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CT-based deep learning segmentation of ovarian cancer and the 
stability of the extracted radiomics features
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Background: Radiomics analysis could provide complementary tissue characterization in ovarian cancer 
(OC). However, OC segmentation required in radiomics analysis is time-consuming and labour-intensive. 
In this study, we aim to evaluate the performance of deep learning-based segmentation of OC on contrast-
enhanced CT images and the stability of radiomics features extracted from the automated segmentation. 
Methods: Staging abdominopelvic CT images of 367 patients with OC were retrospectively recruited. The 
training and cross-validation sets came from center A (n=283), and testing set (n=84) came from centers B 
and C. The tumours were manually delineated by a board-certified radiologist. Four model architectures 
provided by no-new-Net (nnU-Net) method were tested in this task. The segmentation performance 
evaluated by Dice score, Jaccard score, sensitivity and precision were compared among 4 architectures. The 
Pearson correlation coefficient (ρ), concordance correlation coefficient (ρc) and Bland-Altman plots were used 
to evaluate the volumetric assessment of OC between manual and automated segmentations. The stability of 
extracted radiomics features was evaluated by intraclass correlation coefficient (ICC).
Results: The 3D U-Net cascade architecture achieved highest median Dice score, Jaccard score, sensitivity 
and precision for OC segmentation in the testing set, 0.941, 0.890, 0.973 and 0.925, respectively. Tumour 
volumes of manual and automated segmentations were highly correlated (ρ=0.944 and ρc =0.933). 85.0% of 
radiomics features had high correlation with ICC >0.8.
Conclusions: The presented deep-learning segmentation could provide highly accurate automated 
segmentation of OC on CT images with high stability of the extracted radiomics features, showing the 
potential as a batch-processing segmentation tool.
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Introduction

Ovarian cancer (OC) is one of the female malignancies with 
high cancer mortality (1). Computed tomography (CT) is 
used to evaluate the disease extent of OC at presentation 
and at disease recurrence (2). Radiomics that enable the 
extraction of features from digital medical images have 
potential in tumour characterization through feature-
based model building to improve clinical management (3). 
Study showed that CT radiomic features were helpful 
in histological classification and predicting response to 
chemotherapy in OC (4-6). For radiomics study and 
statistical model building, large amount of data is required. 
However, identification of the regions of interest (ROIs) and 
tumour segmentation, key steps of radiomics, are generally 
performed in a manual or semi-manual way, which can be 
extremely time-consuming and labour intensive, especially 
in large dataset. Rizzo et al. listed automated segmentation 
as one challenge of radiomics analysis in a narrative review 
because of reproducibility problems (7).

Although many automated segmentation methods 
have been developed to provide fast and accurate results 
using different imaging modalities, very few focused 
on OC and based on CT images (8). Ovarian tumours 
are usually heterogeneous and complex with both solid 
and cystic components in an anatomical area where 
soft tissue resolution is limited on CT. There were few 
studies in tumour segmentation specific to OC, but these 
were either based on different imaging modality or on 
metastatic tumours rather than the primary tumour (9-11). 
Deep learning-based methods have not been explored in 
segmenting OC on CT images. 

Deep learning-based semantic segmentation methods 
could make full use of huge number of medical images and 
provide faster and more accurate segmentations, compared 
with conventional methods (12). U-Net, one of the most 
impactful deep learning-based architectures in medical 
image segmentation, has been successfully applied in 
hundreds of studies with different imaging modalities and 
clinical applications (13). Most improvements based on 
classic U-Net structure focused on network architecture 
variations, such as the usage of attention gate and residual 
unit (14,15). Different from other variants of U-Net, 
nnU-Net focused on the configurations of the whole 

process from pre-processing to post-processing, enabling 
reproductivity of high performance in new datasets (16). 
Therefore, nnU-Net became a popular deep learning-based 
segmentation tool especially for novel clinical applications, 
such as segmentation of myocardium and infarct zone on 
magnetic resonance imaging (MRI) images, and thoracic 
lymph node station on CT, since no prior expert experience 
on this task is required (17,18).

The clinical value of CT radiomics has been reported and 
discussed in our previous studies (5,6). However, there is a 
need to develop an automated segmentation tool to avoid 
labour-intensive manual delineation, and eventually integrate 
it into the clinical workflow of radiomics analysis. This study 
aimed to evaluate the segmentation performance of OC on 
CT images using nnU-Net method and test the stability of 
radiomics features extracted from the automated segmentation. 

Methods

Image database

The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013). The study 
was approved by the Institutional Review Board of the 
University of Hong Kong/Hospital Authority Hong Kong 
West Cluster (Reference No. UW 20-251), the Hong Kong 
East Cluster Research Ethics Committee (Reference No. 
HKECREC-2020-040), and the Institutional Review Board 
of the Sun Yat-sen University Cancer Center (Approval No. 
YB2018-52), and individual consent for this retrospective 
analysis was waived. The whole dataset consisted of 
anonymized pretreatment contrast-enhanced CT images 
(portovenous phase) acquired in axial plane collected from 
three centers: center A (n=283, from February 2012 to May 
2019), center B (n=42, from February 2009 to November 
2017) and center C (n=42, from November 2008 to August 
2019). Training and 5-fold cross-validation were performed 
on the dataset from center A, and the model performance 
was tested on the combined external cohorts from centers B 
and C. Consecutive patients included in this study satisfied 
these criteria: (I) histologically confirmed OC, (II) available 
pre-treatment contrast-enhanced CT. The exclusion criteria 
were: (I) CT images with significant artefacts precluding 
evaluation of the pelvic region, (II) incomplete coverage of 
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OC on the CT images (Figure 1). All patients underwent 
surgery and the pathological details were recorded. The 
detailed information on scanner models and scanning 
parameters are summarized in Table 1. 

Manual segmentation 

All the ROIs (i.e., ground truth masks) were manually 
delineated on all the axial slices containing the primary 
ovarian tumours by a board-certified radiologist with more 
than 15 years of experience in pelvic imaging. Delineation 
was made around the margin of the primary ovarian tumour 
to include both cystic and solid components on the axial 
images of the CT with reference to the reformatted coronal 
and sagittal planes. Adjacent normal tissues and peritoneal 
metastases were excluded. The manual delineation was 
performed using 3D Slicer version 4.11. To test the intra-
rater reliability, 50 randomly selected cases from center A 
were delineated twice at least 4 weeks apart and evaluated 
by kappa values. 

Model architectures

The nnU-Net provides an out-of-the-box pipeline 
for segmentation tasks with automatically configured 
image preprocessing and model settings, well-illustrated  
elsewhere (16). As shown in Figure 2, four types of U-Net-
based model architectures were used in this work, including 
two-dimensional (2D) U-Net, three-dimensional (3D) 
U-Net with low image resolution (3D-lowres), 3D U-Net 
with full image resolution (3D-fullres), and 3D U-Net 
cascade (3D-cascade). The architecture configured for our 
task contained six and five down-sampling operations for 
2D and 3D models. Each operation includes two stacked 
convolutional layers, with each stacked layer consisting 
of one convolutional layer, followed by one instance 
normalization layer and the Leaky Rectified Linear Unit 
activation function. Each convolutional layer had a kernel 
size of 3×3 pixels for 2D model or 3×3×3 voxels for 3D 
models. Unlike other three architectures, 3D-cascade 
includes two training stages, each involving a 3D-lowres 

415 patients with confirmed OC 
underwent pre-treatment CT

367 patients in total
• 283 from center A
• 42 from center B
• 42 from center C

Exclusion:
• Significant artefacts precluding 

evaluation of the pelvic region (n=8)
• Incomplete coverage of OC on the 

CT images (n=40)

Figure 1 Flow diagram of patient inclusion and exclusion criteria. OC, ovarian cancer; CT, computed tomography. 

Table 1 CT scanning parameters at each center

Dataset Center A Center B Center C

Manufacturers Toshiba; Philips Siemens; Toshiba GE; Toshiba

Tube current (mAs) 200–250 120–180 140–200

Tube voltage (kVp) 120 120 120

Slice thickness (mm) 1.0–5.0 1.25 1.25

Pixel size (mm) 0.578–1.083 0.527–0.703 0.586–0.793

Convolution kernel FC04 I30f\3; FC10; FC18 Std/FC08

Intravenous contrast material Ultravist; Iohexol Iopamiro; Omnipaque Iohexol

CT, computed tomography
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and 3D-fullres architecture respectively. The second stage 
can be implemented after the training of all five 3D-lowres 
models in the first stage have completed. The batch size was 
32 for 2D model and 2 for 3D models. The input patch size 
for 2D, 3D-lowres/3D-cascade, and 3D-fullres architecture 
was 512×512, 80×160×160, and 48×192×192 respectively.

Image preprocessing

Dataset properties, such as voxel spacings, image shape, 
modality and intensity, were first automatically collected 
by the nnU-Net pipeline. These properties were then used 
to configure resampling and normalization strategy, batch 
size, patch size etc. As the voxel spacing of CT images from 
three centers were different and anisotropic (Table 1), all 
CT images and corresponding masks were resampled to the 
same voxel spacing (1.492×1.492×5 mm for 3D-lowres, and 
0.736×0.736×5 mm for 2D and 3D-fullres). Third-order 
spline interpolation was used for in-plane resampling, and 
nearest-neighbor interpolation was used for out-of-plane 
resampling to suppress resampling artefacts. The target 
sampling pixel spacing automatically selected by the nnU-
Net pipeline was the 10th percentile pixel spacing of the 
training cases for 3D-lowres model, and the median pixel 
spacing was selected for 2D and 3D-fullres models. The 

target slice thickness was the largest slice thickness of the 
training cases. Global intensity normalization was applied 
to all the CT images before training.

Training details

The loss function was defined as the sum of Dice loss 
and cross-entropy loss. The optimizer used in this study 
was stochastic gradient descent with initial learning rate 
of 0.01 and momentum of 0.99. Data augmentation 
methods used were rotation, scaling, gamma correction 
and mirroring. Each model was trained for 1,000 epochs 
by default to ensure its convergency. For each type of 
network architectures (i.e., 2D, 3D-lowres, 3D-fullres, and 
3D-cascade), the final predicted segmentation was made 
based on the average result of five models, which were 
trained using different dataset divisions for cross-validation. 
One network architecture with the highest average Dice 
score computed in the cross-validation set was selected as 
the recommended architecture, and used for volumetric 
assessment and radiomics stability analysis. 

The whole process was performed on an Intel Xeon Gold 
5217 central processing unit and a NVIDIA Tesla V100 
graphics processing unit card. The program was written in 
Python 3.7, with PyTorch library version 1.8.1 and nnUNet 

2D nnU-Net 3D-lowres nnU-Net

3D-fullres nnU-Net 3D-cascade nnU-Net

32×512×512

64×256×256

128×128×128

256×64×64

480×32×32
480×16×16

480×8×8

Max pooling
Up-convolution
Skip connection
Conv2D-IN-LeakyReLU

32×80×160×160

64×40×80×80

128×20×40×40

256×10×20×20
320×5×10×10

320×5×5×5

Max pooling
Up-convolution
Skip connection
Conv3D-IN-LeakyReLU

32×48×192×192

64×24×96×96

128×12×48×48

256×6×24×24

320×6×12×12

320×6×6×6

Max pooling
Up-convolution
Skip connection
Conv3D-IN-LeakyReLU

3D- 
lowres

3D- 
fullres

Segmentation with 
low resolution

Segmentation with 
full resolution

Image with 
full resolution

Cropping

Up/down sampling

3D U-Net with 
low/full resolution

A B

C D

Figure 2 Four model architectures generated by nnU-Net in this study. (A) 2D; (B) 3D-lowres; (C) 3D-fullres; (D) 3D-cascade. Conv2D, 
2D convolutional layer; Conv3D, 3D convolutional layer; IN, instance normalization; LeakyReLU, Leaky rectified linear unit. 



Wang et al. CT-based deep learning segmentation of ovarian cancer5222

© Quantitative Imaging in Medicine and Surgery. All rights reserved.   Quant Imaging Med Surg 2023;13(8):5218-5229 | https://dx.doi.org/10.21037/qims-22-1135

library version 1.6.6. 

Performance evaluation

The evaluation metrics for the segmentation performance 
includes Dice score, Jaccard score, sensitivity and precision, 
defined in previous studies (19,20). To further investigate 
the possible influence of clinicopathological factors on 
the auto-segmentation performance, the Dice scores in 
the testing set were compared between two histological 
subtypes: high grade serous carcinoma (HGSC) and non-
HGSC, FIGO (International Federation of Gynecology 
and Obstetrics) stages and testing centers. For the selected 
network architecture, we investigated the accuracy of 
tumour volume assessments in the testing set. The 
tumour volume was calculated as number of voxels inside 
the tumour multiplied by the voxel volume based on 
the resampled images. In total 1,218 radiomics features 
defined in the Pyradiomics template (https://github.
com/AIM-Harvard/pyradiomics/blob/master/examples/
exampleSettings/exampleCT.yaml) were extracted with 
Pyradiomics library version 3.0.1 to keep the repeatability of 
feature extraction. These radiomics features were extracted 
from three image types: original, wavelet filter (including 8 
combinations of either high or low pass filter in each spatial 
dimensions) and Laplacian of Gaussian (LoG) filter (sigma 
=1.0, 2.0, 3.0, 4.0 and 5.0). For the original image type, the 
radiomics features include First Order, Shape, Gray Level 
Cooccurence Matrix, Gray Level Run Length Matrix, 
Gray Level Size Zone Matrix, and Gray Level Dependence 
Matrix features. For each type of wavelet or LoG filter, 
all the aforementioned features were included except for 
Shape-based feature. The intraclass correlation coefficients 
(ICCs) of radiomics features between the ground truth 
and predicted segmentation in the testing set were used to 
evaluate the stability of the extracted radiomics features. An 
ICC >0.8 was regarded as marker of high stability, as widely 
defined in other studies (21-23).

Statistical analysis

Evaluation metrics for segmentation performance, age 
and tumour volume were represented as median (range). 
The difference was compared using Mann-Whitney U test 
for two categories, and Kruskal–Wallis test for multiple 
categories, considering that some subsets did not follow 
the normal distribution. Pearson correlation coefficient (ρ), 
concordance correlation coefficient (ρc) and Bland-Altman 

plots were used to evaluate the correlation or agreement 
of volumes manually delineated by the radiologist as the 
ground truth and predicted segmentation provided by 
selected nnU-Net model. All tests with a P value <0.05 
were regarded as statistically significant. All the hypothesis 
tests were performed using Scipy (version 1.6.3), a Python 
library. The developed codes of OC segmentation can 
be found in the online repository (https://github.com/
HKUCaoLab/segment_OC). 

Results

Patient characteristics

The patient’s median age was 51 years (range, 18–90 years), and 
median tumour volume of manual delineations was 375 cm3  
(range, 6–32,435 cm3) based on the resampled images. The 
dataset consisted of patients with all stages of OC: FIGO 
stage I (n=76, 21.1%), stage II (n=43, 11.9%), stage III 
(n=180, 50.0%) and stage IV (n=61, 16.9%). The majority 
of cases were HGSC (n=240, 65.4%). The pathological 
characteristics are summarized in Table 2. The mean 
Kappa value for intra-rater reliability was 0.886±0.104, 
demonstrating high consistency between the two 
delineations. 

Segmentation performance

The results of OC segmentation performance in the testing 
set are summarized in Table 3. Representative segmentations 
in the testing set predicted by four models were shown in 
Figure 3. The highest median Dice score, Jaccard score and 
sensitivity among the testing set were 0.941, 0.890 and 0.973 
achieved by 3D-cascade. The highest median precision 
among the testing set was 0.938 achieved by both 2D and 
3D-fullres models. Dice score, Jaccard score, and sensitivity 
among four nnU-Net architectures were significantly 
different (P=0.028, P=0.028, and P<0.001, respectively), 
while precision was not (P=0.800). The Dice score, 
Jaccard score, sensitivity and precision of 3D-cascade were 
significantly higher than 2D (P=0.013, P=0.013, P<0.001 
and P<0.001 respectively). 

There were 4 types of relationship between the ground 
truth and automated segmentation: good agreement (Figure 
4A), area underestimated by automated segmentation 
(Figure 4B), area overestimated by automated segmentation 
(Figure 4C) and mixture of both underestimated and 
overestimated area (Figure 4D). It was also noted that 

https://github.com/AIM-Harvard/pyradiomics/blob/master/examples/exampleSettings/exampleCT.yaml
https://github.com/AIM-Harvard/pyradiomics/blob/master/examples/exampleSettings/exampleCT.yaml
https://github.com/AIM-Harvard/pyradiomics/blob/master/examples/exampleSettings/exampleCT.yaml
https://github.com/HKUCaoLab/segment_OC
https://github.com/HKUCaoLab/segment_OC
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Table 2 Pathological characteristics of patients

Dataset Center A Center B Center C Overall

Age (years) 52 (18–80) 54 (22–90) 48.5 (36–78) 51 (18–90)

Tumour volume* (cm3) 360 (6–32,435) 343 (7–3,389) 652 (27–3,660) 375 (6–32,435)

Histological types (n) 283 42 42 367

HGSC 214 (75.6%) 10 (23.8%) 16 (38.1%) 240 (65.4%)

Non-HGSC 69 (24.4%) 32 (76.2%) 26 (61.9%) 127 (34.6%)

FIGO stages (n) 283 41† 36† 360†

I 37 (13.1%) 26 (63.4%) 13 (36.1%) 76 (21.1%)

II 37 (13.1%) 2 (4.9%) 4 (11.1%) 43 (11.9%)

III 155 (54.8%) 11 (26.8%) 14 (38.9%) 180 (50.0%)

IV 54 (19.1%) 2 (4.9%) 5 (13.9%) 61 (16.9%)

Age and tumour volume were presented as median (range), while each histological type or FIGO stage was presented as value (percentage). 
*, tumour volume was estimated on resampled images; †, one patient from Center B and 6 patients from Center C had ovarian cystectomy 
for histological diagnosis but did not proceed to surgical staging. FIGO, International Federation of Gynecology and Obstetrics; HGSC, 
high-grade serous carcinoma; Non-HGSC, including low-grade serous carcinoma, clear cell carcinoma, endometrioid carcinoma, and 
mucinous carcinoma. 

Table 3 Segmentation performance on external testing set (n=84)

nnU-Net Architectures Dice score Jaccard score Sensitivity Precision

2D 0.918 (0†–0.986) 0.848 (0†–0.973) 0.946 (0†–0.993) 0.938 (0.012–0.990)†

3D-fullres 0.936 (0†–0.986) 0.881 (0†–0.973) 0.967 (0†–0.995) 0.938 (0.263–0.984)†

3D-lowres 0.941 (0.352–0.985) 0.888 (0.214–0.971) 0.971 (0.806–0.992) 0.926 (0.216–0.984)

3D-cascade 0.941 (0.371–0.985) 0.890 (0.228–0.971) 0.973 (0.844–0.995) 0.925 (0.231–0.986)

P value 0.028 0.028 <0.001 0.800†

Segmentation performance for each architecture was represented as median (range). †, the 2D and 3D-fullres model failed to segment 
two cases and one case respectively (i.e., Dice=0). In this case, the precision scores were NaN, and they were excluded from these 
calculations. 3D-lowres, 3D U-Net with low image resolution; 3D-fullres, 3D U-Net with full image resolution; 3D-cascade, 3D U-Net 
cascade. 

Manual 
2D 
3D-lowres 
3D-fullres 
3D-cascade

A B

Figure 3 Representative examples of segmentation results predicted by the four models (A,B). The area inside the red ROI represents 
manually delineated tumour by radiologist as ground truth, and the area inside the green/orange/pink/blue ROI represents the segmentation 
predicted by 2D/3D-lowres/3D-fullres/3D-cascade model. The 2D model failed to identify the tumour in (B). ROI, region of interest. 
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physiological corpus luteal cyst, pelvic ascites, pelvis 
peritoneal and nodal metastases, and the presence of 
bilateral ovarian masses affected the performance of the 
automated segmentation resulting in low Dice scores due 
to incorrect segmentation of these pelvis masses or areas 
(Figure 5). 

3D-cascade was the selected network architecture with 
the highest average Dice score in the cross-validation set 
among the 4 tested nnU-Net architectures. The differences 
of Dice scores between histological types, FIGO stages, 
validation and testing sets, as well as two external testing 
sets for the 3D-cascade model are presented in Table 4. The 
Dice score of HGSC was significantly lower than non-
HGSC (HGSC: Dice =0.919; non-HGSC: Dice =0.958; 
P<0.001), and the Dice score of cross-validation set was 
significantly lower than testing set (validation: Dice =0.892; 
testing: Dice =0.941; P<0.001). 

Volumetric assessment

The 3D-cascade nnU-Net model underestimated the 
tumour volume by 75.29 cm3 on average (Figure 6A). High 
correlation and concordance were found between manually 
segmented volumes and predicted tumour volumes (ρ=0.944 

and ρc =0.933, Figure 6B). Figure 5B shows a representative 
slice of the outlier identified in Figure 6B. 

Radiomics features stability

Most of the radiomics features extracted from segmentation 
predicted by the 3D-cascade model were stable compared 
with radiomics features extracted from manual delineation, 
in that 85.0% of the radiomics features had high correlation 
with ICCs >0.8 (Figure 7). 

Discussion

In this study, deep learning-based models (i.e., nnU-Net) 
were used to segment primary OC on contrast-enhanced 
CT images. Among the tested nnU-Net architectures, 
the 3D-cascade performed best in the testing set with 
the highest median Dice score of 0.941. In addition, the 
automated segmented volume was highly concordant to 
the manually segmented volume by radiologist with high 
stability of the extracted radiomics features. 

There was no significant difference in the Dice scores 
of 3D-cascade model between the two external testing sets 
and FIGO stages, which implied the generalizability of 

A B

C D

Figure 4 Representative examples of segmentation results predicted by the 3D-cascade model (Dice score for the whole tumour: A. 0.963, B. 
0.869, C. 0.930 and D. 0.881). The area inside the red ROI represents manually delineated tumour by radiologist as ground truth, and the 
area inside the blue ROI represents the predicted segmentation. ROI, region of interest. 
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A1

B C

D E

A2

Figure 5 Low Dice scores predicted by the 3D-cascade model due to incorrect segmentation of the right corpus luteal cyst, Dice score 0.760 
(A1, A2); ascites, Dice score 0.498 (B); peritoneal metastasis, Dice score 0.501 (C); enlarged pelvic sidewall lymph nodes, Dice score 0.584 
(D); contralateral ovarian mass with bilateral involvement, Dice score 0.371 (E). The area inside the red ROI represents manually delineated 
tumour by radiologist as ground truth, and the area inside the blue ROI represents the predicted segmentation. ROI, region of interest. 

our model in different external datasets and FIGO stages. 
In contrast, the median Dice score of HGSC was found 
significantly lower than non-HGSC. This might result 
from the differences in the complexity and heterogeneity 
of HGSC and non-HGSC tumours, and the different 
distribution of HGSC and non-HGSC tumours in the 
training and testing sets. With the latter, the lower Dice 
score for HGSC could lead to a lower average Dice score 
for cross-validation results than testing results. Similarly, 
the imbalanced distribution of each FIGO stage could 
result in such a significant difference. We speculate that 
the higher Dice score on testing set might also come from 
higher proportion of FIGO stage I–II, as higher Dice score 

was found for FIGO stage I–II (Table 4).
Strong correlation and high concordance were found 

between manually segmented volumes as ground truth 
and predicted tumour volumes. The change of difference 
in volume was not observed when the average volume 
of ground truth and predicted segmentation changed, 
implying that the performance of volume assessment was 
independent of tumour volume. However, our model 
wrongly segmented tissues with similar density to that 
of OC, for example in physiological corpus luteal cyst 
that gave rise to more complex appearance with central 
rim enhancement on CT. The presence of pelvic ascites 
adjacent to a relatively less complex ovarian tumour could 
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pose challenges to the automated segmentation likely due to 
the less distinct borders between the two, or being mistaken 
as the urinary bladder instead of ovarian tumour. 

Our results concurred with Liu et al. that showed high 
Dice scores in tumour segmentation in patients with OC, 
although different types of tumours were segmented; in 
our study, the primary OC, while Liu et al. segmented 
perihepatic or perisplenic metastases from OC (11). 
Rundo et al. developed an unsupervised fuzzy clustering-
based method for the sub-segmentation of specific tissue 
components inside the ovarian tumour (10). This method 
retained the quantified radiodensity information for the 
purpose of results interpretability. Similarly, in our study 
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Table 4 Dice scores of different histological types, FIGO stages, and two testing sets for the 3D-cascade model

Subgroups Dice score P value

Histological types HGSC 0.919 (0.352–0.985) <0.001

Non-HGSC 0.958 (0.812–0.985)

FIGO stages I 0.962 (0.352–0.982) 0.277

II 0.947 (0.897–0.978)

III 0.922 (0.496–0.985)

IV 0.940 (0.914–0.981)

Datasets Validation (from Center A) 0.892 (0–0.982) <0.001

Testing (Center B and C) 0.941 (0.371–0.985)

Testing sets Center B 0.940 (0.496–0.985) 0.639

Center C 0.950 (0.352–0.985)

Dice scores were represented as median (range). 3D-cascade, 3D U-Net cascade; FIGO, International Federation of Gynecology and 
Obstetrics; HGSC, high-grade serous carcinoma; Non-HGSC, including low-grade serous carcinoma, clear cell carcinoma, endometrioid 
carcinoma, and mucinous carcinoma. 
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this quantitative information was also retained by applying 
global normalization to all images during training and 
testing. 

Different from conventional deep learning-based 
segmentation methods, nnU-Net focused on building 
a systemized and generalized processing pipeline for all 
kinds of biomedical segmentation tasks instead of network 
architecture (16). The effectiveness of such improvements 
was confirmed by a series of studies. Zhao et al. reported 
a Dice score of 0.92 for the segmentation of brain 
hemorrhage on CT images (20). Huo et al. reported Dice 
scores of 0.968 and 0.877 in segmenting whole breast 
and fibroglandular tissue on dynamic contrast-enhanced 
magnetic resonance images (24). Our results further 
confirmed that nnU-Net could adapt to our task and dataset 
well with high performance, and could become a convenient 
out-of-the-box tool for further quantitative analysis of 
OC. To further evaluate its potential clinical or research 
utility, we investigated the stability of the radiomics features 
based on tumour segmentation derived from 3D-cascade 
model and showed that 85.0% of the radiomics features 
achieved ICC >0.80, similar to Caballo et al., but with 
more radiomics features tested in our study (25). The 
performance of our trained segmentation model may have 
promising role in radiomics analysis with the potential of 
saving time and labour in tumour segmentation of OC. 

There were several limitations in this study. First, 
histological subtypes and FIGO stages were imbalanced 
in each center. This may lead to low Dice scores in those 
infrequent subtypes or FIGO stages. Second, the proportion 
of histological subtypes and FIGO stages were different 
in the 3 centers. This might lead to the difference of 
segmentation performance between validation and testing 
set, and limit the robustness of these trained models. Third, 
the training, validation and testing sets were relatively small, 
which result in a wide range of evaluation metrics on the 
testing set. The small testing set may limit the verification 
of model robustness on different types of OC. Continuous 
effort will be made to increase the sample size and further 
improve the accuracy and generalizability of the tumour 
segmentation task. Fourth, the specific task in this study was 
to segment OC, hence it may not be generalizable to other 
tumour types or other tasks on abdominopelvic CT images. 

Conclusions

The deep learning-based models showed the potential to 
provide high performance automated segmentation with 

the highest performance metrics achieved by 3D-cascade 
model. The 3D-cascade model provided accurate volume 
assessment of OC on CT images and ensured stability of 
the extracted radiomic features, showing potential use in 
quantitative radiomics analysis.  
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