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Background: Ultrasound is widely used for image-guided therapy (IGT) in many surgical fields, thanks 
to its various advantages, such as portability, lack of radiation and real-time imaging. This article presents 
the first attempt to utilize multiple deep learning algorithms in distal humeral cartilage segmentation for 
dynamic, volumetric ultrasound images employed in minimally invasive surgery.
Methods: The dataset, consisting 5,321 ultrasound images were collected from 12 healthy volunteers. 
These images were randomly split into training and validation sets in an 8:2 ratio. Based on deep learning 
algorithms, 9 semantic segmentation networks were developed and trained using our dataset at Southern 
University of Science and Technology Hospital in September 2022. The performance of the networks was 
evaluated based on their segmenting accuracy and processing efficiency. Furthermore, these networks were 
implemented in an IGT system to assess their feasibility in 3-dimentional imaging precision.
Results: In 2D segmentation, Medical Transformer (MedT) showed the highest accuracy result with a Dice 
score of 89.4%, however, the efficiency in processing images was relatively lower at 2.6 frames per second (FPS). 
In 3D imaging, the average root mean square (RMS) between ultrasound (US)-generated models based on the 
networks and magnetic resonance imaging (MRI)-generated models was no more than 1.12 mm.
Conclusions: The findings of this study indicate the technological feasibility of a novel method for 
real-time visualization of distal humeral cartilage. The increased precision of ultrasound calibration and 
segmentation are both important approaches to improve the accuracy of 3D imaging. 
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Introduction

Thanks to the advancements in computer science and 
the enhanced accuracy of tracking systems and imaging 
methods, surgical procedures have entered a new era of 
precision and minimally invasiveness (1). Novel techniques, 
such as computer-assisted orthopedic surgery (CAOS) 
and image-guided therapy (IGT), can assist surgeons 
in performing more complex and challenging surgeries 
through smaller incisions. As a routine imaging device, 
ultrasound (US) is widely used for IGT in many surgical 
fields, thanks to its various advantages, such as portability, 
lack of radiation and real-time imaging (2,3). In orthopedic 
surgery, US is utilized to visualize the contours of bones and 
cartilage for precise navigation of surgical instruments (4). 
Despite its potential, US still faces limitations in clinical 
applications due to constraints of traditional image 
segmentation algorithms.

Convolutional neural networks (CNNs) represent 
powerful deep learning (DL) algorithms that have displayed 
extraordinary advancements in several medical imaging 
modalities, such as X-ray, US, computed tomography (CT), 
magnetic resonance imaging (MRI) and endoscopy (5). Several 
networks such as UNet, MAnet, PSPnet, and DeepLabV3+, 
have been proposed specifically for performing semantic 
segmentation on medical images, successfully achieving 
impressive results (6-9). However, the current accuracy of 
CNNs has not yet met the IGT requirement for imaging 
procedures. As a fundamental component of CNNs, the 
convolutional kernel selectively considers a specific subset 
of pixels in the image during each calculation iteration. 
The restriction compels the network to concentrate on 
local patterns, thereby limiting its capacity to comprehend 
the broader context and long-range dependencies in 
the input image (10). To address this issue, transformer-
based architectures have been proposed recently, which 
incorporate self-attention mechanisms for encoding long-
range dependencies. Among these, the Medical Transformer 
(MedT) was specifically designed for medical image 
databases owing to their unique characteristics. It has been 
found to outperform CNNs in terms of performance (10).

In our study, we trained automatic segmentation 
networks, namely MedT and 9 CNNs, for US images of the 
distal humeral cartilage, and subsequently compared their 
performance at a 2D level. Furthermore, we developed 
IGT systems based on these networks. To evaluate the 
effectiveness of the algorithm and a novel US visualization 
method for distal humeral cartilage, we compared US-

generated models with MRI-generated models in terms of 
3D imaging outcomes. The purpose of this study was to 
establish an effective algorithmic foundation and introduce 
a novel visualization method using ultrasound for distal 
humeral cartilage. We present this article in accordance 
with the TRIPOD reporting checklist (11,12) (available at 
https://qims.amegroups.com/article/view/10.21037/qims-
23-9/rc).

Methods

Experimental flowchart

This study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013). The study 
received approval from the Ethics Committee of the 
Southern University of Science and Technology Hospital 
(No. ECSUSTH-2022-064) and was carried out at the 
same hospital in September 2022. All volunteers signed 
written informed consent prior to participating. Initially, 
we constructed 9 semantic segmentation networks based 
on CNNs (UNet, UNet++, MAnet, Linknet, FPN, PAN, 
PSPnet, DeepLabV3 and DeepLabV3+) along with MedT 
to perform cartilage segmentation on US images. We 
evaluated the networks’ performance using segmentation 
accuracy and processing efficiency metrics. Additionally, we 
implemented the trained networks in an IGT system. Upon 
scanning the elbow, 3D cartilage models were automatically 
generated. The US-generated model was compared to the 
MRI-generated model on the same sample to assess the 
3D imaging precision of DL-based US visualization and 
evaluate the technological feasibility of this technique. The 
study flowchart is shown in Figure 1.

Comparative experiment involving segmentation networks

CNNs
Since its proposal in 1998, the LeNet5 network has paved 
the way for CNNs to become comprehensive system 
architectures for processing computer vision (CV) tasks. 
CNN typically consist of convolutional layers, pooling 
layers, nonlinear layers and fully connected layers. In 2015, 
UNet was introduced for medical image segmentation, 
featuring a symmetrical encoder-decoder structure (6). The 
pyramid scene parsing network (PSPNet) was proposed 
by Zhu et al. in 2016, which a pyramid pooling module 
to effectively aggregate the global context information 
obtained from different region-based contexts for scene 

https://qims.amegroups.com/article/view/10.21037/qims-23-9/rc
https://qims.amegroups.com/article/view/10.21037/qims-23-9/rc
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parsing (13). The Google team introduced the DeepLab 
series, a suite of semantic segmentation algorithms, 
with DeepLabV3+ being the latest version proposed in  
2018 (8). Compared to its predecessor, DeepLabV3+ retains 
the Atrous Spatial Pyramid Pooling (ASPP) structure, and 
introduces a reconstructed decoding structure to better 
capture object boundaries. The network also utilizes an 
improved Xception module as the backbone to reduce the 
number of required parameters. In 2020, Fan et al. proposed 
Manet, which introduces a self-attention mechanism 
allowing for the adaptive integration of local features with 
global dependencies in their network (9).

MedT
As a novel attention-driven building block network, the 
transformer was first introduced by Vaswani et al. for 
natural language processing (NLP) tasks (14). Due to 
its self-attention mechanism, a transformer has a strong 

ability to model long-range dependencies, which is why it 
demonstrates state-of-the-art performance on NLP tasks. 
For CV tasks, vision transformers (ViTs), which are built by 
cascading multiple transformer layers, interpret an image 
as a sequence of patches and process it in a way similar to 
NLP (15). Long-range dependencies are also significant 
for medical images as they can substantially enhance the 
efficiency of image segmentation. However, for appropriate 
training, many standard transformer-based networks 
proposed for semantic segmentation demand large-scale 
datasets, which are challenging to obtain in medical imaging 
scenarios. To solve this issue, Valanarasu et al. introduced 
MedT based on a gated axial-attention model, which adds 
an additional control mechanism in the self-attention 
architecture (10). Furthermore, a local-global training 
strategy was proposed to further enhance the segmentation 
performance of the model. By combining these two aspects 
of improvement, MedT achieved good performances on 

Figure 1 The flowchart of the study. US, ultrasound; DL, deep learning; MRI, magnetic resonance imaging; seg., segmentation. This image 
is published with the participant’s consent.
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multiple medical image datasets. The network structure of 
MedT is displayed in Figure 2.

US data acquisition
There is currently no established standard for the number 
of samples necessary for training medical image semantic 
segmentation models. We took into account multiple 
factors when determining the sample size, such as the high 
distinctiveness of cartilage ultrasound images, minor variations 
in cartilage image features among healthy individuals, and 
the number of images needed for a single sample scan. A 
total of 5,321 2D US slices were collected from 12 volunteers 
(5 females, 7 males, mean age 33.3 years, range from 20 to 
44 years) with healthy elbow cartilage (Table 1, Figure 3).  
The inclusion criteria included (I) 18–60 years old; (II) 
no elbow trauma and surgery history; (III) no elbow 
deformity and other pathological changes. Volunteers 
who did not meet the inclusion criteria were excluded  
(Figure 3). As the volar articular surface plays a crucial role 
in assessing surgical outcomes, particularly in cases of intra-
articular fractures, the primary objective of this study was 
to use US images to visualize this surface. Therefore, all 
images were acquired with a US probe placed on the volar 
surface, vertically to the principal axis of the arm (Figure 1). 
Volunteers kept their arms straight during US scanning to 
maximize the exposure the cartilage of the distal humerus. 
All data collection was performed by one deputy chief 
orthopedic physician who had sufficient experience in 
elbow ultrasonography, using a US system (Mindray M9 
ultrasound system, Mindray Bio-Medical Electronics Co., 
Ltd., Shenzhen, Guangdong, China) and a 2D US probe 

(Mindray L14-6Ns, Mindray Bio-Medical Electronics 
Co., Ltd.). The workstation settings were optimized by a 
US specialist for elbow cartilage structure visualization: a 
12.6-MHz probe frequency, a 3.5-cm penetration depth, a 
dynamic range of 110 dB and a gain of 45 dB.

Data annotations were provided by an orthopedic surgeon 
who had ample experience in elbow ultrasonography. The 
cartilage contours were outlined on all the US images using 
3D Slicer application (16). Each frame of the US images 
and their masks were resized to 768×768 and normalized 
by linearly scaling their gray level intensities to (0,1). The 
datasets were randomly split, allocating 80% of the data for 
network training and 20% used for validation.

Experimental environment
The experiment in this study was conducted using a 
computer platform consisting an Intel i7-11800 CPU and 
an NVIDIA A100 tensor core GPU. The PyTorch library 
was utilized for development of the segmentation networks. 
To enhance the size of the datasets, the augmentation was 
implemented by a batch generator, which includes random 
rotations, random flips, Gaussian noise addition, blurring 
and contrast-limited adaptive histogram equalization 
(CLAHE). The networks were trained with the Adam 
optimizer (learning rate =0.001, β1=0.5, β2=0.999, learning 
decay =0.00003) and a weighted binary cross-entropy loss 
function was used.

Evaluation metrics
For the task of segmenting cartilage in the US images, the 
samples were divided into two categories: cartilage and 

Figure 2 The network structure of Medical Transformer.
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Table 1 Information of volunteers: 2D US slices were collected from 12 volunteers, 5 new samples were chosen to scan MRI and US

ID Sex Age (year) Weight (kg) Height (cm) Side Slices

Volunteer 1 Male 26 81 184 L, R 431

Volunteer 2 Male 25 71 172 L, R 495

Volunteer 3 Female 38 52 161 L, R 421

Volunteer 4 Male 44 75 176 L, R 487

Volunteer 5 Female 31 53 165 L, R 450

Volunteer 6 Female 32 63 168 L, R 389

Volunteer 7 Male 37 77 178 L, R 444

Volunteer 8 Male 42 86 179 L, R 427

Volunteer 9 Male 20 78 175 L, R 391

Volunteer 10 Female 25 60 164 L, R 472

Volunteer 11 Female 39 55 162 L, R 502

Volunteer 12 Male 40 74 170 L, R 412

Sample 1 Male 46 75 180 R 560

Sample 2 Female 22 67 172 L 584

Sample 3 Male 31 62 169 L 569

Sample 4 Female 31 68 174 R 512

Sample 5 Male 37 85 182 L 599

2D, 2-dimensional; US, ultrasound; MRI, magnetic resonance imaging; ID, identity; L, left; R, right.

Participants 

for US data

n=14

Excluded, n=2:

63 years old, n=1;

Elbow surgery

history, n=1

Excluded, n=1:

17 years old, n=1

Participants 

enrolled

n=12

Participants 

enrolled

n=5

Participants 

for MRI data

n=6

Inclusion criteria:

(I)	 18–60 years old;

(II)	 No elbow trauma and surgery 

history; 

(III)	No elbow deformity and other 

pathological changes

Figure 3 The flow chart showing the process of participants’ selection. US, ultrasound; MRI, magnetic resonance imaging.
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non-cartilage. By comparing the results of the segmentation 
networks with those of manual segmentation by an expert, 
four situations were identified: true positives (TPs), 
which are cartilage pixels that were correctly predicted; 
false positives (FPs), which are non-cartilage pixels that 
were mistakenly predicted as cartilage; true negatives 
(TNs), which are non-cartilage pixels that were correctly 
predicted; and false negatives (FNs), which are cartilage 
pixels that were mistakenly predicted as non-cartilage. 
To quantitatively assess the accuracy of the segmentation 
networks, two metrics were used: the intersection over 
union (IoU) and the Dice similarity coefficient (Dice). 
The calculation methods are shown in Eqs. [1] and [2], 
respectively.

TPIoU
TP FP FN

=
+ + [1]

2
2

TPDice
TP FP FN

×
=

× + + [2]

The aim of this research was to develop a network 
that can optimize the balance between accuracy and 
efficiency. Efficiency was measured using three metrics: the 

number of parameters (Params), which gauges the spatial 
complexity of the network; the number of floating-point 
operations (FLOPs), which reflect the time complexity of 
the network; and the number of frames per second (FPS), 
which represents the inference speed. These metrics were 
calculated using the Python thop library.

Precision experiment involving the DL-based IGT system

3D US image calibration
The IGT system utilized an US machine (Mindray M9 
ultrasound system, Mindray Bio-Medical Electronics Co., 
Ltd., Shenzhen, Guangdong, China), an optical position 
tracker (NDI Polaris vega XT, Northern Digital Inc., 
Waterloo, Ontario, Canada), and a computer with IGT 
software (3D Slicer with the SlicerIGT extension) (17)  
(Figure 4). The PLUS software tool acted as an intermediary 
between the hard devices (18). Spatial and temporal 
calibration of the 2D US images and pose tracking data were 
performed using the free-hand calibration (fCal) application 
(18). The US image coordinates were referred to as “UI”, 
while the NDI optical reference frame coordinate system 
attached at the end of the probe was defined as “UR”. 
The matrix transformation from UR to UI was UI

URT , which 

Figure 4 IGT system. US, ultrasound; IGT, image-guided therapy.
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enabled any point PUI in the US image coordinate system 
to be converted to PUR in the UR coordinate system. The 
governing calculation is provided in Eq. [3]:

UI
UR UR UIP T P= × [3]

After completing this step, the spatial position of the 
2D ultrasound image could be determined, allowing for 
the creation of articular cartilage models in the subsequent 
stages.

Establishment of a DL-based US visualization pipeline
After a volunteer was scanned with the IGT system, the 
US images and the spatial position data were gathered 
into a .MHD file. The collected data underwent multiple 
processing steps, as depicted in Figure 5. Initially, the US 
image data were automatically segmented by the networks, 
generating 2D contours of the cartilage. Afterward, the 
2D contours of the cartilage replaced the original US 
images and were integrated with the spatial position 
data to produce a new .MHD file. These two steps were 
programmed in a Python script utilizing the Insight Toolkit 

(ITK) library. Finally, the new .MHD file was imported 
back into the IGT system, and US-generated cartilage 
models were constructed.

MRI data acquisition
To assess the generalization and reliability of the networks, 
five new volunteers (2 females, 3 males, mean age 33.4, 
range from 22 to 46), with the same inclusion and 
exclusion criteria, were recruited for this stage of the study  
(Table 1, Figure 3). MRI images were captured of their 
elbows using a 3.0T clinical MRI scanner (GE Discovery 
MR750, GE Medical Systems, Milwaukee, WI, USA) 
with a 2D sequence, fat suppression and a knee-dedicated 
coil (8 channels), as referred in Figure 1. The sequence 
parameters included a repetition time of 11.89 ms, an 
echo time of 5.3 ms, a 1-mm section thickness, a 160- to  
180-mm field of view, a base resolution of 384, and a 95% 
phase resolution. The images are obtained in the sagittal 
plane. Additionally, 3D cartilage models of each distal 
humerus were constructed using a 3D slicer and exported 
as stereolithography (STL) files. The five volunteers were 
also scanned by the IGT system to render US-generated 

Figure 5 Deep learning based ultrasound visualization pipeline. US, ultrasound; .MHD, a .MHD file.
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models. The MRI data collection process was performed 
by the same doctor who did US data annotations with the 
assistance of a radiologist.

Evaluation metrics
At present, MRI is considered the gold standard in diagnosis 
articular cartilage injuries and for imaging this structure. 
Therefore, to determine the clinical significance of the US-
based visualization method, the cartilage models produced 
using IGT systems based on different segmentation 
networks were compared with MRI-generated models. 
The Euclidean point-to-mesh distance (EPD) was utilized 
to measure the US visualization error by calculating the 
distance between all nodes of the MRI-generated model 
and the surfaces of the US-generated model. Subsequently, 
the 3D imaging performance of the DL algorithms was 
evaluated by comparing the EPDs of the models rendered 
by IGT systems based on different segmentation networks.

Statistical analysis
The mean, standard deviation (SD), root mean square 
(RMS), Q1, median, Q3 and range of the 3D imaging 
error were calculated, and Tukey boxplots were employed 
for graphical visualization purposes. The nonparametric 
Friedman rank-sum test was applied to analyze the statistical 
significance of the results (19), While a post hoc analysis 
was performed with the Wilcoxon signed-rank test (20). 
The significance level was set as “P<0.05”. All data analysis 
was done using SPSS 21.0 (Chicago, IL, USA).

Results

Segmentation task study

Figure 6 shows the segmentation results for 10 networks, 
showcasing the superior performance of the MedT network, 
which closely resembles that of the expert. The algorithmic 
edge segmentation by MedT is smoother and more seamless 
than that of other CNNs.

Comparing the performance of MedT with other CNNs, 
Table 2 shows that MedT produced the best segmentation 
results, with an IoU score of 78.6% and a Dice score of 
89.4%. However, MedT’s inference speed was significantly 
slower than that of the CNNs, with an FPS of 2.6. Figure 7 
illustrates the trade-off between segmentation accuracy and 
speed, With DeepLabV3+ yielding the best performance.

IGT imaging study

The fiducial registration error (FRE) for 3D US calibration 
was found to be 1.3±0.48 mm. 5 networks (PSPnet with an 
IoU of 74.7%, MAnet with an IoU of 75.7%, UNet with 
an IoU of 76.8%, DeepLabV3+ with an IoU of 77.4% and 
MedT with an IoU of 78.6%) were selected to build 3D 
models from the cartilage US images. Figure 8, Figure 9 and 
Table 3 show the 3D imaging errors between the cartilage 
US models generated by each network and the MRI-
generated models. For networks with higher IoU scores, 
the RMS of the errors was generally smaller. The average 
RMS between US-generated models and MRI-models is no 

Figure 6 The results of 10 segmentation networks. PSPnet, MAnet, DeepLabV3, FPN, UNet, Linknet, PAN, UNet++, DeepLabV3+ are 
different neural networks based on convolutional neural network. MedT, Medical Transformer.

Images PSPnet MAnet DeepLabV3 DeepLabV3+ Ground truthFPN UNet Linknet PAN UNet++ MedT
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Table 2 Comparison of segmentation performance of MedT and CNNs

Networks Backbone Image size (mm) IoU (%) Dice (%) Param (M) FLOP (G) FPS

PSPnet Resnet101 768*768 74.7 85.8 2.2 25.7 35.8

MAnet Resnet101 768*768 75.7 86.6 166.4 210.8 21.1

DeepLabV3 Resnet101 768*768 75.7 86.8 58.6 543.9 14.9

FPN Resnet101 768*768 76.3 87.4 45.1 113.6 28.9

UNet Resnet101 768*768 76.8 87.5 51.5 139.3 28

Linknet Resnet101 768*768 76.7 87.8 50.2 140 25.5

PAN Resnet101 768*768 77.2 88.1 43.2 121.5 28.7

UNet++ Resnet101 768*768 77.1 88.2 68 561 15.1

DeepLabV3+ Resnet101 768*768 77.4 88.5 45.7 126 30.2

MedT Transformer 768*768 78.6 89.4 48 186.4 2.6

MedT, Medical Transformer; CNN, convolutional neural network; IoU, intersection over union; FLOP, floating point operations per second; 

FPS, frames per second.

Figure 7 The trade-off between segmentation accuracy and 
inference speed. MedT, Medical Transformer; FPS, frames 
per second. 

more than 1.12 mm.
The Friedman rank-sum test revealed the P values 

of the 5 samples’ cartilage imaging errors (Table 3). The 
Wilcoxon signed-rank test demonstrated P values between 
two networks in the same sample, indicating that the 
larger the IoU gap between two networks, the less P value 
were obtained. For instance, the P values between the 
imaging errors of MedT and PSPnet (with an IoU gap of 
3.9%) presented in 5 samples are “P=0.012”, “P=0.012”, 
“P=0.017”, “P=0.012”, “P=0.017”. The P values between 
the imaging errors of MAnet and UNet (with an IoU gap of 

1.1%) presented in each sample are “P=0.123”, “P=0.574”, 
“P=0.459”, “P=0.491”, “P=0.799”.

Discussion

Visualizing the distal humeral articular structure in real-
time, using intraoperative images, can assist doctors during 
minimally invasive surgical procedures, such as minimally 
invasive plate osteosynthesis. This article presents the first 
attempt to use multiple DL algorithms for distal humeral 
cartilage segmentation in dynamic, volumetric US images 
for IGT of the distal humerus.

US is an especially appealing modality for intraoperative 
imaging due to its ability to provide real-time images, 
lack of ionizing radiation, and lower cost compared to 
other popular modalities, like MRI and CT. Recently, 
DL technology has made significant advancements in US 
image segmentation, enabling real-time visualization of the 
articular surface during intraoperative US (4). In this study, 
we compared the segmentation performances of CNNs 
and MedT, as well as the 3D imaging results obtained when 
these algorithms were integrated with an IGT system. It 
was deemed feasible from a technological standpoint to use 
such a visualization method.

Automatic medical image segmentation is a useful tool 
for clinical diagnosis and treatment of diseases. In recent 
years, CNN-based neural networks have shown remarkable 
accuracy in many fields of medical imaging, comparable 
to that of clinical experts and medical doctors. Yang et al. 
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Figure 8 The heat map of 3-dimensional imaging errors. PSPnet, MAnet, UNet, DeepLabV3+ are different neural networks based on 
convolutional neural network. MedT, Medical Transformer.

Figure 9 The box plot of 3-dimensional imaging errors. DL, deep learning; MedT, Medical Transformer.
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Table 3 Comparison of 3D imaging errors between the US-generated models based on each network and the MRI-generated models

Networks

Imaging errors
Friedman 

test 

Wilcoxon signed-rank test (P≤0.05†)

Range  
(mm)

Mean 
(mm)

SD 
(mm)

RMS 
(mm)

Q1 
(mm)

Median 
(mm)

Q3  
(mm)

MAnet UNet DeepLabV3+ MedT

Sample 1 

PSPnet −1.62 to 2.15 0.33 0.66 0.73 −0.05 0.27 0.76 Chi-square, 
21.5; 

P<0.001

0.262 0.012† 0.012† 0.012†

MAnet −2.21 to 2.35 0.27 0.69 0.71 −0.22 0.25 0.64 0.123 0.068 0.05†

UNet −1.77 to 1.67 0.12 0.65 0.66 −0.25 0.14 0.52 0.734 0.041†

DeepLabV3+ −2.12 to 1.68 0.15 0.64 0.66 −0.23 0.12 0.56 0.207

MedT −2.09 to 1.65 0.11 0.65 0.66 −0.25 0.12 0.51

Average −1.96 to 1.9 0.2 0.66 0.68 −0.2 0.18 0.6

Sample 2 

PSPnet −1.91 to 2.85 0.4 1.04 1.11 −0.35 0.31 1.14 Chi-square, 
18.5; 

P=0.001

0.068 0.017† 0.012† 0.012†

MAnet −2.20 to 3.00 0.20 1.08 1.1 −0.6 0.02 0.96 0.574 0.778 0.035†

UNet −2.21 to 2.76 0.26 1.05 1.09 −0.52 0.11 1.04 0.231 0.017†

DeepLabV3+ −2.12 to 2.69 0.21 1.02 1.04 −0.54 0.13 0.99 0.012†

MedT −2.18 to 2.6 0.13 0.98 0.98 −0.61 0 0.94

Average −2.12 to 2.78 0.24 1.03 1.06 −0.52 0.11 1.01

Sample 3 

PSPnet −1.84 to 2.84 0.72 0.84 1.11 0.08 0.75 1.41 Chi-square, 
15.1; 

P=0.005

0.035† 0.017† 0.03† 0.017†

MAnet −2.12 to 2.81 0.63 0.89 1.09 −0.02 0.63 1.32 0.459 0.258 0.018†

UNet −2.12 to 2.8 0.63 0.86 1.06 0 0.62 1.34 0.439 0.033†

DeepLabV3+ −2.13 to 2.77 0.62 0.89 1.08 −0.05 0.57 1.36 0.258

MedT −2.12 to 2.76 0.59 0.87 1.05 −0.04 0.6 1.26

Average −2.01 to 2.8 0.64 0.87 1.08 −0.01 0.63 1.34

Sample 4

PSPnet −2.09 to 2.98 −0.07 1.18 1.19 −1.01 −0.18 0.78 Chi-square, 
18.8; 

P=0.001

0.018† 0.04† 0.012† 0.012†

MAnet −2.24 to 2.96 −0.07 1.11 1.12 −1.06 −0.19 0.76 0.491 0.123 0.049†

UNet −2.21 to 2.95 −0.08 1.11 1.11 −1.04 −0.15 0.75 0.176 0.068

DeepLabV3+ −2.28 to 2.91 −0.14 1.15 1.16 −1.15 −0.28 0.7 0.888

MedT −2.1 to 2.67 −0.11 1.01 1.02 −1.1 −0.24 0.75

Average −2.18 to 2.89 −0.09 1.11 1.12 −1.07 −0.21 0.75

Sample 5 

PSPnet −2.02 to 2.84 0.58 0.96 1.08 0.03 0.61 1.16 Chi-square, 
18.8; 

P=0.001

0.16 0.02† 0.011† 0.017†

MAnet −1.97 to 2.76 0.55 0.91 1.07 −0.01 0.57 1.17 0.799 0.088 0.011†

UNet −2.18 to 2.81 0.55 0.9 1.06 0.04 0.6 1.13 0.018† 0.123

DeepLabV3+ −2.27 to 2.77 0.49 0.92 1.04 −0.02 0.57 1.11 0.233

MedT −2.00 to 2.75 0.41 0.90 1.02 −0.02 0.4 1.06

Average −2.09 to 2.79 0.52 0.92 1.05 0 0.55 1.13
†, P≤0.05. PSPnet, MAnet, UNet, DeepLabV3+ are different neural networks based on convolutional neural network. 3D, 3-dimensional; 
US, ultrasound; MRI, magnetic resonance imaging; MedT, Medical Transformer; SD, standard deviation; RMS, root mean square.
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developed a CNN network for segmenting brain low-
grade glioma MRI image and found that CNN outperforms 
Support Vector Machine (SVM), a wildly used machine 
learning method, in multiple datasets (21). Wang et al. 
proposed an automatic gastric cancer segmentation model 
based on DeepLabV3+ (8), and compared it with other 
CNNs on gastric cancer pathological slice images, finding 
that DeepLabV3+ had better accuracy, with a Dice score 
of 91.66%. Similarly, Yan et al. and Zhu et al. employed 
PSPnet for prostate MRI and coronary angiography images 
(7,13), and found it to be more accurate than the baseline 
network (UNet). For assessing the locations and extents of 
liver tumors (9), Fan et al. proposed the use of Manet, which 
outperformed other state-of-the-art methods in a public 
dataset (MICCAI 2017 LiTS Challenge), obtaining a Dice 
score of 74.9%. However, in our segmentation task, PSPnet 
and MAnet did not perform well among all networks, with 
Dice scores of 85.8% and 86.6%, respectively, and lower 
accuracy than that of UNet. The best CNN network 
outcome was DeepLabV3+, second only to MedT, with a 
Dice score of 88.5%.

Transformers, which have shown excellent results in 
NLP tasks, have recently been applied to CV problems 
with great success. Their ability to capture the global 
context of an image is their most significant advantage 
over traditional CNNs with local receptive fields. The 
medical imaging field has thus witnessed a growing interest 
in transformers. Wang et al. proposed a boundary-aware 
transformer (BAT) to improve skin lesion segmentation 
tasks, achieving Dice scores of 92.1% and 91.2% on 
two public datasets (ISIC 2016+PH2 and ISIC 2018), 
respectively (22). For cardiac image segmentation tasks, 
Deng et al. proposed TransBridge, a lightweight parameter-
efficient hybrid model consisting of transformers and 
CNN-based encoder-decoder structures for ventricle 
segmentation in echocardiography (23). Liang et al. 
proposed a U-shaped network, named TransConver, which 
combines CNN and transformer for segmenting brain 
tumors in MRI images. Their network achieved the highest 
Dice scores of 83.73% and 86.32% on BrasTS2019and 
BraTS2018 datasets, respectively (24). MedT, which was 
first proposed by Valanarasu et al. (10), was modified with 
a gated axial attention layer and a local-global training 
strategy for boosting the segmentation performance in 
different datasets, including a brain US image dataset. In 
our cartilage segmentation study involving US images, 
MedT demonstrated outstanding accuracy, although its 
inference speed (an FPS of 2.6) is slower than the required 

real-time imaging rate of at least 24 FPS (25). This low 
speed is mainly due to the computational complexity of 
the transformer network itself. Nevertheless, the sluggish 
inference speed of MedT should not be a major drawback 
of this technology. This is because image-guided fracture 
reductions primarily rely on the pre- and post-reduction 
images, and any shortcomings in speed can be overcome by 
upgrading the hardware of the image workstation.

CNNs are the primary means for guidance in minimally 
invasive knee surgery (4,26,27). Kompella et al. employed 
Mask R-CNN to segment knee cartilage in ultrasound 
images (26). Preprocessing the images and pretraining the 
network using the COCO 2016 image dataset yielded the 
best result, with an average Dice score of 80%. Dunnhofer 
et al. proposed Siam-U-Net, which merged UNet and 
the Siamese framework to improve the segmentation 
performance of femoral cartilage in US images (27). 
Compared to traditional UNet, Siam-U-Net achieved an 
average Dice score improvement from 64% to 70%. Antico 
et al. employed UNet to automatically segment femoral 
cartilage in US images (4), And proposed a novel metric 
named the Dice coefficient with boundary uncertainty 
to address intraobserver variability in manually labeled 
cartilage boundaries due to the inherent properties of US 
images. The revised Dice score of UNet was 87%, even 
higher than that of an expert (78%). In another study, 
Antico et al. presented the application of a Bayesian CNN 
based on Monte Carlo dropout to segment cartilage by 
contouring it on either US or MRI images, then projecting 
it onto the corresponding US volume (28). The authors also 
proposed a novel approach to evaluate model performance 
involving probabilistic ground-truth annotations generated 
from registered US and MRI volumes. With these two 
modifications, the authors obtained better outcomes than 
traditional UNet, with a Dice score increase from 6% to 8%.

With the aid of navigation tools and computer-assisted 
surgery devices, the IGT technique has been developed to 
enhance the targeting and localization of diseased tissue, 
thus improving minimally invasive surgery. IGT highly 
relies on image segmentation, especially for IGT based on 
intraoperative US imaging (29). Combining IGT with a 
DL segmentation algorithm has the potential to broaden its 
application scope. Hu et al. developed a navigation approach 
for breast-conserving surgery, using a real-time automatic 
UNet-based tumor contouring process for intraoperative 
guidance (30). The UNet achieved an average Dice 
score of 78%, significantly improving the efficiency of 
breast-conserving surgery navigation systems. Ungi et al. 



Zhao et al. DL Based US visualization for IGT 5318

© Quantitative Imaging in Medicine and Surgery. All rights reserved.   Quant Imaging Med Surg 2023;13(8):5306-5320 | https://dx.doi.org/10.21037/qims-23-9

proposed an automatic US segmentation method for 3D 
spine visualization and scoliosis measurement, to address 
the difficulties in US usage for spine imaging (31). Their 
method constructed 3D volumes with a maximum error of 
2.2° compared to X-ray results. In our study, we constructed 
3D cartilage models by automatically segmenting US 
contours using IGT technology. The error of the 3D 
models was the metric used to evaluate the DL algorithm’s 
performance. Through statistical analysis, we found that 
the larger the IoU difference between two networks was, 
the more significant their imaging errors. Although MedT 
had better accuracy on 2D images, the difference between 
the 3D imaging errors of MedT and DeepLabV3+ did not 
demonstrate statistical significance in most samples. The 
primary reason for this situation was likely that 3D imaging 
errors consist of 2D segmentation errors and the FRE of 
US calibration. The average FRE in this study was 1.3 mm, 
which could account for some relatively low segmentation 
errors. Therefore, decreasing the FRE should also be an 
essential approach to improve the accuracy of 3D imaging.

In this research, we utilized a combination of the 
DL algorithm and IGT technique to develop a novel 
visualization method for distal humerus cartilage. We 
compared MedT and several CNN-based segmentation 
networks to assess their imaging accuracy at the 2D and 
3D levels. However, this study had several limitations. 
Firstly, the datasets used for training and testing the 
networks consisted only of healthy samples while ignoring 
fracture patients. It is worth noting that distal humeral 
cartilage segmentation might become significantly more 
challenging when a fracture is present, given the existence 
of fracture fragments and lipohemarthrosis. Therefore, 
testing these segmentation networks on patients with distal 
humerus fractures will be the focus of the next logical study. 
Secondly, the sample size used for testing was relatively 
small; hence, a larger sample is required to fully verify the 
performance of this visualization method. Lastly, due to a 
large FRE of US calibration, it had a considerably adverse 
impact on the 3D imaging results.

Conclusions

The aim of this study was to develop a novel and practical 
method for visualizing distal humeral cartilage using 
intraoperative US imaging. A total of 10 networks, including 
MedT and 9 CNNs, were evaluated and compared for 
both 2D segmentation and 3D imaging tasks. In terms of 
2D segmentation, MedT demonstrated greater accuracy, 

but it required a more powerful GPU to improve inference 
speed. Among the 10 networks, DeepLabV3+ achieved 
the best trade-off between accuracy and inference speed. 
Regarding 3D imaging, the average RMS between US-
generated models based on the networks and MRI models is 
no greater than 1.12 mm. However, due to the influence of 
the US calibration error, networks with small differences in 
2D segmentation accuracy did not show much distinction. 
These findings suggest that this method is technologically 
feasible for visualizing distal humeral cartilage in real time. 
Nevertheless, additional experiments are needed to further 
assess its clinical feasibility.
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