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Background: The aim of this study was to develop a radiomics machine learning model based on 
computed tomography (CT) that can predict whether thymic epithelial tumors (TETs) can be separated 
from veins during surgery and to compare the accuracy of the radiomics model to that of radiologists.
Methods: Patients who underwent thymectomy at our hospital from 2009 to 2017 were included in the 
screening process. After the selection of patients according to the inclusion and exclusion criteria, the cohort 
was randomly divided into training and testing groups, and CT images of these patients were collected. 
Subsequently, two-dimensional (2D) and three-dimensional (3D) regions of interest were labelled using 
ITK-SNAP 3.8.0 software, and Radiomics features were extracted using Python software (Python Software 
Foundation) and selected through the least absolute shrinkage and selection operator (LASSO) regression 
model. To construct the classifier, a support vector machine (SVM) was employed, and a nomogram was 
created using logistic regression to predict vascular inseparable TETs based on the radiomics score (radscore) 
and image features. To assess the accuracy of these models, area under receiver operating characteristic 
(ROC) curves of these models were calculated, and differences among the models were identified using the  
Delong test. 
Results: In this retrospective study, 204 patients with TETs were included, among whom 21 were 
diagnosed with surgical vascularly inseparable TETs. The area under ROC curve (AUC) of the 2D model, 
3D model, 2D + 3D model, and radiologist diagnoses were 0.94, 0.92, 0.95, and 0.87 in the training 
cohort and 0.95, 0.92, 0.98, and 0.78 in testing cohort, respectively. The Delong test revealed a significant 
improvement in the performance of the radiomics models compared to radiologists’ diagnoses. The logistic 
regression selected 3 image features, namely maximum diameter of the tumor, degree of abutment of vessel 
circumference >50%, and absence of the mediastinal fat layer or space between the tumor and surrounding 
structures. These features, along with the radscore, were included to develop a nomogram. The AUCs of this 
nomogram were 0.99 in both the training set and testing set, and the Delong test did not find a significant 
difference between ROC plots of the nomogram and radiomics models.
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Introduction

Thymic epithelial tumors (TETs) are the most common 
neoplasms in the anterior mediastinum, accounting for at 
least 50% of all anterior mediastinum neoplasms (1). To 
guide management of TETs, several staging systems have 
been developed, including the Masaoka-Koga classification 
and the tumor-node-metastasis (TNM) staging system from 
the International Thymic Malignancies Interest Group 
(ITMIG) and International Association for the Study of 
Lung Cancer (IASLC) (2). Generally, surgeons prefer 
minimally invasive thymectomy over open thymectomy 
due to its lower blood loss and fewer postoperative 
complications, especially in the respiratory system and 
heart (e.g., pneumonia, pleural effusion, and arrhythmias) 
(3-5). However, current clinical practice and research have 
shown that the resectability of TETs and the selection 
of surgical methods mainly relies on the evaluation of 
tumor metastasis, invasiveness, and tumor separability 
from surrounding organs and blood vessels. In cases where 
tumors invade surrounding blood vessels, replacement of 
the vessels may be necessary, while tumors that invade the 
lungs may require lung resection (6).

Computed tomography (CT) is the standard noninvasive 
diagnostic imaging modality used to assess the relationship 
between the tumor and surrounding vasculature. Recent 
research has focused on predicting vascular invasion in 
tumors using CT images. Two studies conducted on 
pancreatic cancer demonstrated that morphological 
changes in blood vessels and the length of contact between 
the tumor and the vessels were risk factors for vascular 
invasion (7,8). A study investigating mediastinal great 
vein invasion of TETs identified the irregularity of tumor 
margins, the interface between the tumor and great vein, 
and the absence of soft tissue in the interface as potential 
indicators of vascularly invasive TETs (9). However, merely 
determining whether a tumor has invaded the veins is not 
sufficient to inform operation-related decision-making. 
In clinical practice, when the tumor is tightly adherent to 

the great vessels due to the inflammatory reaction of the 
tumor, the surgeon may resect a portion of the vessel and 
perform angioplasty to achieve an R0 resection and prevent 
intraoperative and postoperatively bleeding. This can 
occur even if no vascular invasion is found pathologically, 
especially in veins with a relatively thin wall, such as the 
superior vena cava (SVC) and the left innominate vein (LIV). 
Given the technical challenges of vascular replacement 
during endoscopic surgery, misjudging the separability of 
the tumor and large blood vessels can present a significant 
obstacle for surgeons, further complicating the procedure 
and potentially leading to an increased conversion rate to 
thoracotomy.

Radiomics analysis is a radiological data-centric field, 
which entails extracting large amounts of image-related 
features and using these features to construct novel 
biomarkers for clinical endpoints. It is worth noting that 
unlike the interpretable semantic features extracted by 
radiologists, radiomics features are mostly nonsemantic 
and cannot be easily interpreted independently. In recent 
years, radiomics models have been developed in multiple 
solid tumors to predict pathological type, clinical stage, 
and prognosis (10-15). In TETs, radiomics analysis has 
been able to predict TNM stage and differentiate the type 
of thymic cyst (16-23). However, currently, no radiomics 
model exists that can predict surgically inseparable TETs 
from the great vein. Recently, radiomics analysis has made 
it possible to predict superior mesenteric artery invasion in 
pancreatic ductal adenocarcinoma. Therefore, we believe 
that preoperative prediction of the tumor relationship 
with the SCV and LIV (SVC-LIV) can be achieved 
through radiomics analysis, leading to a more reasonable 
arrangement of surgical modalities. Studies focusing on 
TETs and adjacent vessels have generally used contrast-
enhanced CT (CECT). However, the computer’s ability 
to distinguish the grayscale values is far superior to that of 
observation of radiologists. Therefore, the contrast agent's 
dosage effect on the greyscale of blood vessels may cause 
deviations in the radiomics features. To construct a more 

Conclusions: The proposed radiomics model could accurately predict surgical vascularly inseparable 
TETs preoperatively and was shown to have a higher predictive value than the radiologists.
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refined and multidimensional model for the preoperative 
evaluation of TETs, we adopted a nonenhanced CT 
(NECT) scan to extract the radiomics features of TETs for 
analysis. To our knowledge, this is the first study on using 
radiomics analysis to predict vascularly inseparable TETs. 
We present this article in accordance with the TRIPOD 
reporting checklist (available at https://qims.amegroups.
com/article/view/10.21037/qims-22-1050/rc).

Methods

Patient population

This study received approval from the Ethics Committee 
of West China Hospital of Sichuan University (No. 2021-
578) and was conducted in accordance with the Declaration 
of Helsinki (as revised in 2013). Individual consent for 
this retrospective analysis was waived. In the retrospective 
analysis, patients who had undergone CT scans and 
were pathologically diagnosed with TETs at West China 
Hospital from April 2009 to September 2017 were selected 
consecutively in the primary inclusion. Patients were 
included if they met the following criteria: (I) diagnosis of 
thymoma or thymic carcinoma confirmed by pathologic 
report and (II) CT examination performed within 2 weeks 
prior to surgery. The exclusion criteria were as follows: 
(I) incomplete clinical data or CT images and (II) only an 
enhanced chest CT scan being performed. After inclusion, 
the baseline information was collected, including clinical 
characteristics of gender, age, TNM stage, operation 
selection, and image features, including calcification, 
heterogeneity, tumor lobulation, maximum diameter of the 
tumor, abutment degree of vessel circumference, irregular 
interface, irregularity of the tumor contour, the presence of 
a mediastinal fat layer, and the presence of space between 
the tumor and surrounding structures.

Definition of vascularly inseparable TETs

This study has defined vascular inseparable TETs based 
on interoperative exploration. Specifically, the interface 
between the tumor and SVC and LIV was classified into 
3 categories: (I) without adherence, (II) adhering but 
separable, or (III) inseparable. To ensure the consistency 
of the classification and to prevent the overestimation of 
the invasion extent, this study only included the surgeries 
performed by surgeons with more than 10 years of 
experience in video-assisted thoracoscopic surgery (VATS).

Conventional criteria and classification of radiologist 
assessment

In this study, 2 radiologists assessed the CT images of all 
patients independently. To ensure consistency and reliability, 
any discrepancies were resolved through discussion. The 
radiologists were blinded to any clinical information during 
the procedure. They were asked to collect the following 
features: calcification, heterogeneity, tumor lobulation, 
maximum diameter of the tumor, abutment degree of vessel 
circumference, irregular interface, irregularity of the tumor 
contour, the presence of a mediastinal fat layer, and the 
presence of a space between the tumor and surrounding 
structures. The criteria for determining potential great vein 
invasion or vascularly inseparable TETs according to CT 
images were the following: (I) an irregular interface between 
the tumor and surrounding structures or an irregular tumor 
margin, (II) absence of a space between the tumor and the 
surrounding tissue and (III) absence of a mediastinal fat 
layer (9). The results of the radiologist’s evaluation were 
used as the radiological model and were compared with the 
radiomics models.

Construction of radiomics model

To establish a radiomics model, the following steps are 
typically taken. Initially, the region of interest (ROI) of the 
CT image is delineated, and a radiomics label is established. 
Subsequently, the CT image is preprocessed and filtered 
to extract radiomics features that will be included in the 
models. However, to prevent overfitting, the features are 
selected before inclusion into the models. Additionally, 
imbalanced data are upsampled to ensure that the evaluation 
of the models is unbiased. Finally, machine learning 
classifiers are used to build the radiomics model using the 
selected radiomics features. This entire process helps in 
creating an accurate and reliable radiomics model.

Imaging techniques

The CT images of included patients were obtained before 
the initial treatment. The images were obtained with 
CT scanners from the following manufacturers: Siemens 
(Somatom Definition AS and Somatom Definition 
Flash, Siemens Healthineers, Erlangen, Germany), GE 
HealthCare (Revolution CT, Chicago, IL, USA), Philips 
(Brilliance 64, Philips Healthcare, Amsterdam, The 
Netherlands). The tube voltage of most CT scans was 
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between 100 and 120 kV, and the tube current was between 
100 and 650 mA. The pixel size of the acquired CT images 
ranged from 0.417×0.417 to 0.977×0.977 mm2. All CT 
images had a resolution of 512×512 with a slice thickness 
of 5 mm. The segmentation was performed in both lung 
settings, with a width of 1,200 Hounsfield units (HU) and 
a level of –600 HU; for the mediastinal settings, the width 
was 350 HU, and the level was 40 HU.

Tumor segmentation and feature extraction

ITK-SNAP 3.8.0 (http://www.itksnap.org) was used for 
tumor segmentation. Two radiologists with at least 10 
years of experience in thoracic imaging performed this 
procedure. To select the slice with the maximum tumor-
vein contact in two-dimensional (2D) segmentation, the 
selection was performed by 2 independent radiologists, 
and any discrepancy was resolved by discussion. In three-
dimensional (3D) segmentation, a radiologist labeled 
the ROI that covered the total tumor area, and another 
radiologist labeled the tumor on 50 randomly selected 
patients (Figure 1). In the segmentation process, radiologists 
were blinded to intraoperative separability.

To  per form image  preproces s ing  and  fea ture 
extraction, the “PyRadiomics” package (version 2.1; 
https://pyradiomics.readthedocs.io/en/latest/index.html) 
was installed in Python 3.7 software (Python Software 
Foundation, New York, USA) (24). Before feature 
extraction, the pixel spacing of images was resampled to 

1×1 mm2, and a fixed bin width of 25 HU was applied for 
discretization. In all, 7 categories of features were extracted, 
including 16 shape-based features in 3D, 10 shape-based 
features in 2D, 19 first-order statistics features, 24 gray-
level co-occurrence matrix (GLCM) features, 14 gray-
level dependence matrix (GLDM) features, 16 gray-level 
run-length matrix (GLRLM) features, 16 gray-level size 
zone matrix (GLSZM) features, and 5 neighboring gray-
tone difference matrix (NGTDM) features. In addition 
to the original CT image, first-order statistical features 
and texture features were also extracted from Laplacian 
of Gaussian (LoG) filters (sigma: 1.0, 2.0, 3.0, 4.0, and  
5.0 mm) and wavelet filters in both 2D and 3D images. 
A total of 2,688 features were extracted. To test the 
interobserver reproducibility, the intraclass correlation 
coefficient (ICC) was calculated, and the features with ICC 
≥0.8 were included in the subsequent analyses. The Z-score 
method was used to normalize the feature values, and the 
mathematical formula was as follows:

( )i iy x x / s= −  [1]

In this formula, xi refers to the feature value, x refers to 
the mean value of all patients in this group, and s refers to 
the corresponding standard deviation.

Feature selection and radiomics signature building

Features were selected using univariate statistical tests 

Figure 1 Workflow of the radiomics analysis. MSE, mean squared error; 2D, three-dimensional; 3D, three-dimensional; seg, segmentation.
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(2-sample t-test) between the separable and the inseparable 
groups at first, and features with a P value <0.05 were 
chosen in the subsequent selection. The least absolute 
shrinkage and selection operator (LASSO) regression model 
was employed to reduce dimensionality and develop the 
radiomics signature. The cost function of LASSO method 
is as follows:

( ) ( )( )( ) ( )2

1 1
1/ 2 θθ λ θ

= =

= ∗ − +∑ ∑
m n

i i
j

i j
J m h x y

 
[2]

In this formula, m is the number of samples, xi is the 
value of the radiomic features, y(i) is the sample labels, λ 
is a tuning constant, θ is a coefficient vector, and n is the 
number of θ.

To balance the generation ability and minimize the 
overfitting risk, LASSO selection and radiomics signature 
building were performed based on repetitive stratified 5-fold 
cross-validation, and the number of iterations was set to  
105 seconds. In each iteration, 4 folds of the cohort were 
used for training, and the remaining fold was used for 
validation (cross-validation fold). Following this, the entire 
training cohort was analyzed, and features with a nonzero 
coefficient were output.

Data balancing and classifier construction

Given the imbalance between cases free from vascular 
inseparable TETs and those defined as surgical inseparable 
TETs, we used adaptive synthetic sampling (ADASYN) 
methods to augment the minority group, thereby matching 
it with the majority class. ADASYN is based on the density 
of the minority group in the feature space, and it can 
adaptively generate instances to rebalance the minority and 
majority groups.

Support vector machine (SVM) with a Gaussian kernel 
was used as classifier to discriminate between the 2 groups 
in the selected feature space. The rationale behind using 
SVM was to generate hyperplanes that could maximize the 
margins between the plane and the nearest instances of the 
samples, while also taking the globally optimal solutions 
in account. To avoid overfitting, we used 5-fold cross-
validation with 10 repetitions to evaluate and validate the 
performance (25). A receiver operating characteristic (ROC) 
curve was drawn, and the area under ROC curve (AUC) was 
used to illustrate the predictive performance.

Construction of the radiomics nomogram

Univariate logistic regression was used to select clinical 
image features for predicting vascular inseparable TETs. 
Features with a P value <0.05, as well as the radiomics score 
(radscore) of the best radiomics model, were input into a 
multivariable logistic regression to develop a radiomics 
nomogram. The performance of this nomogram was 
assessed with calibration curves and Hosmer-Lemeshow 
test for both the training and testing sets.

Statistical analysis

The differences in basic characteristics, such as sex, age, 
and TNM stage, between groups were analyzed using the 
Mann-Whitney test for continuous variables, while the 
analysis of variance (ANOVA) test was used for categorical 
variables. The difference in the ROC of these radiomics 
models and clinical imaging diagnosis was analyzed 
using the Delong test. Statistical analysis in this study 
was conducted using the “pandas” package in Python 3.7 
software. All tests in this analysis were two-tailed, and 
P<0.05 was considered to indicate a significant difference.

Results

Patient characteristics

In total, 255 patients were identified histologically as 
having TETs; of these, 24 cases who underwent intravenous 
contrast CT scans, 10 cases lacking clinical variables, and 
17 cases lacking CT images were excluded. Ultimately, 204 
patients were included in this study (Figure 2). There were 
105 males and 99 females, with a mean age of 51.53 years. 
In this cohort, 21 patients were diagnosed with vascularly 
inseparable TETs. A total of 172 patients had low-risk 
TETs (TNM stage I and II), and 32 patients had high-risk 
TETs (TNM stage III and IV). According to the World 
Health Organization (WHO) classification, a total of 174 
thymomas with 9 thymic carcinomas were included in the 
separable TETs group, and 17 thymomas with 4 thymic 
carcinomas were included in the inseparable TETs group. 
Significant differences were observed in overall TNM stage, 
T stage, WHO classification, and operation section between 
the separable and inseparable TETs groups. During the 
3D segmentation procedure, the mean slice of the ROI was 
9.54 and 9.81 slices in the inseparable and separable groups, 
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respectively. The characteristics of this cohort are summarized 
in Table 1. The cohort was randomly split into a training cohort 
(n=142) and a testing cohort (n=62) using a stratified random 
sampling ratio of 7:3. In the training cohort, there were 124 
patients with separable TETs and 18 patients with inseparable 
TETs, while the testing cohort consisted of 59 patients with 
separable TETs and 3 patients with inseparable TETs.

Feature selection and establishment of the radiomics model

In the 2D segmentation, 3D segmentation, and 2D + 
3D segmentation, 1,354, 1,344, and 2,698 features were 
extracted, respectively; among these, 648, 728, and 1,376 
features with high stability (ICC >0.8) were identified, 
respectively. Radiomics features for vascular inseparable 
TETs were selected using the LASSO model, and 20, 16, 
and 24 features were retained in the 2D, 3D, and 2D + 3D 
models, respectively (Table 2 and Figures 3-5).

In the 2D model, 1 first-order feature, 1 morphological 
feature, and 18 texture features were selected. The 3D 
model included 4 first-order features, 1 morphological 
feature, and 11 texture features. In the 2D + 3D model, 
3 first-order features, 1 morphological feature, and 8 
texture features were selected in the 2D feature group, 
while 1 first-order feature, 1 morphological feature, and 
10 textures were selected in the 3D feature group. The 
AUCs of these models (2D model, 3D model, and 2D + 

3D model) were 94.1%, 91.7%, and 94.6% in the training 
cohort, and 95.0%, 91.6%, and 97.7% in the testing cohort, 
respectively. The AUC of the clinical imaging diagnosis 
was 0.868 and 0.777 in training and testing sets, respectively 
(Table 3). The CT images of some representative TETs cases 
are shown in Figure 6, including a separable TET (Figure 6A) 
and an inseparable TET (Figure 6B) misdiagnosed by 
radiologists but diagnosed correctly by the radiomics model. 
The radiomics models showed significant improvement 
compared with the radiological model, with P value of 
<0.001, 0.012, and 0.013 for the 2D, 3D and 2D + 3D 
models, respectively (Figures 7,8). However, no significant 
differences were observed among the 3 radiomics models. 
The P value of the Delong test between the 2D model and 
3D model was 0.109, and the P values between the 2D with 
the 2D + 3D and the 3D with the 2D + 3D were 0.087 and 
0.263, respectively.

Nomogram building and validation

The nomogram was constructed based on the clinical image 
features and radscore to visualize the results of multivariable 
logistic regression analysis for vascular inseparable TETs 
(Figure 9). Ultimately, 3 clinical imaging features and 
a radscore were included in the nomogram, and the 
univariable and multivariable analyses of the significant 
features in the univariate logistic regression and radscore 

Figure 2 Flowchart of the case inclusion. TET, thymic epithelial tumor; CT, computed tomography.

Cases with TETs from April 2009 to 

September 2017 

(n=255)

Cases with complete clinical data 

and CT images

(n=228)

Included cases

(n=204)

Exclusion:

• Cases without clinical variables (n=10)

• Cases without CT images (n=17)

Exclusion:

• Cases with intravenous contrast CT 

scans only (n=24) 
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Table 1 Baseline characteristics 

Variables Separable (n=183) Inseparable (n=21) P value

Sex 0.197

Male 97 8

Female 86 13

Age (years) 51.89±12.17 49.3±10.18 0.333

Overall stage <0.001

Stage I 163 0

Stage II 9 0

Stage IIIA 9 19

Stage IIIB 0 1

Stage IVA 2 1

T stage <0.001

T1 162 0

T2 10 0

T3 10 19

T4 1 2

N stage 0.632

N0 181 21

N1 2 0

N2 0 0

M stage 1.000

M0 183 21

M1 0 0

WHO classification 0.005

A 15 1

AB 76 3

B1 35 4

B2 36 4

B3 12 5

C 9 4

Operation <0.001

Non-VATS operation 46 15

VATS operation 137 6

Collected image slice (slices) 63.22±11.87 61.76±11.65 0.735

ROI slice in 3D segmentation (slices) 9.81±3.49 9.54±4.43 0.231

Data are expressed as mean ± SD or frequency. WHO, World Health Organization; VATS, video-assisted thoracic surgery; SD, standard 
deviation; ROI, region of interest.
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Table 2 The selected features in the radiomics models

Feature Coefficient

2D segmentation model

original_shape_Elongation −0.10011205

log-sigma-2-0-mm-2D_firstorder_90Percentile 0.01284269

log-sigma-2-0-mm-2D_glcm_Imc1 −0.10431494

log-sigma-2-0-mm-2D_glrlm_ShortRunHighGrayLevelEmphasis −0.08237211

log-sigma-2-0-mm-2D_glrlm_ShortRunLowGrayLevelEmphasis 0.05194436

log-sigma-2-0-mm-2D_glszm_GrayLevelVariance 0.0078466

log-sigma-5-0-mm-2D_glcm_Autocorrelation 0.0078466

log-sigma-5-0-mm-2D_glcm_Id 0.00351167

log-sigma-5-0-mm-2D_glrlm_ShortRunLowGrayLevelEmphasis 0.135122

wavelet-LLH_glcm_ClusterShade −0.02100059

wavelet-LLH_glcm_SumSquares 0.04015058

wavelet-LLH_gldm_HighGrayLevelEmphasis 0.09444635

wavelet-LLH_gldm_SmallDependenceLowGrayLevelEmphasis −0.02332301

wavelet-LLH_glszm_ZonePercentage −0.03189313

wavelet-LHL_glcm_ClusterShade −0.05094128

wavelet-LHL_glrlm_LongRunHighGrayLevelEmphasis 0.07348392

wavelet-LHH_glszm_SmallAreaLowGrayLevelEmphasis −0.07796041

wavelet-HLH_glcm_Imc2 −0.03515943

wavelet-HLH_glszm_SmallAreaEmphasis −0.02972123

wavelet-HLH_glszm_SmallAreaLowGrayLevelEmphasis −0.0398179

3D segmentation model

original_shape_Sphericity −0.02572743

log-sigma-1-0-mm-3D_glcm_ClusterShade −0.03052404

log-sigma-1-0-mm-3D_glrlm_ShortRunHighGrayLevelEmphasis −0.06850541

log-sigma-1-0-mm-3D_glszm_ZoneEntropy 0.10999916

log-sigma-2-0-mm-3D_firstorder_90Percentile 0.11341436

log-sigma-2-0-mm-3D_firstorder_Range 0.0003084

log-sigma-2-0-mm-3D_glcm_Imc1 −0.06719718

log-sigma-3-0-mm-3D_glcm_DifferenceVariance −0.06686246

log-sigma-3-0-mm-3D_glrlm_ShortRunHighGrayLevelEmphasis −0.03303138

log-sigma-4-0-mm-3D_gldm_LargeDependenceLowGrayLevelEmphasis −0.14331302

log-sigma-5-0-mm-3D_glcm_SumEntropy −0.10301179

wavelet-LLH_glszm_SizeZoneNonUniformity 0.046551

wavelet-LLH_glszm_SizeZoneNonUniformityNormalized 0.02108074

Table 2 (continued)
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Table 2 (continued)

Feature Coefficient

wavelet-LLH_glszm_ZoneEntropy −0.09888323

wavelet-HHH_firstorder_Kurtosis 0.10056921

wavelet-LLL_firstorder_Maximum 0.07155026

2D + 3D segmentation model

2D features

original_shape_Elongation 0.06653255

log-sigma-1-0-mm-2D_glcm_ClusterShade −0.08421055

log-sigma-1-0-mm-2D_glszm_ZoneEntropy 0.01628199

log-sigma-2-0-mm-2D_firstorder_Minimum −0.06231016

log-sigma-2-0-mm-2D_glcm_Imc1 −0.00321245

log-sigma-3-0-mm-2D_glcm_DifferenceEntropy −0.05915957

log-sigma-3-0-mm-2D_glrlm_ShortRunHighGrayLevelEmphasis −0.04130194

log-sigma-4-0-mm-2D_gldm_LargeDependenceLowGrayLevelEmphasis −0.06126603

log-sigma-5-0-mm-2D_glcm_JointEntropy.1 −0.01378587

wavelet-HLH_glcm_ClusterTendency 0.0444266

wavelet-HHH_firstorder_Kurtosis 0.06211867

wavelet-LLL_firstorder_Maximum 0.05245455

3D features

original_shape_Elongation −0.1055529

log-sigma-1-0-mm-3D_firstorder_90Percentile 0.0798177

log-sigma-2-0-mm-3D_glcm_Correlation 0.13683448

log-sigma-5-0-mm-3D_glcm_DifferenceEntropy −0.03972627

log-sigma-5-0-mm-3D_glrlm_ShortRunLowGrayLevelEmphasis 0.07684226

wavelet-LLH_glcm_ClusterShade −0.12886596

wavelet-LLH_glcm_SumSquares 0.06104846

wavelet-LHL_glszm_HighGrayLevelZoneEmphasis −0.04477988

wavelet-LHH_gldm_DependenceVariance 0.07270085

wavelet-LHH_glrlm_RunVariance 0.04231245

wavelet-HLL_gldm_DependenceEntropy 0.07390282

wavelet-HLL_glszm_ZoneEntropy 0.00640498

glcm, gray-level co-occurrence matrix; glrlm, gray-level run-length matrix; glszm, gray-level size zone matrix; gldm, gray-level dependence 
matrix; L (in the wavelet filters), low-pass filter; H (in the wavelet filters), high-pass filter; 2D, two-dimensional; 3D, three-dimensional.
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Figure 3 Radiomics features selected by the LASSO regression in the 2D model. (A) Tuning parameter (λ) selection procedure. (B) 
Variation of LASSO coefficients for different features as the modulation parameter (λ value) changes. (C) Contributions of the 20 selected 
features with nonzero coefficients to the radiomics signature, with their respective coefficient values. glcm, gray-level co-occurrence matrix; 
glrlm, gray-level run-length matrix; glszm, gray-level size zone matrix; gldm, gray-level dependence matrix; L (in the wavelet filters), low-
pass filter; H (in the wavelet filters), high-pass filter; MSE, mean squared error; 2D, two-dimensional; LASSO, least absolute shrinkage and 
selection operator. 

are shown in Table 4 and Table 5. In both the training and 
testing sets, the calibration curves and Hosmer-Lemeshow 
test of this nomogram indicated high accuracy. The ROC 
plot was drawn to show the sensitivity, specificity, and 
accuracy of the nomogram (Figure 10). However, the ROC 
plot of nomogram did not indicate there to be a significant 
improvement with the 3 radiomics models in the Delong 
test (P=0.297 for the 2D model, P=0.260 for 3D model, 
P=0.105 for 2D + 3D model).

Discussion

Currently, the preferred treatment for patients with 
TETs with a mediastinal large vein is neoadjuvant therapy 
to facilitate tumor shrinkage before surgical resection  
(26-28). If the surgeon is unable to separate the tumor 
and great vein, additional angioplasty may be necessary. 
Therefore, an accurate preoperative prediction of surgical 
inseparable TETs could help surgeons to choose the most 
suitable treatment modality to plan their surgical approach 
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preoperatively, thus avoiding unexpected intraoperative 
events. This study aimed to develop a radiomics analysis 
based on preoperative CT images capable of predicting 
surgically inseparable TETs. We had the additional objective 
of comparing the effectiveness of the radiomics models and 
radiologists’ diagnosis in predicting vascularly inseparable 
TETs. Our study demonstrated that the preoperative 
prediction using radiomics analysis based on NECT images 

could achieve a relatively high level of accuracy. In addition, 
the radiomics models and the nomogram, which combine 
image and radiomics features, demonstrated significant 
improvement over the radiologists’ diagnosis. Therefore, 
radiomics analysis can assist in preoperatively assessing the 
risk of surgery and determining a suitable surgical approach 
for patients with TETs.

CT and MRI are commonly used to assist in determining 

Figure 4 Radiomics features selected by the LASSO regression in the 3D model. (A) Tuning parameter (λ) selection procedure. (B) 
Variation of LASSO coefficients for different features as the modulation parameter (λ value) changes. (C) Contributions of the 16 selected 
features with nonzero coefficients to the radiomics signature, with their respective coefficient values. glcm, gray-level co-occurrence matrix; 
glrlm, gray-level run-length matrix; glszm, gray-level size zone matrix; gldm, gray-level dependence matrix; L (in the wavelet filters), low-
pass filter; H (in the wavelet filters), high-pass filter; MSE, mean squared error; 3D, three-dimensional; LASSO, least absolute shrinkage and 
selection operator.
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Figure 5 Radiomics features selected by the LASSO regression in 2D and 3D model. (A) Tuning parameter (λ) selection procedure. (B) 
Variation of LASSO coefficients for different features as the modulation parameter (λ value) changes. (C) Contributions of the 24 selected 
features with nonzero coefficients to the radiomics signature, with their respective coefficient values. glcm, gray-level co-occurrence matrix; 
glrlm, gray-level run-length matrix; glszm, gray-level size zone matrix; gldm, gray-level dependence matrix; L (in the wavelet filters), low-
pass filter; H (in the wavelet filters), high-pass filter; MSE, mean squared error; 2D, two-dimensional; 3D, three-dimensional; LASSO, least 
absolute shrinkage and selection operator.

the tumor size, malignancy, and extent of invasion to 
adjacent organs. Few studies have been conducted on 
evaluating the spatial relationship between TETs and the 
surrounding vein using CT images. Kuriyama et al. used 
the length of the tumor vessel interface and the maximum 
diameter of the tumor to judge vascular invasion based on 
these tumor characteristics and achieved good accuracy 
(AUC =0.764) (9). In our study, clinical diagnosis achieved 
a similar accuracy (AUC =0.777). We used radiomics 

methods to establish relevant models by analyzing the first-
order, shape, and texture features of the images. The results 
suggested that the accuracy of these models was better 
than that of semantic features (Table 3). Furthermore, the 
comparison with the evaluation of radiologists indicated that 
the greatest advantage of the radiomics model is its higher 
sensitivity. This is important for clinical practice in avoiding 
recommending the operation of TETs that cannot be 
separated during the operation, thus reducing the operation 
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Table 3 The results of the radiomics models and radiological model

Models Group AUC (95% CI) Sensitivity (%) Specificity (%)
Significance level (Delong test vs. 

radiologists’ diagnosis)

Radiological model Train 0.868 (0.826, 0.910) 77.8 96.0 –

Test 0.777 (0.671, 0.883) 66.7 82.1 –

2D segmentation Train 0.941 (0.917, 0.975) 98.3 88.2 Z score =3.395; P=0.001

Test 0.950 (0.918, 0.997) 96.9 88.9 Z score =3.600; P<0.001

3D segmentation Train 0.917 (0.863, 0.943) 98.3 79.2 Z score =3.059; P=0.002

Test 0.916 (0.859, 0.965) 96.9 87.9 Z score =2.524; P=0.012

2D + 3D segmentation Train 0.946 (0.935, 0.985) 98.3 92.9 Z score =3.040; P=0.002

Test 0.977 (0.950, 0.992) 97.9 91.2 Z score =2.493; P=0.013

AUC, area under curve; CI, confidence interval; 2D, two-dimensional; 3D, three-dimensional.

Figure 6 The CT images of TETs whose relationship between tumor boundary and the vein were not very clear. (A) A TET which was diagnosed 
incorrectly as inseparable by a radiologist but diagnosed correctly by the radiomics model. (B) An inseparable TET which was diagnosed 
incorrectly by the radiologist but diagnosed correctly by the radiomics model. CT, computed tomography; TET, thymic epithelial tumor.

risk. Through observation of the judgment of the radiomics 
model and radiologists, we found that 52.9% of the tumors 
were distant from the veins (108/204). Further observation 
revealed that differences in prediction ability between the 
radiological model and the radiologist were mostly likely to 
occur in cases where the tumor boundary and vein boundary 
were not very clear. For TETs that are obviously distant 
from the vein, the prediction ability of the radiologist was 
similar to that of the radiomics model. In addition, since the 
semantic features were judged by radiologists, the difference 
in individual experience between doctors might have led to 
heterogeneity and instability. However, the radiomics model 
had the characteristics of stability, so the diagnostic efficacy 
and relevance of radiomics model were greater compared to 
those of semantic features.

In this study, it was found that the GLRLM, GLCM, 
and GLSZM features in the 2D segmentation model were 
strongly correlated with vascularly inseparable TETs. 
As the vascular invasion of TETs was the predominant 
reason for inseparable TETs, the selected features can be 
considered as representing the vascular aggressiveness of 
the tumor. GLRLM-small runs low gray-level emphasis 
indicates that the texture is dominated by short runs of low 
gray-levels, leading to increased roughness. This suggests 
that when the internal roughness of the tumor increases, 
the likelihood of vascular invasion also increases. Similarly, 
GLCM-informational measure of correlation 1 (IMC1) 
quantifies the complexity of texture using gray-level co-
occurrence entropy, reflecting the correlation of gray 
values around voxels. Higher values indicate that the gray 

A B
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values around voxels are more similar, resulting in a more 
uniform image. Therefore, GLCM-IMC1 was negatively 
correlated with vascular invasion in the three models in 
this study, and the strong correlation observed in this study 

between GLSZM-zone entropy and vascular invasion 
further confirms this point. A study on superior mesenteric 
vein invasion in pancreatic ductal adenocarcinoma 
reached similar conclusions (29). Additionally, several 
tumors were inseparable due to tight adhesion with veins, 
resulting in unsafe separation. This might have been due 
to the intratumoral heterogeneity being associated with 
the inflammatory response of tumor microenvironment. 
Greater intratumoral heterogeneity may lead to greater 
inflammation in the tumor microenvironment and 
inseparable adhesions. However, there is currently no 
relevant literature to support this point, and more targeted 
studies are required.

Most of the studies related to TETs conducted thus far 
have focused on CECT images. While CECT does offer 
advantages over NECT images for visual observation in 
the extraction of semantic features, the results of CECT 
are not always stable due to the variability in distribution 
and injection sites of contrast agents. Some studies on 
radiomics analysis related to TETs have suggested that the 
accuracy of NECT is not inferior to that of CECT (30,31). 
Furthermore, we have observed that contrast agents can 
cause an allergic reaction in some patients. Therefore, the 
use of the radiomics model based on NECT can provide 
more reliable and valuable clinical data for these patients.

At present, the optimal method of lesion segmentation 
in radiomics analysis remains controversial. While some 
researchers believe that performing multilayer segmentation 
can obtain more complete lesion information, others 
argue that one-layer segmentation is more efficient, less 
complex, and repeatable (32,33). In a CT radiomics study, 
a 2D segmentation model demonstrated a significant 
advantage over the 3D segmentation model in predicting 
lymphovascular invasion in lung adenocarcinoma. Another 
study which employed positron emission tomography-CT 
(PET-CT) radiomics analysis to predict lymphovascular 
invasion in lung cancer found there to be no significant 
difference between the 2D segmentation model and the 
3D segmentation model (32,33). In this study, the AUCs 
obtained by the 2D segmentation model in the training 
set and test set were 0.941 and 0.950, respectively, and 
those of the 3D segmentation model were 0.917 and 0.916, 
respectively. In the Delong test, no significant difference 
was found between these models. Therefore, our study 
suggests that the 2D segmentation model does not lose 
much information compared with the 3D segmentation 
model in predicting vascular inseparable TETs.

A nomogram can illustrate the results of multivariable 

Figure 7 The ROC curves of the SVM 2D, SVM 3D, and SVM 
2D + 3D models and the radiological model in the testing cohort. 
2D, two-dimensional; 3D, three-dimensional; seg, segmentation; 
ROC, receiver operating characteristic; SVM, support vector 
machine.

Figure 8 The ROC curves of the SVM 2D, SVM 3D, and SVM 
2D + 3D models and the radiological model in the training cohort. 
2D, two-dimensional; 3D, three-dimensional; seg, segmentation; 
ROC, receiver operating characteristic; SVM, support vector 
machine.
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Figure 9 Nomogram and the calibration curve for the 2 data sets. (A) Performance of the radiomics nomogram in predicting the vascularly 
separable TETs and inseparable TETs. (B) The calibration curve of the training set. (C) The calibration curve of testing set. The calibration 
curve illustrates the calibration of the nomogram based on the agreement between the predicted result and the final observed result in the 
surgery. The 45° dotted line suggests ideal prediction, with a closer distance between the other 2 curves indicating a higher accuracy. TET, 
thymic epithelial tumor.
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primarily determined by the radscore. In the comparison 
of the ROC curves of the nomogram model and those of 
the pure radiomics models, no significant difference was 
found. This may be explained by the fact that the radiomics 
characteristics partly reflected some information regarding 
the tumor boundary, rendering the use of radiomics 
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Figure 10 The ROC curves of the nomogram. (A) The ROC curve of the nomogram in training cohort. (B) The ROC curve of the 
nomogram in testing cohort. ROC, receiver operating characteristic.

Table 4 Univariate logistic regression analysis

Features Z score (Wald test) P value

Sex (male) −1.65 0.099

Age (years) 1.80 0.073

Maximum diameter of the tumor

0–2 cm 3.19 0.001

2–4 cm 4.53 <0.001

4–6 cm 5.76 <0.001

6–8 cm 2.54 0.011

Calcification 3.43 <0.001

Lobulated 6.99 0.001

Heterogeneous 7.79 <0.001

Degree of abutment of vessel 
circumference >50%

8.55 <0.001

Irregularity of the tumor contour 
and/or irregular interface

4.78 <0.001

Absence of the mediastinal fat layer 
or space between the tumor and 
surrounding structures

5.85 <0.001

Table 5 Multivariable logistic regression analysis of the positive 
results of univariate analysis

Features Z score (Wald test) P value

Maximum diameter of the tumor

0–2 cm 2.11 0.035

2–4 cm 2.53 0.014

4–6 cm 2.46 0.014

6–8 cm 3.10 0.002

Calcification 0.82 0.413

Lobulated −0.31 0.756

Heterogeneous −1.63 0.103

Degree of abutment of vessel 
circumference >50%

3.09 0.002

Irregularity of the tumor contour 
and/or irregular interface

3.53 >0.001

Absence of the mediastinal 
fat layer or space between 
the tumor and surrounding 
structures

3.53 >0.001
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model alone sufficient in predicting whether the doctor 
can separate the tumor from the blood vessels during the 
operation.

Some limitations to our study should be noted. First, a 
single-center design was employed, and both the training 
set and the test set were obtained from West China Hospital 

of Sichuan University, which limits the generalizability of 
the findings. In addition, more models and feature selection 
methods could have been introduced in this study, as our 
study only adopted radiomics methods for predicting the 
vascularly inseparable TETs. Given that this method can 
be applied to other research fields, our study should be 
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generalized conservatively.

Conclusions

Overall, this study evaluated the ability for a radiomics 
approach to predict those TETs that would be vascularly 
inseparable in an operation. Data analysis revealed that 
compared to the radiologists diagnosis, the radiomics 
model was significantly superior in predicting the vascularly 
inseparable TETs.
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