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Background: Breast cancer is a major cause of mortality among women worldwide. Dynamic contrast-
enhanced breast magnetic resonance imaging (DCE-MRI) is a good imaging technique that can show 
temporal information about the kinetics of the contrast agent in suspicious breast lesions as well as acceptable 
spatial resolution. Computer-aided detection systems assist in the detection of lesions through medical image 
processing techniques combined with computerized analysis and calculation, which in turn helps radiologists 
recognize molecular subtypes of breast lesions that will be beneficial for better treatment plan decisions.
Methods: In this paper, a computer-aided diagnosis method is proposed to automatically locate breast 
cancer lesions and identify molecular subtypes of breast cancer with heterogeneity analysis from radiomics 
data. A fast region-based convolutional network (Faster R-CNN) framework is first applied to images to 
detect breast cancer lesions. Then, the heterogeneous regions of every breast cancer lesion are extracted. 
Based on the multiple visual and kinetic radiomics features extracted from the heterogeneous regions, a 
temporal bag of visual word model is proposed, which takes into account the dynamic characteristics of both 
lesion and heterogeneous regions in images over time. The recognition task of molecular subtypes of breast 
lesions is realized based on a stacking classification model.
Results: At the genetic level, breast cancer is divided into four molecular subtypes, namely, luminal 
epithelial type A (Luminal A), luminal epithelial type B (Luminal B), HER-2 overexpression and basal cell 
type. The experimental results show that the precision of the four subtypes is 93%, 94%, 83%, 86%; the 
recall is 96%, 80%, 91%, 94%; and the F1-score is 95%, 86%, 87%.
Conclusions: The experimental results denote the influence of heterogeneous regions on the recognition 
task. The DCE-MRI-based approach to identify molecular typing of breast cancer for noninvasive diagnosis 
will contribute to the development of breast cancer treatment, improved outcomes and reduced mortality.
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Introduction

Breast cancer refers to malignant tumors of the breast duct 
epithelium, which is a common malignant cancer in women 
between the ages of 45–55 years old and is a rising trend in 
China. Over the past decade, medical clinical consensus has 
been confirmed to divide breast cancer into four different 
subtypes based on histopathology, patient-driven genes, 
hormone receptor expression and cellular molecular status. 
The four molecular subtypes discussed in this paper are 
luminal A, luminal B, human epidermal growth factor 
receptor-2 overexpressing (HER-2) and basal-like. It is 
important that there are differences in the treatment of 
different types of breast cancer in clinical practice. Dynamic 
contrast-enhanced breast magnetic resonance imaging 
(DCE-MRI) is a good imaging technique that can show 
temporal information about the kinetics of the contrast 
agent in suspicious breast lesions as well as acceptable spatial 
resolution. However, the increasing number of medical 
images has led to greater difficulties for radiologists that 
can become fatigued, which leads to incorrect diagnoses. 
Computer-assisted diagnostic detection systems without 
human intervention can assist radiologists in the diagnosis 
of breast cancer and guide radiologists in subsequent 
treatment plans.

Individualized and systematic treatment programs have 
been developed for different molecular subtypes in clinical 
practice. However, it is important that there are differences 
in the treatment of different types of breast cancer in clinical 
practice, and there are obvious differences in the treatment 
response of different treatment options to individual 
patients. Cancer lesion heterogeneity has been verified by 
histological and genetic methods, and intratumor genetic 
heterogeneity has been studied and associated with adverse 
clinical outcomes (1). Breast cancer has a high degree of 
heterogeneity. The heterogeneity of the lesion area has the 
characteristics of synchronous dynamic change with time 
and lesion growth, and it is an important factor affecting the 
staging of breast cancer and poor prognosis (2).

This paper proposes an innovative method for breast 
cancer lesion detection and molecular subtype recognition 
that gives clinicians more knowledge for decisions 
regarding consequential treatment plans. The workflow of 
the presented method is shown in Figure 1. The method 
proposed in this paper consists of four steps: cancer 
lesion segmentation, heterogeneous region extraction, 
creation of a temporal bag of visual words and molecular 
subtype recognition model training and validation. Cancer 

lesion segmentation is used to obtain lesion locations by 
a deep learning model on the basis of lesions labeled by 
radiologists. The heterogeneous region extraction is carried 
out, and the precise boundary of the lesion is found by the 
method of regional growth. Clustering is conducted on the 
lesions to extract the heterogeneous subregions. A variety of 
visual and dynamic features are extracted based on the data 
of these heterogeneous regions. The feature dictionaries 
of heterogeneous regions with different time phases are 
trained according to time evolution. Finally, temporal bag of 
visual word (TBOVW) features are obtained, and a variety 
of classification models are used for classification and cross-
validation to verify the effective role of the TBOVW model 
in molecular subtype recognition.

This work is subsequent to our previous research, 
which treated the lesion as a whole by radiomics analysis 
without considering the heterogeneous characteristics 
of breast cancer (3). This paper explores the impacts 
of heterogeneous subregions on molecular subtypes. 
Meanwhile, the lesion detection algorithm is newly applied 
in the automatic workflow. The main contributions of this 
article are as follows.
 A lesion heterogeneous subregion extraction 

algorithm based on clustering is proposed, and 
visual and dynamic radiomics features are extracted 
for each heterogeneous region to express different 
region characteristics.

 An improved bag of visual word (BOVW) model 
called TBOVW is proposed, which takes into 
account the temporal characteristics of each visual 
word, and each lesion is expressed as a bag of visual 
word sequences.

 Extensive experiments on clinical real-world datasets 
demonstrate the effectiveness of the proposed 
radiomics analysis method with quantitative 
heterogeneity by the TBOVW model.

Radiomics is proposed to refer to the extraction and 
analysis of large numbers of advanced quantitative imaging 
features with high throughput from medical images (3,4). 
Wang et al. presented a radiomic analysis method with 
60 features to build a prediction model for recognizing 
malignant and benign tumors combined with medical 
characteristics (5). Many visual features are extracted to 
quantify the image intensity, shape and texture of lesions 
and tumor surroundings, which are associated with 
underlying gene expression patterns (6). It is also feasible 
to use radiomics methods to exploit normal liver features 
and make predictions for treatment-associated liver  
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injury (7), as well as to distinguish malignant nodules from 
benign nodules (8).

Tumors exhibit genomic and phenotypic heterogeneity, 
which has prognostic significance and may influence 
the response to therapy (9). Genetic, epigenetic and 
phenomenological data support the existence of intratumor 
genetic heterogeneity in breast cancers (10,11). Region-based 
features were extracted by the proposed regionalization 
method to quantify intratumor heterogeneity on breast 
DCE-MRI (12). Banaie et al. proposed a method to 
help physicians determine the likelihood of malignancy 
in breast cancer using DCE-MRI images without  
biopsy (13). Quantitative heterogeneity analysis of breast 
cancer may enable precision medicine to differentiate 
luminal A and luminal B breast cancer molecular subtypes 
(14,15). Computer-extracted image phenotypes as 
well as dynamic features from tumor and background 
parenchymal enhancement were used to determine DCE-
MRI characteristics discriminating among four molecular 
subtypes of breast cancer.

Precise lesion location in the image is an important 
step in molecular subtype recognition. Recently, most 
researchers have performed pixel-level segmentation 
of breast cancer lesions in DCE-MRI to determine the 
location of breast cancer lesions. The research is mainly 
divided into two categories based on traditional machine 
learning or deep learning (16,17). The first method 
extracts manual vision features with a priori knowledge, 
such as the hemodynamic characteristics of the lesion and 
the size of the lesion, and then uses a classifier to decide 
whether each pixel is a lesion or non-lesion (18,19). The 
second method is based on deep learning approaches. Fan 

proposed a 3D-Mask regional convolutional neural network 
for cancer lesion detection, with an improved accuracy of 
0.93 compared to 2D-Mask. Molecular subtypes can also 
be classified by a specific convolutional neural networks 
(CNN) architecture that heuristically explores possible 
parameter combinations. This shows that computer-aided 
diagnosis systems provide substantial help in classifying 
molecular subtypes, improving overall typing accuracy. 
Molecular subtypes can also be classified by a specific CNN 
architecture that heuristically explores possible parameter 
combinations. The U-Net model is applied to obtain the 
lesion area (20). However, both methods require radiologists 
to mark the precise edges of breast cancer lesions, which is 
a time-consuming task.

Therefore, the original regions with lesion locations 
in DCE-MRI data are identified by two radiologists with 
more than ten years of clinical experience and are manually 
marked using a rectangle without the edges of the lesions. It 
is difficult to use traditional machine learning methods and 
U-Net-like deep learning methods to detect lesion edges 
on such image data. The fast region-based convolutional 
network (Faster R-CNN) algorithm has achieved quite 
good results in similar target detection tasks and does 
not require precise lesion edges and is used in this paper 
to obtain the precise area of cancer lesions (21,22). This 
work goes a step further on lesion heterogeneity and 
lesion temporal characteristics rather than learning from 
scratch, where only tumor patches were reported in (23,24). 
Computer-extracted image phenotypes show promise for 
high-throughput identification of breast cancer subtypes 
and may yield quantitative predictive features for advancing 
precision medicine (25,26). The differences between 
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this paper and these existing research works are that the 
heterogeneity and time characteristics of the lesion are 
considered in this paper. The features of the heterogeneous 
subregions are segmented by the clustering method, and 
these features in time evolution are also considered.

There are several approaches to molecular typing, among 
which for glioma subtypes, a three-level machine learning 
model of multimodal MR reflectometry is proposed for 
their classification. There is also breast image classification 
by fine-tuning Inception-v3 convolutional neural networks. 
Based on this, a bootstrapped soft attention network is 
proposed that uses CNNs to perform additional supervision 
on the classification of images by first localizing the region 
of interest and then guiding the classification network. The 
molecular subtype diagnosis of breast cancer is imbalanced 
in distribution. Generally, luminal A and luminal B are 
the majority, and other data sizes are relatively small. 
Therefore, the existing work does not consider this issue as 
reported in (27). Holli-Helenius et al. applied MRI texture 
analysis in differentiating luminal A and luminal B breast 
cancer molecular subtypes (15). Zhu et al. applied neural 
networks trained on natural images with GoogLeNet, 
VGG, and CIFAR and fine-tuned them using tumor  
patches (28). A multisequence MRI-based radiomic model 
was used for preoperative assessment of MUC4 status in 
pancreatic ductal adenocarcinoma (29). In view of this 
unbalanced problem, this paper adopts the visual word 
bag method and balances the dictionary data of each 
kind of subtype training. However, the traditional bag 
of visual word model does not consider the features of 
word evolution. This paper adds the time feature to the 
bag of visual words extraction process, which forms a new 
temporal bag of visual words model.

Methods

Automatic computer-aided detection of breast cancer 
needs to perform two tasks, namely, detecting lesions and 
identifying molecular subtypes of breast cancer. The first 
task is divided into several steps, including breast region 
data preparation, Faster R-CNN training, and breast cancer 
lesion detection. The second task of molecular subtype 
recognition is achieved by three steps: heterogeneity region 
extraction, temporal bag of words creation and molecular 
subtype recognition.

The data are all cases with one or more malignant 
lesions. Malignant lesions mostly manifest as an internal 
interval enhancement mode represented in DCE-MRI 

images, which is called internal unevenness enhancement. 
The edge of the lesion is not clear. Therefore, the 
approximate location of each lesion in this dataset is labeled 
by experienced radiologists. The radiologists only mark 
the lesion locations in the images. Then, an automatic 
regional growth algorithm is applied to obtain the edge of 
the tumors. Different heterogeneity regions in the lesion 
are extracted based on the cluster analysis algorithm. The 
radiomics features are extracted for each heterogeneous 
region, including texture features,  morphological 
features, statistical features and dynamic enhancement 
characteristics, and then the feature extraction process is 
applied to sublesion data of different time phases for the 
temporal bag of visual word model. Finally, classification 
methods, including logistic regression, support vector 
machine, random forest and gradient boosting decision tree 
classifiers, are used to conduct cross-validation and verify 
the performance of molecular subtype recognition.

Precise breast region extraction in DCE-MRI

First, we use threshold-based presegmentation for low-
intensity areas, as shown in Figure 2. Then, the marked 
points of A, B and C are found to determine the horizontal 
and diagonal lines. Point A is on the middle and vertical line 
on the DCE-MRI image. Points B and C according to A 
determine a horizontal line that is generated between points 
B and C. Two lines are generated with a 25-degree angle 
along with the horizontal lines starting from points B and C. 
Therefore, the unrelated regions, such as the heart, which 
has a great interference effect on the lesion locating process, 
are removed, which significantly reduces the occurrence of 
false positives, and the breast regions are finally obtained.

Faster R-CNN model training in DCE-MRI

Fast R-CNN is proposed to solve the RCNN shortcomings, 
solve the duplicate feature calculation problem of the target 
candidate region, and avoid the limitations of scaling images 
to a fixed resolution. To solve the problem of image fixed 
resolution input, an region of interest (ROI) pooling layer 
is proposed, the softmax classifier is used to classify multiple 
targets simultaneously, and the error function of the class 
judgment and target border return to the two peer output 
layers is fused to facilitate network training.

Faster R-CNN abandons the traditional sliding window 
and search methods and directly uses a region proposal 
network (RPN) to generate the detection frame, which 
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greatly improves object detection speed. This model has 
two tasks: detecting the position of the target to obtain 
the bounding box and classifying the target to obtain the 
target’s category. The basic framework and network of 
Faster R-CNN used in this paper are shown in Figure 3 and 
Figure 4, respectively.

There are eight-time phases in DCE images, the first 
three of which are selected in this paper. The patient’s 
motion may cause artifacts in the latter phases. The input 
images of the Faster R-CNN framework include 3 channels, 
and their relative images are in the three-time phases of 
S0, S1 and S3. S0 is the image without contrast injection, 
and S1 and S3 are the images with contrast injection. The 
S3 lesion area is obvious. We tried the images at different 
time periods during the experiment and proved that the 
best results were obtained at S0, S1 and S3. Its output is a 
bounding box with cancer likelihood scores.

The shared convolution layers use VGG16 as a 
classification network to extract the input image features 
and obtain the feature map (30). The role of the RPN 
network is to find a predefined number of region proposals 
that may contain objects. Here, we use a 3×3 sliding 
window. The anchor box corresponds to 3 scales applied in 
this model, 16×16, 32×32, 64×64, and 3 aspects of 1:1, 1:2, 
1:0.5. Finally, 9 anchors are obtained. Through the RPN 
layer, we obtain 300 regions with scores greater than 0.7 
as the proposal lesions. The ROI pooling layer maps the 
properties to the corresponding position of the feature map 
according to the input image and resizes to a uniform size. 
Finally, the fixed-size feature map obtained by the ROI 
pooling layer is fully connected to perform classification 
and regression on breast cancer lesions. The Faster R-CNN 
used in this paper is a multitask loss function for end-to-end 
training. The loss function L is defined as follows.

Figure 2 The breast detection regions are below the green line. The dotted vertical line is used to find point A and a 1*5 mask under point 
A is added, and then the left and right breasts bottom lines are extended, respectively. If there are more than or equal to two pixels with a 
pixel value greater than 0, two vertical lines perpendicular to the horizontal line are found. The intersection point of the horizontal line and 
the vertical line is the final marking points B and C. The green horizontal lines are generated based on the two points B and C.
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Figure 3 Faster R-CNN architecture for breast cancer detection in DCE-MRI. Faster R-CNN, fast region-based convolutional network; 
DCE-MRI, dynamic contrast-enhanced breast magnetic resonance imaging; ROI, region of interest.
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( ) ( ) ( )* * * * *, , , , 1 ,cls locL p u t t L p u u L t tλ  = + ≥   [1]

where Lcls is the classification loss function using a cross-
entropy loss function. p is the probability of each proposal 
predicting a breast cancer lesion, and u* is the category 
label. Lloc represents a regression loss function using smooth 
L1 loss, where t is a vector representing the 4 parameterized 
coordinates of the predicted bounding box, and t* shows 
the coordinate vector of the ground-truth bounding box 
corresponding to the positive anchor. λ denotes balancing 
the weights of Lcls and Lloc, which are equal when they are 
equal to 10.

To avoid overfitting problems and improve the 
generalization ability of the network during the experiment, 
we enhanced the data of the sample by using the method 
of horizontally reversing the training data to expand the 
data volume to twice the size. The shared convolutional 
layer is initialized with a pretrained VGG16 model 
trained on the ImageNet benchmark. The other layers are 
initialized randomly. The paper uses the cross-validation 
method to find the best hyperparameters and then trains 
the model with the best hyperparameters. We divide the 

original dataset into 5 similarly sized subsets. Each time, 
the remaining 4 subsets are used as the training set and 
another subset is used as the test set. All slices from the 
same DCE-MRI are assigned to the same subset, which 
prevents the training and test sets from having the same 
data. The training set is used to train the model, and the 
validation set is used to evaluate the performance metrics 
of the trained model. The function of cross-validation is 
to try to use different training/validation sets to perform 
multiple sets of different training/validation of the model 
to deal with the problem that the individual test results are 
too one-sided and the training data are insufficient. For our 
data, there are relatively more 2D features, and the quantity 
of data decreases after extracting 3D features, which is not 
conducive to training. The parameters are set as follows: 
min-batch is equal to 128, an epoch is equal to 100, and 
the learning rate at the beginning of the experiment is 
set to 0.001 and then decreased by 0.1 times every 20 
epochs. Faster R-CNN trains the RPN network and the 
Fast R-CNN network alternately in 4 steps during the 
training process to achieve end-to-end training (31). The 
first step is to separately train the RPN network with the 

Figure 4 Faster R-CNN network structure diagram. Faster R-CNN, fast region-based convolutional network; RPN, region proposal 
network; ROI, region of interest.
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initialized model, thereby generating a proposal bounding 
box. The second step is to use the initialized model to 
separately train and detect the Fast R-CNN network. 
The bounding box used in training comes from the RPN 
network in the first step. It is worth noting that at this 
time, the RPN network and the Fast R-CNN network 
have not yet shared the convolutional layer. In the third 
step, the parameters generated by the Fast R-CNN in the 
second step are used to initialize the RPN network. The 
shared convolution layer is fixed, and only the parameters 
of the RPN unique layer are fine-tuned. In the final step, 
the shared convolution layer is kept fixed, and the proposal 
output from the adjusted RPN in the third step is used as 
the input remaining parameters of the fine-tuning detection 
network Fast R-CNN. The preliminary results are obtained 

by the trained Faster R-CNN model to detect breast cancer 
lesions on different slices, which are shown in Figure 5.

Breast cancer lesion detection in DCE-MRI

The true breast cancer lesion is detected on multiple image 
slices using the characteristics of three-dimensional DCE-
MRI. However, those who do not show positive symptoms 
may be detected as positive for various reasons during the 
detection process and called false positives. In this way, the 
false positive lesions are removed if the candidate lesions 
are only detected on one or discontinuous slices. A fusion 
method is used to merge and delete the bounding box to 
determine the final breast cancer lesion.

First, we calculate the overlap ratio of the bounding box 

Figure 5 Results of lesion detection on different image slices in DCE-MRI. The three points A-C represent the lesion area of the image. 
DCE-MRI, dynamic contrast-enhanced breast magnetic resonance imaging.
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detected on any two slices. The overlap ratio is defined as 
the ratio of the intersection and union of the two bounding 
boxes. If the value of the overlap ratio is greater than the 
preset threshold, they are combined into one bounding 
box, and the bounding box with the largest score is taken. 
Second, the bounding box detected on only one slice is 
deleted. Finally, the merged ROI is compared with the 
standard set labeled by the doctor. If the overlap ratio 
between the bounding box of the candidate lesion and the 
bounding box of the true label is greater than or equal to 0.5, 
then the lesion is considered a true positive. Otherwise, this 
lesion was treated as a false positive.

The red box in Figure 4 represents the results of 
preliminary breast cancer tests. The red box represented by 
area A can be merged into a bounding box, which obtains 
the bounding box with the highest cancer likelihood score. 
Then, the bounding boxes represented by the separate B 
and C are removed. Finally, the A locations of breast cancer 

detected in DCE-MRI images should be the true lesion 
regions.

Heterogeneity region segmentation in breast cancer lesions

The breast cancer lesions are marked by previous lesion 
detection algorithms using a rectangle, as shown in  
Figure 6 (yellow rectangle), which is defined as the 
symbol Ms for the lesion data matrix. Since the lesions are 
annotated only with the approximate location, not the edge 
of the lesion, this paper first obtains the region with an 
accurate lesion boundary through the method of regional 
growth, and the lesion with a precise edge is defined as 
the symbol Mm with the same size as Ms. The edge of the 
lesion and the internal positions are set as 1, and the other 
background is 0 in Mm. The precise lesion data matrix of 
the lesion is defined as Ml=Ms&Mm.

Because of the different degrees of enhancement inside 

Figure 6 Lesion region marked by radiologists and multicycle variation of DCE-MRI lesions. DCE-MRI, dynamic contrast enhanced breast 
magnetic resonance imaging.
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the lesion, the subregion is divided according to the 
similarity of each pixel. It is not expected that there are 
many heterogeneous regions in the lesion, so the clustering 
algorithm is suitable for this problem.

First, we need to determine the similarity metric 
function sim among pixels, which requires consideration 
not only of static features (grayscale values) but also of 
dynamic characteristics (multiple phase variations). There 
are 8 phases in this paper and each pixel is represented as 

( )0 1 7, , ,= x x x x . The similarity metric function sim is 
defined as:

( ) ( )7 2

0
,

=
= −∑i j i ik

sim x y x y  [2]

The k-means clustering method is used first in this paper 
to extract all the initial heterogeneous regions in the lesion, 
and the number of clusters is automatically determined by 
elbow rules. Then, the final clustering results are judged 
according to the connectivity and number of pixels of the 
cluster on the image. However, these pixels in the same 
areas are treated as the same cluster element according to 
the similarity space, but a cluster may not be connective in 
planar space. Therefore, new clusters split from the initial 
cluster are determined by connectivity. An old cluster 
region is divided into several connected subregions. The 

connective region is removed if the number of pixels in 
the connective region is too small (e.g., it is set to 10), 
and finally, we obtain the regions that are defined as the 
heterogeneous regions of the lesion in this paper.

The above idea is the heterogeneous region extraction 
method proposed in this paper, as shown in Algorithm 
1. The algorithm is applied to all lesions in the dataset 
to obtain the heterogeneous regions of each lesion. The 
sample heterogeneous regions of the lesion are shown in 
Figure 7.

Algorithm 1 Heterogeneous region extraction

Input: Ml (the source lesion matrix with size m × n.)

Output: SR (the subregion mask matrix list.)

0: function HeterRegionEx(Ml)

0: SR ← null, L ← null, T SR ← null

for p in Ml do

0: L.append((x, y, p))/*x and y are the location*/

0: end for

1: (C1, C2, ···, Ck) ← clustering with elbow rule on data L

2: T SR.append(C1, C2, ···, Ck)

for Ci in T SR do

if Ci is not a connectivity area then

Figure 7 Heterogeneous regions of a lesion with colors segmented by the above algorithm.
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3: (Ci1, Ci2, ···, Cir) ← splitting r connective clusters on Ci

4: T SR.append(Ci1, Ci2, ···, Cir)

T SR.remove(Ci)

end if

0: if size of Ci  > 10 then

0: SR.append(Ci)

0: end if

0: end for

end function=0

Visual word extraction for molecular subtypes of cancer

According to the above extracted heterogeneous region 
dataset Φ, the visual and dynamic parameters of each 
heterogeneous region Φ are extracted, where ϕ ∈ Φ. The 
radiomics feature data extracted in this paper include texture 
parameters, kinetic parameters, statistical parameters and 
morphological parameters. There are 8 different time-
phase data for each heterogeneous region (including the 
original phase without agent injection). Each time-phase 
data matrix is represented by 0 1 7, , ,S S S , respectively. The 
texture parameters are calculated based on the gray-level 
cooccurrence matrix (GLCM) method, and the kinetic 
parameters are calculated in the three time phases of S0, S1 
and S3.

According to the breast imaging reporting and data 
system (BI-RADS) standard, the internal enhancement of 
malignant lesions is mostly characterized by internal interval 
enhancement. Internal enhancement is more common in 
high-level ductal carcinoma or rich vascular tumor lesions 
than in the surrounding significant central enhancement. 
The different enhancement methods are reflected in the 
difference in the corresponding texture feature parameters.
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where p is the gray-level cooccurrence matrix with size m 
× n, and p(i, j) represents the number of two pixels with 
grayscale i and j simultaneous occurrence.

The dynamic information of the lesions shows the 
agent signal change in the lesion or normal tissue. In this 
paper, the kinetic parameters are extracted as the dynamic 
enhancement rate, which is defined as follows.
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where S indicates the lesion and T and t represent the time 
phases, e.g., R10 is the lesion’s dynamic enhancement rate 
from time T0 to T1. We can also calculate the dynamic 
enhancement ratio characteristic, e.g., R20/R10. Finally, 
the standard deviation, mean value, maximum value and 
minimum value are calculated according to the above values 
as the final dynamic parameters.

The calculations of the grayscale values of each pixel 
point in the lesion are as follows.
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where n represents the number of pixel values, x represents 
the pixel value, µ represents the mean, and σ represents the 
standard deviation.

The radial length of the heterogeneous region of the 
lesion is defined as follows.
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where ( )0 0,x y  is the center point, ( ),i ix y  is the boundary 
point ,  MaxD is  the maximum radial  length.  The 
standardized radial length mean and standard deviation 
based on radial length are calculated. The degree of 
tightness and roughness are defined as follows.
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where A represents the lesion area, P is the contour 
circumference, N represents the number of nonzero pixels, 
d(i) is computed using the above formula, and µd represents 
the radial length mean.

A total of 62 dimensional feature parameters are obtained 
based on the above parameters calculation, and this size 
of parameters is marked as D. Assuming that the dataset 
extracts the number of heterogeneous regions as H, the 
extracted parameter data are a matrix F with size D × H. We 
can obtain eight matrices with the time axis, that are F0, F1, 
· · ·, F7 at time phase T1, · · ·, T7, respectively.

The clustering method is used on the heterogeneous 
region data Ft at each time phase t, and then the clusters 
are obtained. The central vectors for each cluster are 
considered a visual word. Then, we obtain k centers for 
every time phase. The word dictionary can be represented 
as follows.
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Each of the central vectors in this paper is based on the 
center of gravity calculated by all heterogeneous vectors in 
the cluster. A new lesion is converted into N heterogeneous 
subregions as 1 2, , ,φ φ φ N ; then the feature data are 
extracted as follows in 8 time phases.
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The bag of word vector Yt(ϕi) for each heterogeneous 
region of the lesion is calculated by following formula.
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Recognition of molecular subtypes by the classification 
model

At the genetic level, the lesion is divided into four molecular 
subtypes, namely, luminal A (luminal epithelial type A), 
luminal B (luminal epithelial type B), human epidermal 
growth factor receptor 2 (HER-2) and basal-like. The 
different molecular subtypes are shown in Figure 8 and 
Figure 9.

The temporal bag of visual word feature data obtained by 
the above method not only accounts for the heterogeneity 
distribution of each lesion but also considers the change 
trend of this heterogeneity in different time phases. 
However, there are relatively large differences between the 
data sample categories due to the situation of breast cancer 
data itself in the pathogenesis, such as basal-like subtype 
is only a third of luminal B with maximum number in the 
dataset. Therefore, the imbalance problem of the dataset in 
this paper will affect the performance of the learning model.

In this  paper,  a  cascade process ing method of 

Figure 8 Different molecular subtypes, where (A) represents luminal A, (B) represents luminal B, and (C) represents HER-2 and basal-like, 
and (D) represents basal-like. HER-2, human epidermal growth factor receptor 2.

A B C D
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oversampling is used to preprocess the unbalanced problem 
of samples, which is called SMOTE (synthetic minority 
oversampling technique). For each sample x of the few 
classes, the distance of the point from other sample points in 
a few classes is calculated to obtain the nearest k neighbors. 
The sampling ratio is set as the sample unbalance ratio. 
Several samples are selected randomly from the k neighbor 
for each minority sample x. Assuming that the selected 
neighbor is x', a new sample xn is constructed with the 
original sample according to the following formula.

( ) ( )0,1 ′= + × − −Xn X random X X K  [18]

In the classification stage, four classic classifiers are 
used, and the results show different performances on 
different molecular subtypes for each classifier. Therefore, 
a combination classification model is designed for better 
performance for different molecular subtypes based on 
stacking.

Stacking consists of two phases, training and combining, 
which first train and generate several base-learning models, 
followed by combining the outputs of these base-learning 
models as the final output results using some strategy. 

There are two methods for dividing the training subsets of 
the base-learning models, which are the training subsets of 
individual learning models obtained by random sampling 
through the self-help method and the results generated by 
the previous training model as the input of the latter base-
learning model. The basic framework of the stacking model 
is shown in Figure 10. The stacking method has a stronger 
nonlinear expression ability than a single classification 
model and can reduce generalization error and prevent 
overfitting. In this paper, three classifiers, support vector 
machine (SVM), random forest (RF), and gradient boosting 
decision tree (GBDT), are used in the primary model, 
and the second layer adopts the LR (logistic regression) 
classifier. The process is described as follows. The schematic 
of the stacking algorithm is shown in Figure 11.

The dataset is divided into two parts: one part is the 
training set, and the other part is the testing set. The 
training set is then divided into three parts, each of which 
is used to train classification models such as SVM, RF and 
GBDT. The number of cross-validation folds is related 
to the number of classification models. The testing set 
is predicted simultaneously. The prediction results of all 
training sets are obtained after 5 rounds of training and 

Figure 9 Map of lesions with different molecular typing, where (A) represents luminal A, (B) represents luminal B, (C) represents HER-2 
and (D) represents basal-like.

A B C D

Figure 10 The basic framework of the stacking model, where the four classifiers are Support Vector Machine (SVM), Random Forest (RF), 
and Gradient Boosting Decision Tree (GBDT), Logistic Regression (LR).
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prediction for the three models, and the average of the 
testing results for 5 prediction sets is calculated as the final 
prediction results for the input testing data of the next 
classification process by repeating step I. Steps I and II are 
repeated until all three primary models complete the above 
process. The training results and test results obtained from 
the three models are used as training sets and test sets for 
the level 1 model. The LR classifier is selected as a level 1 
classifier, and the data obtained in step 4 are used for final 
training and prediction.

Results

To verify the method proposed in this paper, DCE-
MRI and pathology data of breast cancer are collected 
simultaneously, and the locations of the lesions in the 
images are labeled by two breast radiologists with more 
than 10 years of clinical experience. The suspected lesion 
area is marked manually by a rectangular box. In this paper, 
our experiment is to use the Faster R-CNN framework 
to train a target detection model on our dataset, using the 
detection model to verify its performance on the test set. In 
the task of identifying molecular subtypes of breast cancer, 
we performed comparative experiments. First, the features 
are extracted directly at the location of the lesion without 
using the time series word bag model and dividing the 
heterogeneous region, and then the classification model 
is trained to recognize molecular subtypes. Second, the 
temporal bag of visual word features is extracted from the 
heterogeneous regions proposed in this paper. The same 
classification model is then used to validate the recognition 
performance.

Patient cohort and data acquisition

In this paper, the dataset consists of 322 cases of patients 
in total. All cases were malignant cases of breast cancer in 
women that were confirmed by histopathology examination 

after the patient received DCE-MRI examination. In 
this study, DCE-MRI was performed on a 3.0T scanner 
using a dedicated 16-channel dual breast phase-control 
coil. Patients were positioned prone, and each patient was 
scanned using the same sequence of scans, starting with a 
conventional MRI scan with triplane localization, followed 
by a spectrally selective attenuated inversion recovery, and 
finally, a sequence of breast-enhanced T1 high-resolution 
isotropic volume excitation with fat suppression. A total of 8 
temporal sampling points (1st contrast phase before contrast 
injection and 7th contrast phases after contrast injection) 
were included. The scanning time for each time phase was 
approximately 55 s, and the total time was approximately 
8 min. The pathological data of 322 patients are shown in 
Table 1, as well as statistics of molecular subtypes, where P1–
P10 represent pathology of intracatheter cancer, invasive 
ductal carcinoma, invasive micropapillary carcinoma, 
mucinous carcinoma, invasive lobular carcinoma, medullary 
carcinoma, solid papillary carcinoma, ductal carcinoma 
in situ, extensive ductal carcinoma, and extensive ductal 
carcinoma in situ, respectively. It is easy to see that the 
dataset has an imbalance problem in molecular subtypes.

Performance of cancer lesion detection

In the task of detecting breast cancer lesions, the Faster 
R-CNN algorithm we used was performed on an NVIDIA 
GTX 1080Ti 11G GPU.

Using our method, the best breast cancer lesion detection 
result is a sensitivity of 1 at 0.20 FPs/case. The proposed 
method is compared with the results of previous studies on 
breast cancer localization in DCE-MRI, as shown in Table 2. 
The sensitivity is 0.94 at 7 FPs/case by Albert et al. (18), 1 at 
6.30 FPs/case by Chang et al. (19) 0.98 at 0.16 FPs/case by 
Renz et al. (32).

The experimental results show that the neural network 
structure in this paper can learn the effective features of 
breast cancer lesions. To our knowledge, this may be the 

Cross-validation Base learner 1

Base learner 2 Meta-learner Integrated learner

Base learner n

Cross-validation

Cross-validation

Training set

Test sample

Predicted results

Training D1

Training D2

Training Dn

Figure 11 The schematic of stacking algorithm.
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Table 1 Patient cohort collection with pathological and molecular subtypes

Pathology Luminal A Luminal B HER-2 Basal-like Total

P1 3 8 4 2 17

P2 86 106 66 30 289

P3 0 3 1 0 4

P4 0 1 0 0 1

P5 1 2 1 1 5

P6 0 0 0 1 1

P7 1 0 0 0 1

P8 0 1 0 1 2

P9 1 0 0 0 1

P10 0 1 0 0 1

Total 93 122 72 35 322

first study to detect breast cancer in DCE-MRI based on 
the Faster R-CNN framework.

Performance of lesion molecular subtype classification

In this paper, the algorithms of heterogeneous region 
extraction and feature extraction were all implemented 
based on the Python platform. All the machine learning 
algorithms applied in this paper were from the open source 
scikit-learn software library. First, the original patient 
image data were randomly divided into two parts as training 
and testing sets, which ensured that the proportion of each 
subtype of molecule in the two datasets was the same as that 
in the whole dataset.

The experimental process was divided into two stages. 
First, the four kinds of features of texture, morphology, 
statistics and kinetics were extracted under the condition 

that each breast cancer lesion was not divided into 
heterogeneous regions. Then, the four classifiers of LR, 
SVM, RF and GBDT were used in this paper for training 
and testing verification. A set of results were obtained, 
which are listed as lines that are marked as normal in  
Table 3. Then, the method proposed in this paper was 
used. The heterogeneous regions were extracted, and 
817 subregions were obtained (N=817). The above four 
features were extracted from these heterogeneous regions, 
and the bag of visual word dictionary with a length of 
100 was trained (k=100). Afterward, we obtained the 
heterogeneous temporal bag of visual word features for 
each lesion. Based on the feature data by the temporal bag 
of visual word model, the verification tasks were carried out 
by a single classifier, and then a set of experimental results 
were obtained as the lines labeled TBOVW tag in Table 3. 
Finally, the above four classifiers were integrated into the 
stacking model that is trained and tested on the feature data 
of the temporal bag of visual words in this paper, and a set 
of experimental results were obtained, as shown in Table 3.

The results of the experiment are evaluated using four 
metrics, namely, accuracy (Acc.), precision (Pre.), recall rate 
(Rec.) and F1-score value (F1). The results are shown in 
Table 3.

Based on the TBOVW model, the performances of these 
classifiers significantly improved, and the accuracy of each 
classifier reached more than 80%. This finding shows that 
the existence of breast heterogeneity has an effect on image 
feature extraction. In addition, the TBOVW method also 

Table 2 Comparison of selected studies in the breast cancer 
detection of DCE-MRI datasets

Author (year) Classifier Sensitivity FPs

Albert et al. (18) Forests 0.95 7.00

Chang et al. (19) Binary logistic 1.0 6.30

Renz et al. (29) ANNs 0.98 0.16

Ours Faster R-CNN 1.0 0.20

DCE-MRI, dynamic contrast-enhanced breast magnetic resonance 
imaging; ANNs, artificial neural networks; Faster R-CNN, fast 
region-based convolutional network; FPs, frame per second.
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makes the classification results more balanced. However, 
there are no great differences in classification performance 
between different classif iers ,  which is  unlike the 
conventional methods. The TBOVW model can effectively 
reduce the effect of classification performance caused by the 
data imbalance problem.

The stacking classification model achieves optimal 
results in these comparisons, which is slightly better than 
using classifiers alone. That means that each classifier has 
differences in the recognition performance of different 
molecular subtypes. Each subtype of classifier can perform 
the best by the stacking model. Thus, the recognition 
of each molecular subtype is optimal. The results of 
identifying each subtype of molecules by the stacking model 
are shown in Table 4.

Table 4 shows that the stacking model is good for the 
classification performance of luminal A, luminal B, HER-
2 expression and basal-like. The classification effect of the 
logistic regression stacking model improved compared 

with the single model of logic regression, support vector 
machine, random forest and gradient boosting decision 
tree, which proves the validity of the model combination. 
The optimization of the experimental results can be realized 
through stacking the model. After the model combination 
in this experiment, the ensemble classifier is better than a 
single model.

Discussion

A computer-aided diagnosis method is proposed to 
automatically locate breast cancer lesions and identify 
molecular subtypes of breast cancer with heterogeneity 
analysis from radiomics data. A Faster R-CNN framework 
is first applied to images to detect breast cancer lesions. 
Then, the heterogeneous regions of every breast cancer 
lesion are extracted. Based on the multiple visual and 
kinetic radiomics features extracted from the heterogeneous 
regions, a temporal bag of visual word model is proposed, 
which takes into account the dynamic characteristics of 
both lesion and heterogeneous regions in images over 
time. The recognition task of molecular subtypes of breast 
lesions is realized based on a stacking classification model. 
According to the above testing results, the image molecular 
classification recognition reaches the highest 90% accuracy, 
and the causes of the model error may come from two 
aspects. First, there are errors in the classification model, 
and second, some molecular subtypes are not accurate in 
pathology determination. For the former, we can solve the 
method by studying more feature extraction methods and 

Table 3 Performance of each classification model for normal features and TBOVW features

No. Classification model Acc. Pre. Rec. F1

1 LR (normal) 0.71 0.71 0.71 0.71

2 SVM (normal) 0.74 0.74 0.76 0.73

3 RF (normal) 0.71 0.71 0.72 0.72

4 GBDT (normal) 0.81 0.81 0.82 0.80

5 LR (TBOVW) 0.80 0.82 0.81 0.81

6 SVM (TBOVW) 0.85 0.84 0.85 0.84

7 RF (TBOVW) 0.83 0.84 0.84 0.84

8 GBDT (TBOVW) 0.87 0.88 0.87 0.87

9 Stacking model 0.92 0.89 0.91 0.90

TBOVW, temporal bag of visual word; LR, logistic regression; SVM, support vector machine; RF, random forest; GBDT, gradient boosting 
decision tree; Acc., accuracy; Pre., precision; Rec., recall rate; F1, F1-score value.

Table 4 Performance of each molecular subtype of the logistic 
regression-based stacking classification model

Molecular subtypes Precision Recall F1-score

Luminal A 0.93 0.96 0.95

Luminal B 0.94 0.80 0.86

HER-2 overexpressing 0.83 0.91 0.87

Basal-like 0.86 0.94 0.90

HER-2, human epidermal growth factor receptor-2.
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more classification models. The latter problem depends on 
subtype testing by local biopsy tissue, and it is known that 
each lesion has heterogeneity. However, this is characteristic 
of the previous image heterogeneity extraction description. 
However, pathological biopsy only extracts part of the 
biopsy tissue, which is not a precise and comprehensive 
evaluation. Therefore, the second type of error cause 
does not indicate that this method has shortcomings for 
the problem of subtype classification. It may be wrong to 
determine the molecular subtype itself in routine clinical 
pathology. The problem has to be further confirmed by 
medical clinics, which is beyond the scope of this study.

Conclusions

In this paper, our computer-aided approach can detect 
breast cancer lesions and identify molecular subtypes of 
breast cancer. First, a Faster R-CNN framework method 
for detecting breast cancer lesions is proposed to locate 
the approximate location of breast cancer in DCE-RMI 
images. Then, a molecular subtype recognition method 
with quantitative heterogeneity analysis is applied to breast 
cancer lesions. From the experimental results, the method 
has a high performance on our dataset. Breast cancer 
detection verifies the effectiveness of the Faster R-CNN 
algorithm for breast cancer lesion detection tasks in DCE-
MRI. The identification method of breast cancer molecular 
subtypes shows the influence of heterogeneous regions on 
the recognition process.
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