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Background: Estimation of the global optima of multiple model parameters is valuable for precisely 
extracting parameters that characterize a physical environment. This is especially useful for imaging 
purposes, to form reliable, meaningful physical images with good reproducibility. However, it is challenging 
to avoid different local minima when the objective function is nonconvex. The problem of global searching 
of multiple parameters was formulated to be a k-D move in the parameter space and the parameter updating 
scheme was converted to be a state-action decision-making problem. 
Methods: We proposed a novel Deep Q-learning of Model Parameters (DQMP) method for global 
optimization which updated the parameter configurations through actions that maximized the Q-value and 
employed a Deep Reward Network (DRN) designed to learn global reward values from both visible fitting 
errors and hidden parameter errors. The DRN was constructed with Long Short-Term Memory (LSTM) 
layers followed by fully connected layers and a rectified linear unit (ReLU) nonlinearity. The depth of the 
DRN depended on the number of parameters. Through DQMP, the k-D parameter search in each step 
resembled the decision-making of action selections from 3k configurations in a k-D board game. 
Results: The DQMP method was evaluated by widely used general functions that can express a variety of 
experimental data and further validated on imaging applications. The convergence of the proposed DRN 
was evaluated, which showed that the loss values of six general functions all converged after 12 epochs. The 
parameters estimated by the DQMP method had relative errors of less than 4% for all cases, whereas the 
relative errors achieved by Q-learning (QL) and the Least Squares Method (LSM) were 17% and 21%, 
respectively. Furthermore, the imaging experiments demonstrated that the imaging of the parameters 
estimated by the proposed DQMP method were the closest to the ground truth simulation images when 
compared to other methods.
Conclusions: The proposed DQMP method was able to achieve global optima, thus yielding accurate 
model parameter estimates. DQMP is promising for estimating multiple high-dimensional parameters and 
can be generalized to global optimization for many other complex nonconvex functions and imaging of 
physical parameters.
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Introduction

Model fitting is a branch of nonlinear regression that 
simultaneously extracts multiple model parameters by 
fitting experimental data to a specific model. Estimation of 
multiple model parameters is of great importance in many 
measurement and imaging applications (1-3). When the 
fitting function f is nonconvex and there are few known 
constraints, achieving global convergence for parameter 
estimation is challenging.

Current optimization methods trap suboptimal 
solutions in local minima because of nonconvexity of 
the function f. There is no general algorithm for solving 
these problems, and the theoretical guarantees regarding 
convergence to global optima for common algorithms are 
weak or nonexistent. The established field of optimization 
is extensive, consisting of basic methods such as Gauss-
Newton and gradient descent (4,5), as well as combinations 
of those methods, such as Levenberg-Marquardt (6,7). Each 
of these methods has their strengths and weaknesses.

The simulated annealing algorithm is a classical 
stochastic scheme for searching global optima by 
minimizing the system of energy through an annealing 
schedule (8). Evolutionary methods that imitate biological 
creatures’ behaviors are presented continuously (9,10). 
Among them, a genetic algorithm is a bio-inspired heuristic 
search through heredity and mutation (11,12). Particle 
swarm optimization is another bio-inspired stochastic 
approach based on the best positions experienced so far by 
each particle in the whole swarm (13).

In theory, current stochastic and evolutionary schemes 
can jump out of local extrema and increase the probability 
of finding global solutions. However, jumping from current 
local extrema may introduce other local extrema, ultimately 
yielding inconsistent solutions unless the solutions can be 
guided by any valid prior knowledge that may be available.

Deep learning (DL) methods have the capacity to learn 
from prior knowledge. Deep neural networks can establish 
maps from input to output and may be scaled to model 
arbitrary mappings. The adaptive and nonlinear responses 

of deep neural networks can be trained to model highly 
complex systems. With the successful application of DL in 
AlphaGo (14,15), the power of DL has been validated in a 
variety of applications (16-22).

In recent years, DL applied to regression tasks has been 
reportedly capable of solving multi-parameter optimization 
and curve fitting problems (21-24). However, learning a 
large number of model parameters and network weights is 
a complex optimization problem itself due to its network-
like nature. Convergence may be difficult to achieve when 
applying DL to learn multiple model parameters (21,24).

In human learning, feedback from past activity is 
important. In a similar vein, Reinforcement Learning 
(RL) is a powerful, agent-based artificial intelligence (AI) 
algorithm in which the agents learn the optimal set of 
actions through their interaction with the environment. RL 
is able to make appropriate responses because of reinforcing 
events. These events can include human feedback to 
responses through rewards and punishments as quantified 
by a value function. The goal of RL is to take actions that 
maximize the value function at every step (14,15,24-29). In 
this way, past experiences can guide RL in learning from 
new experiences that are still similar to previous ones.

Q-learning (QL) (30) is a model-free, agent-based RL 
method that can adapt to an environment through utilizing 
prior knowledge learned from past experiences. The central 
idea of QL is its Q-value function. The algorithm seeks to 
be rewarded while also avoiding punishment for its current 
and next action in the form of an increasing value function. 
Due to a cumulative feedback mechanism (30), the agent 
learns to associate the optimal action for each state (31) in 
pursuit of increasing its value function. QL is widely used in 
decision-making, gambling, and random event processing 
problems (32-34). Combinations of DL and RL/QL have 
been successfully implemented to solve complex human 
activities, such as AlphaGo for the board game “Go” (14,15). 
A deep Q-Network can learn from prior human experience 
and predict the value function through training (14).

The aim of this paper is to develop a novel Deep 
Q-learning of Model Parameters (DQMP) algorithm that 
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finds a global optimum for estimating multiple model 
parameters when the objective function is complex and 
nonconvex. Inspired by RL methods, a novel idea for 
parameter optimization was first formulated as a decision-
making problem for selecting parameter configurations 
through a reward/punishment mechanism. Furthermore, 
to combine data with prior knowledge, a Deep Reward 
Network (DRN) was proposed to learn the global reward 
function. This process integrated both visible and hidden 
state feedbacks. Then, a novel DQMP scheme was proposed 
to maximize the Q-value function. This strategy guides the 
DQMP search towards the global optimum.

DQMP was validated on functions as Fourier series, 
exponential series expansion functions, and harmonic 
signals, all of which are widely used to characterize a 
variety of signals and experimental data. From the signals 
and experimental data, model parameters or coefficients 
that depict the physical phenomenon can be extracted and 
imaged.

Methods

With given experimental data and fitting models, the goal 
was to extract the global model parameters. No patient data 
or animal data were used in this paper. The ideal dataset in 
this work was generated by function f and then degraded by 
adding different levels of noise to generate the experimental 
data.

Let Y denote the experimental data. Suppose Y can 
be modeled by ( );Y f t θ= , where [ ]1 2, , , kθ θ θ θ= …  is the 
k-dimensional true parameters. Let θ̂  be the estimates of θ. 
Accordingly, the data predicted by θ̂  is given by ( )ˆ ; ˆY f t θ= .  
Given the experimental data Y and the specific model 
expression ( );f t θ , the goal is to estimate θ by solving the 
optimization problems through fitting the experimental data 
Y to the model f. When Ŷ  fits to Y closely, θ̂  is assumed to 
be close to θ. However, when θ is the k-D parameter vector 
and the data fitting errors are nonconvex, there may be 

many subsets of θ̂  that satisfy Ŷ Y . Therefore, parameter 
fitting should also be included to guide global searching. 
A new method of the global optimization is proposed by 
minimizing the following objective function:
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where β1 and β2 are weights that balance the contributions 
of the two fitting error terms describing data fittings and 
model parameters, respectively.

In Eq. [1], the visible term involves measurable data that 
depends on the parameters, whereas the hidden term directly 
evaluates the parameters themselves.

Inspired by QL, a novel idea of updating k-D parameters 
resembling a chess move in a k-D chess board was proposed. 
In parameter space, both visible (data fitting) and hidden 
(parameter fitting) states were given reward/punishment 
values. For a k-parameter optimization problem, the 
next action was subdivided into 3k possible moves in the 
parameter space, comparable to a chess move in a k-D board 
game. Each parameter had three possible independent 
candidate actions, including unchanged (0), move forward 
(+), and move backward (−). Selection of the next candidate 
move in parameter space was based on the state of the 
current model fit, which included both the visible and 
hidden state feedbacks. In the fitting problem, the state 

is referred to ( ){ }: ;ˆ ˆ,s θ f t θ  and includes the visible state 

( ); ˆf t θ  in which the difference between current data and the 

desired data is measured by ( ) ( ); ˆ;f t θ f t θ−  and the hidden 

state θ̂  in which the errors between the current parameter 
configuration θ̂  and the true parameter configuration θ are 
measured by ˆθ θ− . In this way, we elegantly converted the 
parameter optimization to a decision-making problem by 
minimizing Eq. [1] through a set of state-action decisions in 
parameter space.

To help understand the new idea, Figure 1 illustrates 
the global searching scheme in 3-D parameter space. The 

current parameter state, illustrated as the yellow dot θ̂ , can 
move in one of 27 possible directions, illustrated as red dots, 

1 27
, ,ˆ ˆ

a aθ θ…  in the next step by taking corresponding actions 

1 27, ,a a… . For each move, a value function will be rewarded. 

In this way, we formulate k-parameter optimization to 
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Figure 1 Schematic illustration of a global search of state actions in a 3-D parameter space. The horizontal and vertical axes are the basis of 

the three parameters θ1, θ2 and θ3. The yellow center point denotes the current parameter configuration θ̂ , and the 27 edge points are the 
candidate actions. The decision to select an action is based on maximizing the Q-value policy. The orange star point denotes the next move 

through action a19 that may maximize the Q-value function. The current curve in every step can be generated by function ( )ˆ ; ˆY f t θ= . 
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be the decision-making of a k-D board game. Therefore, 

updating θ̂  in the parameter space resembles a chess move 
selection in the k-D board game by maximizing Q-value 
policy.

The Q-value is central to the QL method. QL is a 
powerful scheme for agents to learn to act optimally by 
experiencing the consequences of actions judged by a long-
term discounted reward, in which actions are selected to 
obtain the maximum benefits Q-value.

QL consists of a set of states S, a set of actions A, and a 
reward function r:S × A→R+. It uses the Q-value to affect 
the feedback produced by the actions of every step. The 
policy π maps states to actions as π: S→A. The state-action 
series operates as s→a→s'→a'. The Q-value is the expected 
discounted reward for executing action a at state s and the 
next step optimal action a' at state s' by episodes thereafter. 
The policy is maximizing Q-value by (30):

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 , , , max , ,t t t t t
a

cumulative immediate future

Q s a Q s a r s a Q s a Q s aξ γ ′
+

 
 ← + + −
 

′ ′

 
 

 [2]

where ( ) ( ),tQ s a  is the cumulative reward, ( ) ( ),tr s a  is the 

immediate reward, and ( ) ( ),tQ s a′ ′  is the future reward.

( ),r s a  is the immediate reward of selecting action a at 
distinct state s. The reward can be any positive value for 
an action. The reward function should be a decreasing 
function of the fitting errors in the fitting problems. ( ),Q s a′ ′  

is the Q-value found by selecting the next state-action 

pairs ( ),s a′ ′ . [ ]0,1ξ ∈  is the learning rate and [ ]0,1γ ∈  is the 
discount factor. The recommended value of ξ is 0.6 and of r 
is 0.5.

For global optimization of (1), the optimal action was 

taken to increase a value function as θ̂ θ→ . Then, the 
global parameter search was formulated to be a state-
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action decision-making problem in the parameter space 
by increasing the Q-value function policy. The parameter 

update was formulated to be ( )argmax ,
i

i
a

a Q s a=  at every 

step, and parameters were updated by ˆ ˆa

aθ θ θ← +∆  as 

indicated in the left table of Figure 1. aθ∆  are adaptive steps. 

In the experiment, we set  0. 1ˆ0aθ θ≈∆ .

The Q-value has a crucial role in QL. To guide the 
global parameter search, the Q-value function should 
integrate both the data fitting (visible) and parameter fitting 
(hidden) feedbacks. As indicated in Eq. [1], data fitting 
errors can be calculated directly, but the hidden parameter 
fittings are unknown and should be learned.

In order to learn the prior rewards from hidden states, 
a DRN was proposed to learn the reward function whose 
global constraints are absorbed from both visible and hidden 
states. In this way, a novel DQMP algorithm was proposed, 
where a DRN was proposed to predict global reward values 
comprising both the data (visible) and parameter fitting 
(hidden) feedbacks. DQMP iteratively updated the state 
through convergence such that a global solution could be 
found following the maximizing Q-value policy.

DQMP

The Q-value is a weighted sum of the immediate reward, 
cumulative reward, and future reward. The learning of 
the reward function r(s,a) that rewards both visible and 
hidden state feedbacks is crucial to guide the global search. 
Let Rd denote the data fitting reward (visible) and Rθ the 
parameter fitting reward (hidden). The reward function 
r(s,a) was formulated as Eq. [3], where the global reward Rg 
combines both the hidden reward Rθ and visible reward Rd, 
as expressed by Eqs. [4-1], [4-2] and [4-3].

( ) ( )g g g dr s,a β R 1 β R= + −  [3]

g θ θ d dR β R β R= +  [4-1]

2
θ

θ̂ θ
R 1

k

−
= −  [4-2]
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max

d min max

min

e

R , e

0,

1,

e

e

∆ >

∆ ≤ ∆ ≤



= 

< ∆



g  [4-3]

[ ]0,1gβ ∈  is the weight to balance the global reward and the 

data fitting reward. [ ], 0,1dθβ β ∈  are adjustable weights for 

Rθ and Rd, respectively. k is the number of parameters. If θ̂  
and θ are far apart, Rθ is negative to act as punishment. ( )g ⋅  
is a decreasing function, emin and emax are the two thresholds 

such that g(emin) =1 and g(emax) =0, ( ) ( )( )2

10log /g C∆ = ∆ , and 

C is a normalized constant to make ( )g ⋅  within [0,1] and 

is recommended to be 100. Let ( ) ( ) ( )1 , 2 , ,Y y y y m = …  ,  

( ) ( ) ( )1 , 2 , ,ˆ ˆ ˆ ˆY y y y m = …  , then ( ) ( )
1

ˆ1 m

i

y i y i
m =

∆ = −∑  is the sample 

mean value of the Mean Absolute Error (MAE) between the 
current data and desired data. The recommended value of 
βg is 0.02, βθ is 0.6, βd is 0.4, emin is 10−10, and emax is 1.

Learn the hidden feedbacks via the DRN
The DRN was designed to predict Rg, which consisted of 
rewards from both visible and hidden states. The schematic 
illustration of DRN is shown in Figure 2.

The structure of the DRN is shown on the left of Figure 2. 
A Long Short-Term Memory (LSTM) neural network was 
used to construct the DRN. LSTM is a special Recurrent 
Neural Network (RNN) that is appropriate for dealing 
with sequence data modeling. Compared to an ordinary 
RNN, LSTM architecture is better at dealing with long 
time sequence data, allows for unlimited state numbers, 
and avoids problems related to vanishing and exploding 
gradients (35). The input of the DRN was the difference 

between the current data and desired data ( )( )ˆs Y Y∆ = − , 
followed by several LSTM layers and fully connected layers. 
All of the hidden layers are followed by rectified linear unit 
(ReLU) nonlinearity. The outputs of the DRN were the 

global rewards { }( )1
ˆ ˆ, , 3k

g gnR R n… =  for each action. The 

depth of the DRN depends on the number of parameters.
To prevent overfitting, the dropout rate was designed 

such that it increased with the depth of network. Moreover, 
a batch norm was added before the fully connected layer to 
normalize the diverse parameters and was then followed by 
a ReLU nonlinearity. The learning rate increased with the 
depth of the network. The recommend dropout rate was 
0.1–0.3 and the learning rate was 5×10−4–1×10−3.

The loss function LReward of the DRN was given by:

( )
1

, ˆ ˆ
n

Re gward g ii
i

L R R R R
=

= −∑g g  [5]

The generation of the training data set is displayed on 
the right of Figure 2. First, two parameter configurations, 

true parameter θ and current parameter θ̂ , were randomly 
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Figure 2 Schematic illustration of the DRN to learn and predict the global reward. The right figure shows the flow of generating training 
data and the left figure shows the structure of DRN, which has several LSTM layers followed by fully connected layers. All of the hidden 
layers are followed by ReLU nonlinearity. DRN, Deep Reward Network; LSTM, Long Short-Term Memory; ReLU, rectified linear unit.
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generated in the parameter space. Second, the two sets of 
data, generated by θ and θ̂  according to function f in Eq. [1], 
exactly simulated the desired experimental data ( );Y f t θ=  
and the immediate data ( )ˆ ; ˆY f t θ= , respectively. Then the 

difference ( ) ˆs Y Y∆ = −  was input to the DRN. Next, the 

current parameters θ̂  performed actions ( )1, ,ia i n= …  to 
achieve n candidate parameter configurations ( )1,ˆ ,

iaθ i n= … . 
With that, the corresponding immediate data was generated 

by ( ); ˆ
iaf t θ . Then, for each candidate action ai, using Eqs. 

[4-2] and [4-3], one can calculate Rd, Rθ, and Rg. The map 
from the input Δ (s) and output ( ) ( ), , 1, , ?g iR s a i n= …  was 
set up by the DRN as illustrated on the left of Figure 2. As 
Rg includes both the curve fitting reward Rd and parameter 

fitting reward Rθ, the DRN can predict the global reward. 
In this way, the method to reward the current fitting by 

doing actions ( )1, ,ia i n= …  was recorded in global rewards 
( ),g iR s a . In total, 1,000,000 pair-wise parameters θ and θ̂  

were generated in the training set. We randomly split the 
datasets, with 80% for training, 10% for validation, and 
10% for testing sets. After training, the DRN can predict 
the global reward Rg when provided with the current and 
desired experimental data in every immediate fitting step.

Q-value integrating rewards from both hidden and 
visible states
Applying Eqs. [3], [4] to [2], a novel Deep QL method was 
proposed which updated the Q-value as expressed by:

( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( ) ( )1

,

, , 1 max , ,
g

t

t t t t
g d d g d a

R

r s a

Q s a Q s a R R R Q s a Q s aθ θξ β β β β γ ′
+

 
 
 

← + + + − + − 
 
 
  

′ ′




 [6]
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The idea of QL was similar to decisions in a Chess 
or Go game. Before one moves by choosing a candidate 
action a, one must consider the value function it brings 
to the current and all possible candidate next steps. In the 
immediate fitting environment, the current state s is the 
immediate curve denoted by ( ): ; ˆˆs Y f t θ=  and the next state 

s' is obtained by taking action a from the immediate curve 

Ŷ . That is, the next step curve ( );ˆs :Y f t θ′ ′ = ′ . Whereby 
  ˆ ˆa

aθ θ θ′← + ∆ , 
a

s s′←  is obtained. Q(s',a') is the value function 
for the next state-action pairs (s',a').

The global reward Rg for every state-action pair can be 
learned and predicted by the DRN. In this way, the Q-value 
integrated rewards from both hidden and visible states as Rg 
contains both data fitting and parameter fitting rewards.

DQMP algorithm

A schematic illustration of DQMP is shown in Figure 3. 

θ̂  denotes the current estimates. Given the immediate 

data determined by ( ); ˆf t θ  and the desired data Y, the 
global reward value Rg was predicted by the DRN. The 
global search of parameter θ̂  was conducted via parameter 
updating through maximizing the Q-value policy. In each 

step, action a was selected by ( ): argmax ,
a

a a Q s a
′

← ′ , and θ̂
was updated by ˆ ˆ ˆa

aθ θ θ← +∆ .

Ideally, Q(s',a') should be maximized instead of r(t)(s',a'). 
However, global fitting is possibly an infinite state, given 
that (s',a') has been visited previously. So, Q(s',a') may 
be taken from the Q-table. However, if (s',a') is visited 
for the first time, computation of Q(s',a') will result in a 
recursive process. To improve the computation efficiency, 
r(t)(s',a') was optimized instead of Q(s',a'). As the Q-value is 
inherently the cumulative reward function, the degradation 
is reasonable.

The pseudo-code of DQMP is provided in Algorithm 1. 
The algorithm iteration stops until the curve fitting error 

∆  is small enough or the maximum number of iterations 
has been reached.

Algorithm 1 Algorithmic flow of Deep Q-Learning of Model Parameters (DQMP). ( )DQMP ,θ̂ Y k=

Input:

Y - Experimental data; ( );Y f t θ= ; f is the mathematical modeling function.

k - The number of model parameters to be estimated.

where θ are true k-D parameters

Output:

θ̂  – Estimated global optimal k-D parameters approaching the global optimal solution θ

1: j =1

2: Initialize Q-table

3: Initial guess of ( ) ( )1 1ˆ ˆ/: /θ θ θ  can be conducted by any fitting algorithm

4: while (-convergence)

5: ( ) ( )( )ˆˆ ;j jY f t θ=

6: ( )( )DRN ˆ jR Y Y= −g  // DRN is Deep Reward Network, see section Learn the hidden feedbacks via the Deep Reward Network, Rg is a vector

7: for all actions a:(a=a1,…,a3k)

8: ( ) ( ) ( )
,

1// ˆ ˆ,j j
d a a aR g Y Y Y

m
← ∆ ∆ = −  is the estimation of Y when selecting action a

9: ( ) ( ), , ,, 1 //g g a g d a g ar s a R R Rβ β← + −  is the global rewards corresponding to action a

10: call ( )( )DRN ˆ j
aY Y−  to predict Rg,a'

11: for all next actions ( )1 3
 , , ka a a a′ …′ = ′′:

12: ( ) ( ), ,, 1g g a g d ar s a R Rβ β′ ′−′ ← +′
13: end

14: 
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 1 1 1, , , max , ,j j j j j

aQ s a Q s a r s a Q s a Q s aξ γ− − − −
′ ′ ← + + − ′ 

15: end

16: choose action ( ): argmax ,aa a Q s a←

17: ( ) ( )1ˆ ˆ ˆj jθ θ θ+ ← + ∆ a

18: 1j j← +
19: end

20: return ( )ˆ ˆ jθ θ=
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Figure 3 Schematic illustration of the DQMP algorithm, where DRN is used to predict global rewards Rg. DQMP, Deep Q-Learning of 
Model Parameters; DRN, Deep Reward Network.
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Results

First, the convergence of the proposed DRN was evaluated. 
Figure 4 provided the loss function of the DRN training. In 
this work, the DRN was designed with 5–7 LSTM layers 
and 4 fully connected layers, for parameter numbers of 3, 5, 
and 6, respectively.

It can be seen that f1 converged slowly due to the 
maximum parameters to be trained, while f4, f5, and f6 
converged faster due to fewer training parameters. In 
general, the loss values of the six functions all converged 
after 12 epochs. The dropout rate was designed to increase 
with the depth of network. For the first three layers, the 
dropout rate was set as 0.1. For Layers 4 and 5, the dropout 
rate was set as 0.2, and for Layers 6 and 7, the dropout 
rate was set as 0.3. The learning rate was larger with the 
depth of the network. Specifically, the learning rates for 
training f1–f6 were set to 1×10−3, 8.8×10−4, 8.8×10−4, 6.5×10−4, 
6.5×10−4, and 5×10−4. respectively. From here, the proposed 
DQMP method was used to estimate model parameters of 
general functions.

k-D parameter search evaluation on several general 
functions

Fourier series, exponential series expressions, Boltzmann 
integral expressions, and harmonic signals are representative 
forms that are widely used to characterize a variety of 
signals and physical behaviors of matter. From these 
representative forms, model parameters that depict the 
physical phenomena can be extracted and imaged.

The goal was to estimate the model parameters, or 
coefficients ak and bk by using the global optimizer through 
fitting model functions to experimental data.

The simulation data was generated with the parameter θ by 
six functions, f1 to f6. We demonstrated the DQMP using the 
above functions as provided in Table 1. The DQMP was also 
compared with QL and the Least Squares Method (LSM).

The representative curve fitting is provided in Figure 5. 
The blue circles denote the representative experimental 
data, whereas the corresponding fitting data predicted by 
the estimated parameters are shown by red lines. As shown 
in Figure 5, all three fitting methods can fit the data with 

Figure 4 The convergence of the Deep Reward Network evaluation. The loss functions of the training data and validation data for f1–f6 are 
provided in (A-F). (A) Training and validation loss for Fourier function. (B,C) Training and validation loss for Exponential function. (D) 
Training and validation loss for Relaxation function. (E) Training and validation loss for Creep function. (F) Training and validation loss for 
Harmonic equation function.
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R2>0.98. However, the fitting parameters were different 
among the three methods. DQMP can closely approach 
the global true parameters. This can be further confirmed 
by the statistical analysis on the fitting of 500 randomly 
generated data curves, in which the random Gaussian noise 
with a noise level of 1% (variance=1%, maximum value 
of |f|) was added to the data. The parameters estimated by 
the three methods are provided in Table 2. For each fitting 
method, the mean relative errors for all parameters from 
six functions, specifically from 500 randomly generated 
curves’ data for each of the six functions, were calculated. 
The statistical analysis on fitting errors was conducted. As 
shown in Figure 6, parameters estimated by DQMP had 
the smallest relative errors. However, QL with only data 
fitting error constraints, i.e., no parameter constraints 
were introduced and Rg=0, performed worse than DQMP. 
Similarly, the LSM algorithm for extracting parameters 
showed the largest deviation to the ideal values which 
performed worse than the other two methods. All in 
all, the proposed DQMP method not only yielded a 
precise fit between the simulated data and the prediction 
curves across all functions, but also yielded precise 
fitting parameters whose relative errors were about 4% 
for the worst case, whereas the relative errors of the 
fitting parameters by QL and LSM were about 17% and 
21%, respectively. Overall, the fitting parameters by the 
DQMP were the best approach to global solutions, as the 
parameters were the most closest to true ones.

k-D parameter search evaluation on imaging applications

The following cases provide the simulation imaging on f4 
and f5 functions, where the parameters (a1,a2,a3) are denoted 
by [E0,α,τ], respectively.

The simulation image was generated with four sets of 
parameters [20000, 0.7, 800], [40000, 0.5, 600], [60000, 0.3, 
400] and [80000, 0.1, 200] by f4 and [2000, 0.7, 80], [4000, 
0.5, 40], [6000, 0.3, 60] and [8000, 0.1, 20] by f5 in the four 
8×8 sub-region. As shown in Figure 7 and Figure 8, the 
corresponding four ideal curves were generated by f4 and 
f5 and were further degraded by adding random Gaussian 
noise (variance =10−6) to simulate the 256 experimental 
noisy curves.

As shown in Figure 7 and Figure 8, the first line provides 
the ideal curve and images. The 2nd–4th lines provide the 

k-D parameter search imaging by the proposed DQMP, 
QL, and LSM algorithms. The representative fitting of the 
noisy data was shown in the first column. The estimated 
parameters were imaged as shown in the 2nd–4th column. 
From Figure 7B and Figure 8B, all 256 noisy curves were 
fitted with R2≥0.97, and we can see the searched parameters 
were close to the ideal values and robust to Gaussian 
noise. The images of elastic modulus E0 and fluidity α were 
almost uniform. The viscosity image of τ had slight noise 
fluctuation. All three imaged parameters can reflect the true 
parameters well. The k-D parameter search evaluation on 
imaging applications confirmed the accuracy and robustness 
of the proposed DQMP, indicating its potential of finding 
parameters close to the global solutions.

Discussion

The efficiency of the proposed DQMP algorithm was 
demonstrated by the curve fitting of general functions f1–
f6 (Figure 5) and simulation imaging (Figure 7, Figure 8). 
The convergence of the algorithm was evaluated in Table 2 
and Figure 6, which showed that the parameters estimated 
by the DQMP algorithm were the closest to the global 
solutions for all cases when compared to other methods.

Yet, there are several issues that can be improved. First, 
the current DRN is simple. For many parameters, a more 
complex deep network may be needed to train the global 
reward function in a high dimensional parameter space. 
Second, the range of the parameters should be covered in 
the training process, otherwise the convergence of the DRN 
may be poor for the validation data. The fitting problem is 
usually in an engineering context, so we can more precisely 
cover the realistic range of fitting parameters from previous 
experiences when approaching a similar problem. Moreover, 
βθ, βd and βg are weights to balance the contribution from 
the parameter fitting rewards, data fitting rewards, and 
DRN, respectively. In this work, recommendations for 
these parameters were provided through a combination of 
experience and trial-and-error. These considerations for 
parameter ranges may add to the versatility of the algorithm 
but may also bias the results.

While the proposed DQMP method was tested in 
general functions in this study, the proposed frameworks 
can be generalized to global optimization for many other 
complex, nonconvex functions. It can also be used in 
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Table 1 General functions with multiple parameters

Function Function expression Function description

Fourier series ( ) ( ) [ ]1
1

cos 2 π , 0, 2 , 3
=

= + ∈ =∑
N

k k
k

f t a k t b t N The Fourier series is widely used in signal processing and signal 
analysis. Through Fourier transform, any signal satisfying the 
Dirichlet conditions can be approximately expressed in multiple 
Fourier series form

Exponential 
series ( ) ( ) [ ]2 0

1

exp / , 2,50 , 2
=

= + − ∈ =∑
N

k k
k

f t a a t b t N
Exponential functions are widely used to describe a time-
dependent viscoelastic behavior, so as to obtain the mechanical 
parameters of the tested substance

( ) ( ) [ ]3 0
1

exp / , 2,50 , 2
=

= − − ∈ =∑
N

k k
k

f t a a t b t N

Boltzmann 
hereditary 
integral 
operators

( ) ( ) ( ) [ ]4 , 0,5
ε

−∞
= − ∈∫

t d t
f t G t u du t

du
 

 
 
Where 
 

( ) ( )
( )

2

3
1

2

/
1

Γ 1

at a
G t a

a

− 
= + 

−  
 

 
 
( ) ( )1

0
Γ , 0,

+∞ − −= ∈ +∞∫ x ux u e du x  
 
And loading ( )tε  is set as:
 

( )
4

4

2.5 10 , 0 2
5 10 , 2 5

t t
t

t
ε

−

−

 × ≤ <
× ≤ ≤

⋅
= 


 

The Boltzmann integral is a superposition principle of which can 
express the physical behaviors of soft matter under different 
excitation

( ) ( ) ( ) [ ]5 , 0,5
σ

−∞
= − ∈∫

t d t
f t J t u du t

du

 

Where
 

( )
2

2 ,1
1 3

1 1
     = − −      

a

a
tJ t

a a
E  

 
 
 

( ) ( ) ( )
1 2, 1 2

0 1 2

, , 0,
Γβ β β β

β β

∞

=

= ∈ +∞
+∑

k

k

zz
k

E  
 
 
( ) ( )1

0
Γ , 0,

+∞ − −= ∈ +∞∫ x ux u e du x  
 
And loading ( )tσ  is set as:
 
 ( )

4

4

2.5 10 , 0 2
5 10 , 2 5

t t
t

t
σ

−

−

 × ⋅ ≤ <
= 

× ≤ ≤

Harmonic 
equation

( ) ( ) ( ) ( ) [ ]6 cos sin , 0,1λ λ= = + ∈c su t f t u t u t t  
 
Where

( )
( )

2

2

1 2

2 1

1 1 3 2

2 3 2

cos / 2

sin / 2
1, 1, 2

ϕ ϕ
ϕ ϕ

ϕ λ

ϕ λ

λ

= +
= − +

= + π

= π

= = = π

c c s

s c s
a

a

c s

u q q
u q q

a a a

a a
q q

 

And loading q(t) is set as: 

( ) ( ) ( ) [ ]cos sin , 0,1λ λ= + ∈c sq t q t q t t

Harmonics signal are used to describe a line-elastic or viscoelastic 
behavior of the soft matter, when the input signal and the output 
signal are both harmonic signals

ak, bk denote the multiple parameters to be extracted when fitting experimental data to functions.
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Figure 5 Comparison of fittings of the simulation data generated with parameters θ by six functions. The curves in 1st–3rd columns are the 
fitting results by the proposed DQMP, QL, and LSM, respectively. The simulated data are drawn with blue circles and the predicted fitting 
data are drawn with red lines. DQMP, Deep-Q Learning of Model Parameters; QL, Q-Learning; LSM, Least Squared Method.
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Table 2 Estimated parameters by different fitting algorithms, each based on 500 randomly generated noisy curves

Estimated parameters DQMP QL LSM

f1

a1=10 10.0005±0.0572 10.0024±0.0273 10.0025±0.0321

b1=1.5708 1.5708±0.0005 1.5707±0.0028 1.5707±0.0029

a2=3 3.0003±0.005 3.0014±0.0267 3.0016±0.0268

b2=2 2.0003±0.00010 2.0034±0.00023 2.0034 ±0.00025

a3=15 14.9995±0.0032 14.9992±0.0262 14.9993±0.0269

b3=1.0472 1.0472±0.0001 1.0473±0.0019 1.0473±0.0023

f2

a0=5 5.0000±0.0035 5.0004±0.0095 4.9992±0.0100

a1=1 1.0145±0.0379 1.0291±0.1319 1.0571±0.2367

b1=3 3.0318±0.1533 3.0923±0.5176 3.1038±0.6085

a2=4 4.0017±0.0152 3.9840±0.1464 3.9586±0.1927

b2=8 8.0001±0.0961 8.0109±0.2234 8.0360±0.2482

f3

a0=5 5.0001±0.0024 5.0003±0.0055 5.0007±0.0072

a1=1 1.0038±0.0873 1.0241±0.1256 1.0596±0.2108

b1=3 3.0142±0.2423 3.0441±0.3028 3.0846±0.5147

a2=4 3.9979±0.0164 3.9824±0.0891 3.9475±0.2191

b2=8 8.0002±0.0622 8.0155±0.1385 8.0469±0.2402

f4

a1=3,000 3,000.0139±1.9903 3,000.6130±43.6399 3,004.1580±77.6099

a2=0.2 0.2000±0.0101 0.1997±0.0151 0.1997±0.0172

a3=20 20.0871±0.3967 20.3162±3.0011 20.5077±4.9772

f5

a1=3,000 3,001.4350±2.4677 2,998.2520±44.1450 3,002.9460±80.4765

a2=0.2 0.2001±0.0149 0.2008±0.0190 0.2007±0.0191

a3=20 20.0910±0.2913 20.2999±3.0090 20.4573±5.1680

f6

a1=290,000 299,958.04±172.66 289,975.92±864.23 289,970.78±1,470.50

a2=0.6 0.5965±0.0189 0.5813±0.0423 0.5673±0.0804

a3=68,000 68,104.37±233.18 68,401.24±518.50 69,414.44±1,824.72

Values are shown as mean ± standard deviation. DQMP, Deep-Q Learning of Model Parameters; QL, Q-Learning; LSM, Least Squared 
Method; f, function. 
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Figure 6 The plot of relative errors of model parameter fitting based on 6 functions f1 to f6. Data are represented as mean ± standard 
deviation. DQMP, Deep-Q Learning of Model Parameters; QL, Q-Learning; LSM, Least Squared Method.
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physical parameter imaging, particularly in the field of 
radiological imaging. Due to DRN, DQMP is expected to 
obtain reliable estimations for multiple parameter imaging 
as it combines both the parameter fitting and curve fitting 
rewards to guide the global search. It should be noted 
that for some insensitive parameters such as viscosity τ, 
variation from values of tens to hundreds has very little 
influence on the curve change (36). Therefore, the imaging 
may be noisy. To address this issue, future investigation 
will be conducted by adjusting the contribution of the 
parameter fitting reward and curve fitting reward in the 
DRN training.

Conclusions

This is the first work to convert a model parameter 
optimization task into a state-action decision-making task 
in the k-D parameter space. We leveraged the integration 
of QL with DL to build a model designed to learn global 
reward values from both visible (data fitting) and hidden 

states (parameter fitting) and proposed a DQMP scheme 
for global parameter optimization for any complex, 
nonconvex function. Through DQMP, k-D parameter 
searching in each step resembled the decision-making 
of action selection from 3k configurations, just like a 
chess move in a k-D board game. The proposed DQMP 
combined prior knowledge through DRN. An appropriate 
decision was made by maximizing the Q-value, which 
combined the current and future reward functions from 
both visible and hidden states, so as to iteratively update 
parameters toward the global solution. In summary, the 
novelty of the work is, as follows:
	A model parameter optimization problem was 

converted into a state-action decision making 
problem in the k-D parameter space, which 
resembled the decision-making of a k-D move game.

	To guide global searching, a DRN was proposed 
to learn the global reward from both hidden and 
visible states.

	A novel DQMP method integrated both current and 
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Figure 7 Representative curves generated by f4 with parameters [20000, 0.7, 800], [40000, 0.5, 600], [60000, 0.3, 400] and [80000, 0.1, 200] 
for 4 regions. The fits of noisy curves by DQMP, QL, and LSM algorithms were shown from top to bottom. The corresponding viscoelastic 
parameters [E0, α, τ] in the 16×16 matrices (left to right) for simulation parameters (A), and fitted parameters using (B) DQMP, (C) QL, and (D) 
LSM algorithms. DQMP, Deep-Q Learning of Model Parameters; QL, Q-Learning; LSM, Least Squared Method.
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future global reward functions, which lead to global 
searching iteratively by maximizing Q-value in the 
parameter space.

The proposed DQMP method has demonstrated 
capability of finding global optimal model parameters 
and shows potential for the extraction or imaging of 

physical parameters in many applications. Overall, DQMP 
can accurately find global model parameters with high 
accuracy and consistency, both of which are crucial for the 
development of new fitting and imaging algorithms. This 
method shines a light on global optimization of multiple 
parameters in a variety of fitting problems.
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Figure 8 Representative curves generated by f5 with parameters [2000, 0.7, 80], [4000, 0.5, 40], [6000, 0.3, 60] and [8000, 0.1, 20] for 4 
regions. The fit of noisy curves by DQMP, QL, and LSM algorithms were shown from top to bottom. The corresponding viscoelastic 
parameters [E0, α, τ] in the 16×16 matrices (left to right) are (A) simulation parameters image, (B) imaged parameters by DQMP, (C) by QL, 
and (D) by LSM algorithms. DQMP, Deep-Q Learning of Model Parameters; QL, Q-Learning; LSM, Least Squared Method.
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