according to the muscle’s anatomical appearance, the dense 
or loose connective tissue among muscles, and the color 
differences of the muscles. Amira software, version 5.2.2 

(Mercury Computer Systems Inc., Chelmsford, MA, USA), 
was used in the process of manual segmentation and 3D 
reconstruction of the 3 muscles. 

Image preprocessing

According to the position range of the LAM, EAS, and 
IOM, all scanned images were extracted and cropped to 
512×290 pixels using the Pydicom package in Python 
(Python Software Foundation, Fredericksburg, VA, USA). 
Then, these cropped images were randomly divided into 
training and test sets at a ratio of approximately 8:2. The 
images of 17 normal cases and 22 POP cases were selected 
as the training set, and the images of the remaining 4 
normal cases and 6 POP cases were used as the test set. 
There were 1,299 MR images in the LAM training set 
and 289 in the test set, 933 in the EAS training set and 
257 in the test set, and 1,518 in the IOM training set and 
383 in the test set. Finally, all images were preprocessed 
before model training and validation, which included data 
augmentation, resampling, and normalization.

The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013). This 
retrospective study was approved by the Ethics Committee 
of the First Affiliated Hospital of Army Military Medical 
University (No. BKY2021029), and individual consent for 
this retrospective analysis was waived.

Automatic segmentation framework

An illustration of the proposed pipeline is shown in Figure 2.  
In this study, automatic segmentation of the female pelvic 
floor muscles was performed using MRI based on the 
improved DenseUnet. Then, 3D models were reconstructed 
based on the segmentation from the gynecologists to assess 
the pelvic floor function.

Inspired by fully convolutional DenseNets (31), we designed 
DenseUnet with a context extraction module to overcome the 
shortcomings of Unet, which uses a little contextual and global 
information under different sensory fields. The segmentation 
framework of the pelvic floor muscles in MR images with the 
improved DenseUnet is shown in Figure 3. The improved 
DenseUnet is composed of 3 main parts: the encoder, context 
extraction, and decoder modules. Codes for the used network 
can be found in Appendix 1. 

The encoder module consists of 4 dense blocks and 4 
max-pooling layers. The dense connection of dense blocks 
improves the ability to reuse features and reduces the loss of 

https://cdn.amegroups.cn/static/public/QIMS-22-1198-Supplementary.pdf
https://cdn.amegroups.cn/static/public/QIMS-22-1198-Supplementary.pdf
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image information during model training. The max-pooling 
layers downsample the images to obtain more abstract and 
advanced image features.

The context extraction module consists of a dense atrous 
convolution (DAC) module and a residual multikernel 
pooling (RMP) module, which was first proposed by 

Gu et al. (32). These modules explore a large amount of 
contextual information from multiple receptive fields. 
We improved these 2 modules to better extract the 
characteristics of the pelvic floor muscles. In each branch 
of the DAC module, the size of the convolution kernel was 
1×1 or 3×3; the number of convolutional kernels was 512; 

Figure 2 Overview of the proposed study pipeline. The main processes include 5 components: manual segmentation of the 3 muscles, a few 
preprocessing operations before training, training of 5 models, comparison of model prediction, and 3D reconstruction based on the results 
of manual segmentation and DenseUnet†. †, denotes the improved DenseUet. MR, magnetic resonance; 3D, 3-dimensional. 

Figure 3 Illustration of the improved DenseUnet for segmentation. The framework is composed of 3 modules: encoder, context extraction, 
and decoder. The context extraction module consisting of a DAC module and a RMP module was optimized according to the characteristics 
of pelvic floor muscles. DAC, dense atrous convolution; RMP, residual multikernel pooling. 
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and the expansion rate was 1, 3, or 5. To extract features 
from different scales, the sensing fields of each branch 
from left to right were 3, 7, 9, and 19, respectively. In the 
designed DAC module, the outputs of each branch were 
spliced on the channel axis to perform feature fusion and 
obtain contextual information. In the RMP module, the size 
of the convolutional kernels in max-pooling was 2×2, 3×3, 
5×5, and 6×6, and the step size was 1. To reduce the number 
of parameters, a 1×1 convolutional kernel was connected 
to the pooling layer. Finally, the inputs and branch outputs 
were spliced together on the channel axis. Different sizes 
of convolutional kernels in max pooling allow the module 
to extract image features at different scales. Furthermore, 
considering the relative invariance of the LAM position, we 
set the step size of the max-pooling layer to 1 and used zero 
padding to keep the image size constant. This helps the 
network to better segment the LAM in the first few slices of 
each case. The input and output image sizes of the context 
extraction module remained the same so that they could be 
easily added to other modules. Moreover, this module can 
extract contextual semantic information to produce higher-
order feature maps, thereby improving the segmentation 
framework accuracy. 

The decoder module consists of 4 dense blocks and 4 
upsampling layers. This module restores the images to 
input resolution. Upsampling does not completely restore 
image information. Therefore, we fused the shallow texture 
features with the deep semantic features through skip 
connection, thereby recovering the boundary information 
of some images and further improving the segmentation 
accuracy of the model.

The DenseUnet proposed in this study was implemented 
using the Keras framework with TensorFlow as the 
backend. The experiments were conducted on a server 
with Ubuntu 18.04.4 LTS (Canonical, London, UK) 
configured with an Intel Core i9-9820X CPU (3.30 GHz) 
and 2 NVIDIA GeForce (Nvidia, Santa Clara, CA, USA) 
RTX 2080Ti GPUs. Data augmentation (random rotation, 
random scaling, horizontal flipping, etc.) was performed 
as soon as the images were input into the model. Then, 
the images were resampled to 256×256 pixels, and the 
image value were normalized between 0 and 1. Adam was 
chosen as the optimizer. Dice loss was selected as the loss 
function, while the rectified linear unit (ReLU) function 
with Kaiming normal initialization was selected as the 
convolution kernel activation function (33). The parameters 
were as follows. As the default, the learning rate was set as 
3×10−4, the batch size was 2, and the number of steps in 1 

epoch represented the number of training pictures divided 
by 2. Both the parameters γ and β for batch normalization 
use L2 regularization with regularization factor 10−4. The 
exponential decay rates for the estimation of first and second 
moments in Adam optimizer are 0.9 and 0.999, respectively. 
The parameter epoch was chosen according to the model 
training experiments. We set the value of epoch as 30, 
60, and 90, and compared the Dice loss of segmentation 
results obtained by the proposed network on the training 
set. The experimental results showed that the Dice loss was 
relatively lower when the epoch was set as 60. In addition, 
in order to avoid the loss function not decreasing due to a 
too-large learning rate, a learning rate decay was adopted; 
that is, after 40 rounds, the learning rate of each round was 
multiplied by e−0.1.

Evaluation 

The segmentation results were evaluated by comparing 
the results with the reference standard from manual 
segmentation. In this study, we used Dice similarity 
coefficient (DSC) (34) as an important criterion for 
evaluating the segmentation performance. DSC is typically 
used to calculate the similarity between 2 sets of samples. 
Here, it represents the similarity between the manually 
segmented image and corresponding image segmented by 
the algorithm. This metric is defined as follows:

2
DSC =

+
X Y

X Y
 [1]

Here, X denotes the manually segmented image (ground 
truth), and Y denotes the corresponding image segmented 
by the algorithm.

In order to better evaluate segmentation performance, 
we also used Hausdorff distance (HD) and average 
symmetric surface distance (ASSD) (35) to measure the 
quantitative segmentation results. These 2 indicators are 
distance measures that are used to measure the differences 
in region boundaries. For HD and ASSD, the smaller the 
values are, the better the performance. These metrics are 
defined as follows:
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Here, x is the pixel in X, and y is the pixel in Y. d represents 
the Euclidean distance between the 2 pixels.
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We resized the output segmentation images to the 
original sizes of input ground truth, and recorded the DSC, 
HD, and ASSD of the improved DenseUnet, standard 
DenseUnet, and 3 other models [Unet (36), Unet++ (37), 
and ResUnet (38)] for the automatic segmentation of 
the LAM, EAS, and IOM. In addition, we compared the 
segmentation and reconstruction performances of the 
improved DenseUnet on different slices, including the 
uteral, upper vaginal, middle vaginal, and lower vaginal 
sections. The times required for manual and automatic 
segmentation were recorded.

Statistical analysis

Statistical analysis was performed using SPSS 24.0 software 
(IBM Corp., Armonk, NY, USA). The quantitative 
segmentation results and segmentation times were reported 
in means and standard deviations. According to the 
normality test, the basic characteristics of participants and 
muscles’ volume were not normally distributed data, so 
they are reported in medians with interquartile ranges. The 
Mann-Whitney test was used for the P value computation 
to compare the muscle volume between manual and 
automatic segmentation. A P value <0.05 was considered 
statistically significant.

Results

Data on age, body mass index (BMI), number of pregnancies, 
vaginal birth, abortions, and total images in the normal and 
POP group were collected. The basic characteristics of the 
49 participants are listed in Table 1. Except for age, there 
were significant differences in these characteristics between 
the normal group and the POP group (P<0.05).

The segmentation performance of Unet, Unet++, 
ResUnet,  standard DenseUnet,  and the improved 
DenseUnet for the LAM, EAS, and IOM is displayed in 
Table 2. There were no adverse events in our study, and 
there were no indeterminate or missing data in our results. 
The average DSC and HD of the improved DenseUnet 
for segmenting the LAM were 0.758 and 22.410 mm, 
respectively, which were better than those of the 3 
other segmentation models. However, Unet had better 
segmentation results on IOM, with DSC, HD, and ASSD 
values of 0.809, 35.996 mm, and 4.989 mm, respectively. 
For the EAS, ResUnet achieved the highest DSC of 0.729. 

Furthermore, as shown by the qualitative segmentation 
results in Figure 4, the improved DenseUnet model had 
different segmentation results for the 3 muscles in different 
sections. Muscles in the upper section of the pelvis, such as 
the LAM and IOM, had a higher DSC. Their segmentation 
contours were similar to the results of manual segmentation. 
Only some of the finer protrusions or depressions were not 
accurately segmented. The DSC of the muscles in the lower 
section of the pelvis was lower. Generally, the closer to the 
perineum, the lower the segmentation accuracy was.

The quantitative segmentation results of the improved 
DenseUnet for the different groups are shown in Table 3. 
These results showed that from POP2 to POP4, the heavier 
the degree of prolapse was, the lower the segmentation 
DSC of the pelvic floor muscles. This aspect was 
particularly evident in the automatic segmentation of the 
LAM and EAS. Overall, the segmentation performance of 
the normal group was better than that of the POP group.

The qualitative 2D segmentation and 3D reconstruction 
results of the 3 structures on different sections in the normal 
and POP group with different stages are shown in Figure 5. 
The 3D models of the 3 pelvic floor muscles reconstructed 

Table 1 Basic characteristics of the normal group and POP group

Characteristic Normal group (n=21) POP group (n=28) P value*

Age (years) 35.0 (19.5) 51.0 (21.5) 0.001

BMI (kg/m2) 24.8 (3.5) 24.3 (3.0) 0.628

Pregnancy 1.0 (1.0) 3.0 (1.0) 0.000

Vaginal birth 1.0 (1.5) 2.0 (1.0) 0.000

Abortion 0.0 (1.0) 1.0 (2.0) 0.007

Number of total images 1,189 1,411 0.075

Values are reported in medians and interquartile ranges, unless indicated otherwise. Numbers in parentheses are the interquartile ranges. 
*, the Mann-Whitney test was used for the P value computation. P<0.05 is considered statistically significant. POP, pelvic organ prolapse; 
BMI, body mass index.
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Table 2 Quantitative segmentation results of improved DenseUnet and the compared models for 3 structures in the testing set

Models
LAM EAS IOM

DSC (95% CI) HD (95% CI) ASSD (95% CI) DSC (95% CI) HD (95% CI) ASSD (95% CI) DSC (95% CI) HD (95% CI) ASSD (95% CI)

Unet 0.749±0.164 
(0.731, 0.768)

22.993±22.266 
(20.415, 25.571)

3.732±5.190 
(3.132, 4.333)

0.717±0.172 
(0.696, 0.738)

22.295±34.542 
(18.051, 26.538)

4.129±7.736 
(3.179, 5.079)

0.809±0.140 
(0.795, 0.823)

35.996±47.235 
(31.238, 40.755)

4.989±10.907 
(3.890, 6.088)

Unet++ 0.749±0.169 
(0.729, 0.769)

23.874±26.245 
(20.835, 26.912)

4.719±12.926 
(3.223, 6.216)

0.708±0.170 
(0.688, 0.729)

17.817±13.361 
(16.176, 19.458)

3.399±2.869 
(3.046, 3.751)

0.807±0.137 
(0.794, 0.821)

37.698±48.430 
(32.820, 42.577)

5.223±10.223 
(4.194, 6.253)

ResUnet 0.753±0.162 
(0.734, 0.771)

22.884±22.311 
(20.301, 25.467)

3.593±4.813 
(3.036, 4.150)

0.729±0.169 
(0.708, 0.750)

18.015±26.890 
(14.712, 21.319)

3.092±2.990 
(2.725, 3.459)

0.807±0.152 
(0.792, 0.823)

38.770±52.676 
(33.464, 44.076)

5.798±12.988 
(4.490, 7.107)

DenseUnet 0.756±0.161 
(0.737, 0.774)

23.953±30.851 
(20.381, 27.525)

3.810±5.645 
(3.156, 4.463)

0.710±0.177 
(0.688, 0.732)

18.095±13.972 
(16.378, 19.811)

3.721±4.552 
(3.162, 4.280)

0.806±0.153 
(0.790, 0.821)

38.939±53.018 
(33.598, 44.279)

5.631±11.807 
(4.441, 6.820)

DenseUnet† 0.758±0.151 
(0.741, 0.775)

22.410±24.342 
(19.592, 25.229)

3.661±5.308 
(3.047, 4.276)

0.716±0.173 
(0.695, 0.738)

19.003±26.068 
(15.801, 22.205)

3.803±7.004 
(2.942, 4.663)

0.810±0.147 
(0.795, 0.825)

36.009±47.494 
(31.225, 40.793)

5.226±12.210 
(3.996, 6.456)

All values are described as means ± standard deviations. Numbers in parentheses are the confidence intervals. The units of HD and ASSD are in millimeters. 
†, denotes the improved DenseUet. LAM, levator ani muscle; EAS, external anal sphincter; IOM, internal obturator muscle; DSC, Dice similarity coefficient; CI, 

confidence interval; HD, Hausdorff distance; ASSD, average symmetrical surface distance. 

Figure 4 Qualitative segmentation results of the improved DenseUnet on different slices including the uteral, upper vaginal, middle 
vaginal, and lower vaginal sections. The 4 sections that have different 2D shapes and special relationships can represent the whole pelvic 
floor anatomy including the uterus, vagina, the LAM, EAS, and IOM. The slices with relative better segmentation performance in each 
section are shown. †, the improved DenseUet. DSC, Dice similarity coefficient; 2D, 2-dimensional; LAM, levator ani muscle; IOM, internal 
obturator muscle; EAS, external anal sphincter. 
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Table 3 Quantitative segmentation results on DSC (95% CI) of the improved DenseUnet for 3 structures in different groups

Muscle type Normal POP2 POP3 POP4

LAM 0.767±0.170 (0.739, 0.796) 0.764±0.182 (0.687, 0.841) 0.748±0.106 (0.726, 0.769) 0.740±0.152 (0.679, 0.801)

EAS 0.736±0.160 (0.708, 0.763) 0.792±0.129 (0.732, 0.852) 0.705±0.177 (0.667, 0.743) 0.557±0.193 (0.464, 0.650)

IOM 0.818±0.159 (0.795, 0.840) 0.865±0.035 (0.848, 0.882) 0.790±0.148 (0.766, 0.814) 0.833±0.054 (0.811, 0.854)

Average 0.779±0.166 (0.764, 0.794) 0.802±0.141 (0.767, 0.838) 0.755±0.149 (0.739, 0.771) 0.727±0.175 (0.685, 0.768)

DSC values are described as means ± standard deviations. Numbers in parentheses are the 95% CIs. DSC, Dice similarity coefficient; CI, 
confidence interval; POP2, patients with stage 2 pelvic organ prolapse; POP3, patients with stage 3 pelvic organ prolapse; POP4, patients 
with stage 4 pelvic organ prolapse; LAM, levator ani muscle; EAS, external anal sphincter; IOM, internal obturator muscle.

Figure 5 Qualitative 2D segmentation and 3D reconstruction results of the 3 structures on different sections in the normal and POP 
groups with different stages. The columns show different the normal and POP groups. Rows 1–4 show the segmentation results of different 
sections, where the red contour represents manual segmentation (ground truth), and the green contour represents automatic segmentation. 
Rows 5 and 6 represent the 3D models reconstructed by segmentation results of the ground truth and the improved DenseUnet, respectively. 
†, the improved DenseUnet. POP2, patients with stage 2 pelvic organ prolapse; POP3, patients with stage 3 pelvic organ prolapse; POP4, 
patients with stage 4 pelvic organ prolapse; 3D, 3-dimensional; LAM, levator ani muscle; IOM, internal obturator muscle; EAS, external 
anal sphincter; 2D, 2-dimensional. 
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from the improved DenseUnet segmentation results were 
similar to those reconstructed from manual segmentation. 
The effect of automatic segmentation on the lateral side of 
the IOM near the femur was poor.

There was no significant difference between the 
muscle volume of the improved DenseUnet and manual 
segmentation (Table 4). Table 5 shows the average automatic 
segmentation time of the improved DenseUnet, ResUnet, 
Unet++, and Unet for the 3 pelvic floor muscles in each case 
of the test set. The total segmentation time of the proposed 
DenseUnet models for 1 case was about 10.18 s, which 
was much lower than the manual segmentation time of  
45 minutes. The training times of the improved DenseUnet 
and the compared models for the 3 structures are displayed 
in Table S1.

Discussion

Medical significance

In this study, an improved DenseUnet was proposed for the 
automatic segmentation of the pelvic muscles, including the 
LAM, EAS, and IOM, in MR images. The segmentation 
accuracy for the LAM of this model was higher than 
that of the other 3 segmentation models. Compared to 
manual segmentation, the proposed model shortened the 
segmentation time, it saved about 44 minutes of clinical 
time, which is significant. To our knowledge, this is the first 

study to achieve segmentation of 3 pelvic floor muscles, 
which can provide a reference for function and injury 
assessment of the pelvic floor muscle and diagnosis of POP.

Segmentation performance

We found that segmentation performance is closely related 
to the 2D morphology and spatial relationship of the pelvic 
floor muscles in MRI. Overall, the upper pelvic floor’s 
segmentation accuracy was better than that of the lower 
pelvic floor (Figure 4). This is because the morphology 
of the pelvic floor muscles varies greatly among different 
sections. The structures of the upper pelvic floor are 
relatively simple, and there are few adjacent structures. The 
LAM is confused only with the coccygeus muscle. However, 
the muscles in the lower section of the pelvic floor are 
complicated, with many adjacent structures. The LAM 
is closer to the IOM and is adjacent to the internal anal 
sphincter, perineal body, and bulbospongious muscles. The 
gray values of these muscles are close, so they are not easily 
segmented.

Moreover, the larger the muscle volume was, the higher 
the segmentation accuracy. For example, the DSC of 
IOM was higher (0.810). On the contrary, the smaller the 
structure was, the lower the segmentation accuracy. For 
example, the DSC of the EAS was only 0.716 (Table 2). 
This may be because the larger the volume is, the easier the 
CNN identification and segmentation, and thus the higher 

Table 4 Volume comparison between the manual and the improved DenseUnet segmentation 

Muscle type Volume of ground truth Predicted volume P value*

LAM 30,560 [5,961] 26,781 [7,188] 0.247

EAS 11,179 [4,679] 10,928 [2,571] 0.853

IOM 86,154 [27,199] 81,605 [24,474] 0.739

Values are reported in medians with interquartile ranges. Numbers in the parentheses are the interquartile ranges. The unit of volume 
is mm3. *, the Mann-Whitney test was used for the P value computation. P<0.05 is considered statistically significant. LAM, levator ani 
muscle; EAS, external anal sphincter; IOM, internal obturator muscle. 

Table 5 Mean segmentation time comparison for 1 case between manual, improved DenseUnet, and compared models 

Muscle type Manual (s) DenseUnet† (s) ResUnet (s) Unet++ (s) Unet (s)

LAM 722.5±224.37 3.32±0.31 3.08±0.28 3.66±0.44 3.76±0.32

EAS 411.20±154.22 3.21±0.34 2.99±0.32 3.50±0.49 3.64±0.34

IOM 1,532.00±469.16 3.65±0.42 3.36±0.38 4.08±0.57 4.05±0.40

All values are reported in means ± standard deviations. †, denotes the improved DenseUnet. LAM, levator ani muscle; EAS, external anal 
sphincter; IOM, internal obturator muscle.

https://cdn.amegroups.cn/static/public/QIMS-22-1198-Supplementary.pdf
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the accuracy. This may also be the reason why many studies 
(39-41) choose to automatically segment the larger limb 
muscles instead of the pelvic floor muscles. The EAS is also 
commonly injured, and the pathology can greatly vary. The 
segmentation performance of the EAS could be improved 
with more data augmentation (i.e., zooming) and more 
targeted model improvements for future work.

Meanwhile,  we found that the more severe the 
POP and pelvic floor muscle injuries were, the worse 
the segmentation accuracy (Table 3). The automatic 
segmentation DSC of the LAM in the normal group 
reached 0.767, but in the POP group, it was slightly lower 
at 0.740. Due to the injury, deformation, and displacement 
of the LAM in the POP group, the levator ani hiatus can 
widen (Figure 5), which may easily lead to prolapse of pelvic 
organs such as the uterus and bladder. This suggests that 
the injured and deformed structures cause a decrease in 
the accuracy of automatic segmentation. All the P values 
of the volume comparison between manual and automatic 
segmentation were greater than 0.05 (Table 4). This 
indicates that the volume of the pelvic floor muscles can be 
quickly quantified using automatic segmentation.

Model comparison

The improved DenseUnet achieved the best segmentation 
DSC for the LAM compared to the other models. This 
may be due to the improvement that the model included 
contextual information under different sensory fields 
in the images. Therefore, the LAM can be accurately 
segmented from complex pelvic floor muscles. ResUnet 
performed better for the segmentation of the EAS. This 
is perhaps because the large number of residual structures 
in this model effectively alleviates the problem of gradient 
disappearance and can train deeper networks. The EAS 
is small and different in shape. Deeper networks may be 
conducive to the segmentation of the EAS. For the IOM 
segmentation, which is large and has more slices, the 
segmentation results of each model are better. However, 
Unet performed relatively better in terms of DSC and best 
in the HD and ASSD evaluation metrics (Table 2). Since 
Unet has the lowest number of parameters and has a basic 
segmentation ability, it is suitable for segmenting this type 
of muscle. Overall, we improved the DenseUnet model 
specifically for the characteristics of the LAM changes, so 
the improved DenseUnet is more sensitive to the LAM. 
Moreover, from the results, it can be seen that ResUnet 
is more suitable for segmenting small muscles such as the 

EAS, while Unet is more suitable for segmenting larger 
muscles such as the IOM.

Related research

CNNs have been widely used in the field of image 
segmentation, and studies on pelvic tissue and organ 
segmentation have mainly focused on male pelvic organs. 
Wang et al. (42,43) and Almeida et al. (44) have trained 
deep learning models to achieve accurate segmentation 
of the prostate and other risk-associated organs, such as 
bladder and rectum, on male pelvic CT images, aiming 
to help doctors in planning radiation therapy for patients 
with prostate cancer. Liu et al. (45,46) used the 3D 
U-Net algorithm to accurately and automatically detect 
and segment pelvic bone metastases in patients with 
pelvic lymph nodes and prostate cancer based on pelvic 
lymph nodes on diffusion-weighted images. Lei et al. (47) 
developed an anchor-free mask CNN-based approach 
to simultaneously segment multiple organs including 
the prostate, bladder, rectum, and urethra on transrectal 
ultrasound images, potentially enabling the autoplanning 
and autoevaluation of prostate brachytherapy. To improve 
the speed and accuracy of radiotherapy dose prediction 
for organs at risk, Weston et al. (48) proposed a 3D U-Net 
variant architecture to segment the whole abdomen and 
pelvis into 33 unique organ and tissue structures on CT 
images. Other studies (49,50) have constructed CNN 
models to automatically segment at-risk organs such as the 
anal canal, bladder, small intestine, rectum, femoral head, 
and spinal cord in CT images and multiple MRI sequences 
of patients with prostate or cervical cancer.

However, CNN applications for female pelvic floor 
muscle segmentation and POP analysis have not been 
extensively studied. This may be due to the irregular 
anatomical morphology of the female pelvic floor muscles, 
especially the LAM and EAS, for which, the 2D and 
3D morphology and spatial adjacency are much more 
complicated. There is considerable controversy regarding 
their anatomical division and 3D morphology. Moreover, 
due to fertility reasons, there are certain differences in the 
structure and morphology of the pelvic organs and pelvic 
floor muscles in different women. Therefore, it is difficult 
for doctors, let alone algorithms, to segment female pelvic 
floor muscles.

Feng et al. (51) presented a CNN-based solution for 
segmenting 4 female pelvic organ structures, including the 
uterus, rectum, bladder, and the LAM, from 24 sagittal 
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MR series. The DSC of the LAM segmentation was 0.608. 
The reason for this low segmentation accuracy may be due 
to the limited number of cases. In our study, the improved 
DenseUnet model achieved an average DSC of 0.758 for the 
segmentation of the LAM. The relatively high segmentation 
accuracy may be due to the effectiveness of the improved 
model and the larger number of normal participants and 
patients with POP. This further indicates that female pelvic 
floor muscles are particularly complicated, and it is difficult 
to achieve precise segmentation.

Yan et al. (52) proposed a new Scale- and Slice-
aware Net for the 3D dense segmentation of 54 organs 
and musculoskeletal structures in a pelvic MRI cohort 
of 27 patients. The average DSC of the 54 organs and 
musculoskeletal structures was 0.749. However, because 
of the difficulty in identifying rare categories, such as the 
ovary, adductor magnus, and vagina, the model did not 
perform well on these structures. According to each doctor’s 
experience, because of the smaller structure and worse 
anatomical regularity, the segmentation of the pelvic floor 
muscles is more difficult than that of the pelvic organs. 
In our study, the average DSCs of the LAM, EAS, and 
IOM were 0.758, 0.716, and 0.810, respectively, further 
supporting the advantages of our model. To our knowledge, 
this is the first study to report a good segmentation 
performance of the 3 pelvic floor muscles.

This study had several limitations. First, we only 
performed automatic segmentation of the LAM, EAS, and 
IOM. However, pelvic floor dysfunction is associated with 
many small pelvic floor muscles, such as the compressor 
urethrae and the main part of the urethral sphincter. Other 
important pelvic floor muscles should be considered in 
future research. Second, the thin sectional MR images in 
this study needed to be scanned with a unique and special 
sequence, while the number of patients with different 
stages varies. Thus, the cases were limited for model 
training and testing. More cases of different stages should 
be included in future studies. Finally, the proposed model 
should be more reliable and robust for clinical applications. 
The segmentation accuracy of the severe POP group was 
worse because the LAM is injured and deformed in severe 
POP. In future work, we intend to establish a multicenter 
training set and add MRI images of different quality to 
improve the compatibility and generalizability of the 
model.

Conclusions

We created and improved the automatic segmentation 
model DenseUnet based on the characteristics of pelvic 
floor muscles. The segmentation performance of LAM was 
better than that reported in previous studies on pelvic floor 
MRI. The average segmentation time for 1 case was about 
44 minutes quicker than that of manual segmentation. 
The improved DenseUnet can quickly and efficiently 
segment the LAM, EAS, and IOM in pelvic MR images, 
which can assist doctors in quickly performing pelvic floor 
muscle identification, segmentation, 3D reconstruction, 
and automatic volume calculation to evaluate pelvic floor 
function. This model may be helpful for completing the 
diagnosis and reconstructive surgery planning of POP, 
reducing the doctors’ burden, and saving medical resources.
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Appendix 1

Codes for the used network
import numpy as np
import os
import skimage.io as io
import skimage.transform as trans
from scipy import ndimage
from tensorflow.keras.models import *
from tensorflow.keras.layers import *
from tensorflow.keras.optimizers import *
from tensorflow.keras.callbacks import ModelCheckpoint, LearningRateScheduler
from tensorflow.keras import backend as keras
from tensorflow.keras import backend as K
import tensorflow as tf
from tensorflow.keras.applications import *

smooth = 1
def dice_coef(y_true, y_pred):
  y_true_f = K.flatten(y_true) 
  y_pred_f = K.flatten(y_pred)
  intersection = K.sum(y_true_f * y_pred_f)
  return (2. * intersection + smooth) / (K.sum(y_true_f * y_true_f) + K.sum(y_pred_f * y_pred_f) + smooth)

def dice_coef_loss(y_true, y_pred):
  return 1. - dice_coef(y_true, y_pred)

from tensorflow.keras import regularizers

def DenseUnet(pretrained_weights = None,input_size = (256,256,1)):
  inputs = Input(input_size)

  conv1_1 = Conv2D(64, 3, activation='relu', padding='same', kernel_initializer='he_normal')(inputs)
  BatchNorm1_1 = BatchNormalization(axis=3, gamma_regularizer=regularizers.l2(1e-4),
                   beta_regularizer=regularizers.l2(1e-4))(conv1_1)
  ReLU1_1 = Activation('relu')(BatchNorm1_1)
  conv1_2 = Conv2D(64, 3, activation='relu', padding='same', kernel_initializer='he_normal')(ReLU1_1)
  drop1_2 = Dropout(0)(conv1_2)#
  # Merge1 = merge([conv1_1,drop1_2], mode = 'concat', concat_axis = 3)
  Merge1 = Concatenate(axis=3)([conv1_1, drop1_2])

  pool1 = MaxPooling2D(pool_size=(2, 2))(Merge1)

  conv2_1 = Conv2D(128, 3, activation='relu', padding='same', kernel_initializer='he_normal')(pool1)
  BatchNorm2_1 = BatchNormalization(axis=3, gamma_regularizer=regularizers.l2(1e-4),
                   beta_regularizer=regularizers.l2(1e-4))(conv2_1)
  ReLU2_1 = Activation('relu')(BatchNorm2_1)
  conv2_2 = Conv2D(128, 3, activation='relu', padding='same', kernel_initializer='he_normal')(ReLU2_1)

Supplementary
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  drop2_2 = Dropout(0)(conv2_2)#
  # Merge2 = merge([conv2_1,drop2_2], mode = 'concat', concat_axis = 3)
  Merge2 = Concatenate(axis=3)([conv2_1, drop2_2])
  pool2 = MaxPooling2D(pool_size=(2, 2))(Merge2)
  conv3_1 = Conv2D(256, 3, activation='relu', padding='same', kernel_initializer='he_normal')(pool2)
  BatchNorm3_1 = BatchNormalization(axis=3, gamma_regularizer=regularizers.l2(1e-4),
                   beta_regularizer=regularizers.l2(1e-4))(conv3_1)
  ReLU3_1 = Activation('relu')(BatchNorm3_1)
  conv3_2 = Conv2D(256, 3, activation='relu', padding='same', kernel_initializer='he_normal')(ReLU3_1)
  drop3_2 = Dropout(0)(conv3_2)#
  # Merge3 = merge([conv3_1,drop3_2], mode = 'concat', concat_axis = 3)
  Merge3 = Concatenate(axis=3)([conv3_1, drop3_2])

  pool3 = MaxPooling2D(pool_size=(2, 2))(Merge3)

  conv4_1 = Conv2D(512, 3, activation='relu', padding='same', kernel_initializer='he_normal')(pool3)
  BatchNorm4_1 = BatchNormalization(axis=3, gamma_regularizer=regularizers.l2(1e-4),
                   beta_regularizer=regularizers.l2(1e-4))(conv4_1)
  ReLU4_1 = Activation('relu')(BatchNorm4_1)
  conv4_2 = Conv2D(512, 3, activation='relu', padding='same', kernel_initializer='he_normal')(ReLU4_1)
  drop4_2 = Dropout(0)(conv4_2)#
  # Merge4 = merge([conv4_1,drop4_2], mode = 'concat', concat_axis = 3)
  Merge4 = Concatenate(axis=3)([conv4_1, drop4_2])
  drop4 = Dropout(0.5)(Merge4)
  pool4 = MaxPooling2D(pool_size=(2, 2))(drop4)

  # conv5_1 = Conv2D(1024, 3, activation='relu', padding='same', kernel_initializer='he_normal')(pool4)
  # BatchNorm5_1 = BatchNormalization(axis=3, gamma_regularizer=regularizers.l2(1e-4),
  #                 beta_regularizer=regularizers.l2(1e-4))(conv5_1)
  # ReLU5_1 = Activation('relu')(BatchNorm5_1)
  # conv5_2 = Conv2D(1024, 3, activation='relu', padding='same', kernel_initializer='he_normal')(ReLU5_1)
  # drop5_2 = Dropout(0)(conv5_2)#
  # # Merge5 = merge([conv5_1,drop5_2], mode = 'concat', concat_axis = 3)
  # Merge5 = Concatenate(axis=3)([conv5_2, drop5_2])
  # drop5 = Dropout(0.5)(Merge5)
  # DAC
  branch1 = Conv2D(512, 3, activation='relu', padding= 'same', dilation_rate=1)(pool4)
  branch2 = Conv2D(512, 3, activation='relu', padding='same', dilation_rate=3)(pool4)
  branch2 = Conv2D(512, 1, activation='relu', padding='same', dilation_rate=1)(branch2)

  branch3 = Conv2D(512, 3, activation='relu', padding='same', dilation_rate=1)(pool4)
  branch3 = Conv2D(512, 3, activation='relu', padding='same', dilation_rate=3)(branch3)
  branch3 = Conv2D(512, 1, activation='relu', padding='same', dilation_rate=1)(branch3)

  branch4 = Conv2D(512, 3, activation='relu', padding='same', dilation_rate=1)(pool4)
  branch4 = Conv2D(512, 3, activation='relu', padding='same', dilation_rate=3)(branch4)
  branch4 = Conv2D(512, 3, activation='relu', padding='same', dilation_rate=5)(branch4)
  branch4 = Conv2D(512, 1, activation='relu', padding='same', dilation_rate=1)(branch4)
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  # pool4 = Concatenate(axis=3)([branch1, branch2, branch3, branch4, pool4])
  pool4 = branch1 + branch2 + branch3 + branch4

  # RMP

  up6 = Conv2D(512, 2, activation='relu', padding='same', kernel_initializer='he_normal')(
    UpSampling2D(size=(2, 2))(pool4))
  # merge6 = merge([drop4,up6], mode = 'concat', concat_axis = 3)
  # drop4_at = cbam_block(drop4, name = "4")
  merge6 = Concatenate(axis=3)([drop4, up6])

  conv6_1 = Conv2D(512, 3, activation='relu', padding='same', kernel_initializer='he_normal')(merge6)
  BatchNorm6_1 = BatchNormalization(axis=3, gamma_regularizer=regularizers.l2(1e-4),
                   beta_regularizer=regularizers.l2(1e-4))(conv6_1)
  ReLU6_1 = Activation('relu')(BatchNorm6_1)
  conv6_2 = Conv2D(512, 3, activation='relu', padding='same', kernel_initializer='he_normal')(ReLU6_1)
  drop6_2 = Dropout(0)(conv6_2)#

  # Merge6 = merge([conv6_1,drop6_2], mode = 'concat', concat_axis = 3)
  Merge6 = Concatenate(axis=3)([conv6_1, drop6_2])

  up7 = Conv2D(256, 2, activation='relu', padding='same', kernel_initializer='he_normal')(
    UpSampling2D(size=(2, 2))(Merge6))
  # merge7 = merge([Merge3,up7], mode = 'concat', concat_axis = 3)
  # Merge3_at = cbam_block(Merge3, name = '3')
  merge7 = Concatenate(axis=3)([Merge3, up7])

  conv7_1 = Conv2D(256, 3, activation='relu', padding='same', kernel_initializer='he_normal')(merge7)
  BatchNorm7_1 = BatchNormalization(axis=3, gamma_regularizer=regularizers.l2(1e-4),
                   beta_regularizer=regularizers.l2(1e-4))(conv7_1)
  ReLU7_1 = Activation('relu')(BatchNorm7_1)
  conv7_2 = Conv2D(256, 3, activation='relu', padding='same', kernel_initializer='he_normal')(ReLU7_1)
  drop7_2 = Dropout(0)(conv7_2)#
  # Merge7 = merge([conv7_1,drop7_2], mode = 'concat', concat_axis = 3)
  Merge7 = Concatenate(axis=3)([conv7_1, drop7_2])

  up8 = Conv2D(128, 2, activation='relu', padding='same', kernel_initializer='he_normal')(
    UpSampling2D(size=(2, 2))(Merge7))
  # merge8 = merge([Merge2,up8], mode = 'concat', concat_axis = 3)
  # Merge2_at = cbam_block(Merge2, name = '2')
  merge8 = Concatenate(axis=3)([Merge2, up8])

  conv8_1 = Conv2D(128, 3, activation='relu', padding='same', kernel_initializer='he_normal')(merge8)
  BatchNorm8_1 = BatchNormalization(axis=3, gamma_regularizer=regularizers.l2(1e-4),
                   beta_regularizer=regularizers.l2(1e-4))(conv8_1)
  ReLU8_1 = Activation('relu')(BatchNorm8_1)
  conv8_2 = Conv2D(128, 3, activation='relu', padding='same', kernel_initializer='he_normal')(ReLU8_1)
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  drop8_2 = Dropout(0)(conv8_2)#
  # Merge8 = merge([conv8_1,drop8_2], mode = 'concat', concat_axis = 3)
  Merge8 = Concatenate(axis=3)([conv8_1, drop8_2])

  up9 = Conv2D(64, 2, activation='relu', padding='same', kernel_initializer='he_normal')(
    UpSampling2D(size=(2, 2))(Merge8))
  # merge9 = merge([Merge1,up9], mode = 'concat', concat_axis = 3)
  # Merge1_at = cbam_block(Merge1, name = '1')
  merge9 = Concatenate(axis=3)([Merge1, up9])

  conv9_1 = Conv2D(64, 3, activation='relu', padding='same', kernel_initializer='he_normal')(merge9)
  BatchNorm9_1 = BatchNormalization(axis=3, gamma_regularizer=regularizers.l2(1e-4),
                   beta_regularizer=regularizers.l2(1e-4))(conv9_1)
  ReLU9_1 = Activation('relu')(BatchNorm9_1)
  conv9_2 = Conv2D(64, 3, activation='relu', padding='same', kernel_initializer='he_normal')(ReLU9_1)
  drop9_2 = Dropout(0)(conv9_2)#
  # Merge9 = merge([conv9_1,drop9_2], mode = 'concat', concat_axis = 3)
  Merge9 = Concatenate(axis=3)([conv9_1, drop9_2])

  conv9 = Conv2D(2, 3, activation='relu', padding='same', kernel_initializer='he_normal')(Merge9)
  conv10 = Conv2D(1, 1, activation='sigmoid')(conv9) # sigmoid
  # conv10 = Conv2D(1, 1, activation = 'softmax')(conv9)#sigmoid

  model = Model(inputs, conv10)
  model.compile(optimizer=Adam(lr=3e-4), loss=dice_coef_loss, metrics=[dice_coef, 'acc'])

  model.summary()

  if (pretrained_weights):
    model.load_weights(pretrained_weights)

  return model
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Figure S1 Flowchart of data collection. MR, magnetic resonance; POP, pelvic organ prolapse; POP-Q, pelvic organ prolapse quantification; 
POP 1, patients with stage 1 pelvic organ prolapse; POP2, patients with stage 2 pelvic organ prolapse; POP3, patients with stage 3 pelvic 
organ prolapse; POP4, patients with stage 4 pelvic organ prolapse.

Table S1 Training time of the improved DenseUnet and compared models for 3 structures

Models LAM EAS IOM

Unet 0:26'54" 0:19'6" 0:31'4"

Unet++ 0:56'17" 0:40'33" 1:5'3"

ResUnet 1:45'13" 1:16'43" 2:1'42"

DenseUnet 1:51'24" 0:24'32" 0:45'2"

DenseUnet† 2:26'4" 0:38'26" 1:0'39"
†, denotes the improved DenseUet. All values are described as hour:minute'second. LAM, levator ani muscle; EAS, external anal sphincter; 
IOM, internal obturator muscle.


