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Background: Lung cancer is a global disease with high lethality, with early screening being considerably 
helpful for improving the 5-year survival rate. Multimodality features in early screening imaging are an 
important part of the prediction for lung adenocarcinoma, and establishing a model for adenocarcinoma 
diagnosis based on multimodal features is an obvious clinical need. Through our practice and investigation, 
we found that graph neural networks (GNNs) are excellent platforms for multimodal feature fusion, 
and the data can be completed using the edge-generation network. Therefore, we propose a new lung 
adenocarcinoma multiclassification model based on multimodal features and an edge-generation network.
Methods: According to a ratio of 80% to 20%, respectively, the dataset of 338 cases was divided into the 
training set and the test set through 5-fold cross-validation, and the distribution of the 2 sets was the same. 
First, the regions of interest (ROIs) cropped from computed tomography (CT) images were separately 
fed into convolutional neural networks (CNNs) and radiomics processing platforms. The results of the  
2 parts were then input into a graph embedding representation network to obtain the fused feature 
vectors. Subsequently, a graph database based on the clinical and semantic features was established, and 
the data were supplemented by an edge-generation network, with the fused feature vectors being used 
as the input of the nodes. This enabled us to clearly understand where the information transmission of 
the GNN takes place and improves the interpretability of the model. Finally, the nodes were classified  
using GNNs. 
Results: On our dataset, the proposed method presented in this paper achieved superior results compared 
to traditional methods and showed some comparability with state-of-the-art methods for lung nodule 
classification. The results of our method are as follows: accuracy (ACC) =66.26% (±4.46%), area under the 
curve (AUC) =75.86% (±1.79%), F1-score =64.00% (±3.65%), and Matthews correlation coefficient (MCC) 
=48.40% (±5.07%). The model with the edge-generating network consistently outperformed the model 
without it in all aspects.
Conclusions: The experiments demonstrate that with appropriate data=construction methods GNNs 
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Introduction

According to a 2020 report by the International Agency 
for Research on Cancer, lung cancer is the leading cause of 
cancer-related death among all gender groups (18%) and 
the second leading cause of new cancer cases (11.4%) (1).  
Implementing an early screening program to diagnose 
patients is one of the major steps to reducing lung cancer-
related death and improving survival (2). Both the US 
National Lung Screening Trial (NLST) and Dutch-Belgian 
Lung Cancer Screening Trial (NELSON) concluded that 
lung cancer mortality could be significantly reduced by 
early screening and self-management through low-dose 
computed tomography (LDCT) in high-risk lung cancer 
populations (3,4).

As the most common histological subtype of the lung 
cancer, lung adenocarcinoma accounts for about half of 
lung cancers. According to the international gold standard, 
adenocarcinoma is divided into 4 categories: atypical 
adenomatous hyperplasia (AAH), adenocarcinoma in situ 
(AIS), minimally invasive adenocarcinoma (MIA), and 
invasive adenocarcinoma (IAC) (5,6). Several clinical studies 
(7,8) have demonstrated that nodules with a diameter of less 
than 5 mm are more likely to be benign, with a malignant 
risk typically less than or equal to 1%. Conversely, according 
to several investigations (9,10), the majority (80%) of 
cancerous nodules have a size greater than 8 mm, and there 
is evidence to suggest that nodules smaller than 10 mm may 
also be malignant IAC nodules with a chance of spreading 
(11,12). We believe that nodules in the 5 to 10 mm range are 
clinically challenging to discern and include various subtypes 
of pulmonary adenocarcinoma nodules. Recently, it has 
been shown that CT-based handcrafted and deep radiomics 
has been able to determine the invasiveness of lung 
adenocarcinoma and that a combination of other variables 
(such as clinical, semantic, and pathological features) can 
improve the accuracy of the final pathology (13). Therefore, 

developing a multimodal feature CT diagnosis system for 
nodules in the 5 to 10 mm range is necessary. Typically, 
3 categories of features are used in diagnosis: semantic 
features, radiomics features, and deep features.

The radiologist will usually describe and analyze the 
lesion by qualitative or quantitative semantic features, 
which usually include shape, location, lobulation, size, 
volume, etc. However, these methods usually require a 
highly skilled clinician and rely on subjective appraisal; thus, 
a series of terms and gold standards need to be specified. 
Based on evidence indicating that semantic features of CT 
images have prognostic value, the Lung Imaging Reporting 
and Data System (Lung-RADS) has been developed to 
improve the interpretability of lung cancer screening 
CT images and facilitate the prognostic management of  
cases (14). Undoubtedly, semantic features are often limited 
by the subjectivity of evaluation, making model consistency 
difficult to achieve (15).

As image processing technology matured, radiomics was 
first proposed by the Dutch researcher Lambin et al. in 
2012 (16). Although it can only extract low-level features, 
radiomics is nonetheless an automatic, high-throughput 
feature extraction method for transforming images into 
minable feature data, providing far more consistency 
than semantic features. Radiomics features are outputs of 
the values of image pixels in the region of interest (ROI) 
that are input into mathematical formulae. In radiomics, 
traditional image features, such as shape, grayscale, and 
texture, are extracted, after which pattern recognition 
models are applied for classification and prediction (17). 
Currently, several standardized software packages for 
extracting radiomics features have been developed, with 
the Python-implemented PyRadiomics (18) being one of 
the most well-known and widely used in nodule feature 
extraction (19).

Research in deep learning has progressed slowly over 

can outperform traditional image processing methods in the field of CT-based medical image classification. 
Additionally, our model has higher interpretability, as it employs subjective clinical and semantic features as 
the data construction approach. This will help doctors better leverage human–computer interactions.
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time, and it is only in the past decade that significant 
breakthroughs have been made, with advancement from 
LeNet (20) to AlexNet (21) and then to a series of deep 
learning algorithms. The extraction of deep features 
usually requires convolution, pooling, activation, and full 
connection layers. Features in the shallow layer are similar 
to those of radiomics features, but with the deepening of 
the layers, the features become increasingly abstract and 
more laden with high-level information; however, due to 
this higher dimensionality, these features are more difficult 
to interpret. This makes the magnitude of the required 
data much larger than that required by radiomics models. A 
convolutional neural network (CNN) is thus often used for 
image analysis and deep feature extraction of Euclidian data.

The classification of lung adenocarcinoma nodule 
subtypes on CT is mostly based on CNN or machine 
learning methods. Wang et al. [2021] (22) proposed a 
method in which a mask segmentation model built with a 
3D U-Net and a classification model of 3D convolution 
were jointly trained to complete the classification of 
subtypes. Yu et al. [2021] (23) used a 3D multimask network 
to determine the invasiveness of ground-glass nodules 
(GGNs). Ashraf et al. [2022] (24) used a 3D multiscale 
CNN composed of 3 cubic subvolumes from computed 
tomography images to predict whether a lung nodule was 
benign, adenocarcinoma, or a preinvasive subtype.

In the field of deep radiomics, Paul et al. [2018] (25) 
fused deep features and radiomics features to classify 
benign and malignant pulmonary nodules with a smaller 
set of training data than that of a radiomics-only method, 
achieving superior performance. Xia et al. [2020] (26) 
combined a deep feature–based model score obtained by 
transfer learning with a radiomics feature-based model to 
classify IAC and non-IAC. Wang et al. [2020] (27) used 
multitask and 3D-convolution models of deep radiomics to 
distinguish IAC from non-IAC, MIA from AIS, and MIA 
from IAC. Their results showed that the deep-radiomics 
models perform better than do deep-learning–based models 
and classification and segmentation models. Wang et al. 
[2021] (28) used the combination of depth, radiomics, and 
natural language–processed (NLP) pathological features for 
classifications of 2, 3, 6, and 8 categories.

Since the datasets of medical images are usually small 
in magnitude, we propose a series of multimodal feature 
methods for deep radiomics to better fit deep learning 
and supplement the shallow feature space. In addition, as 
a solution to the issues of poor interpretability in deep-
radiomics models and poor consistency in semantic models, 

we then fuse semantic features into our feature sets, 
forming a combination of 3 features (semantic, deep, and 
radiomics features). After consideration, we believe a graph 
neural network (GNN) is more suitable for merging these  
3 features.

GNN is a deep-learning-based method that runs on 
graph domains. GNNs have recently become a widely 
used graphical analysis method due to their excellent 
performance (29). A graph is a data structure that models 
a set of objects (nodes) and their relationships (edges). As a 
unique form of machine learning with non-Euclidean data 
structures, graph analysis focuses on tasks such as node 
classification, link prediction, and clustering. GNNs can 
be divided into 2 types according to the definition method 
of the graph convolution operator. The first is the spectral 
domain-based definition of the graph convolution operator, 
with the representative method for this type being a graph 
convolutional network (GCN) (30). The second method 
is the definition of a graph convolution operator based on 
the spatial domain. The spatial method aims to aggregate 
each central node and neighboring nodes by defining 
aggregation functions from the node domain. Typical 
methods of this type include the graph attention network 
(GAT) (31) and GraphSAGE (32). Among the GNNs used 
for medical images, a relatively classic work is that of Parisot 
et al. [2018] (33), in which the authors input the extracted 
image features into a graph composed of phenotypic data 
for edge weights; the nodes were then classified by GCN 
for the semisupervised learning of Alzheimer disease. In 
the work of Hao et al. [2022] (34), a Bayesian CNN was 
used to extract image features; these were then combined 
with uncertainty to complete graph characterization for the 
constructed CT maps and ultimately classify pulmonary 
effusion.

The unique advantage of graph data is that the data 
contain critical relational information, which Euclidean data 
typically lack. By utilizing graph data, we can accomplish 
3D feature extraction in a 2D manner while also facilitating 
the integration of multimodal features. Therefore, in the 
process of applying GNNs to Euclidean data, this is crucial 
for the establishment of data connection. The construction 
of the graph data structure of medical images is always 
challenging, which is one of the reasons why GCNs are 
rarely used in medical research. Meanwhile, in the process 
of the subjective construction of a graph data structure, 
there may be nodes without out-degree or in-degree, 
which may hinder the overall classification and prediction 
performance. This is another problem that we encountered 
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in building the data.
The following describes our solution to the above 

problems: deep features, radiomics features, and semantic 
features are combined to classify patients into 3 categories 
of lung adenocarcinoma. The semantic features provide 
interpretability, the deep features extract the high-level 
features of CT, and the radiomics features extract the low-
level features of CT. Additionally, we combine the deep 
features and radiomics features to ensure the consistency of 
the features and use an edge-generation network to fix the 
graph data structure.

The novel contributions of this work are as follows:
(I)	 We demonstrate the superiority of multimodal fusion 

features in the subtyping of lung adenocarcinoma 
and have introduced a graph-based approach for 
multimodal feature fusion of CT images, which 
involves the integration of deep, radiomics, and 
semantic features.

(II)	 In the process of constructing graph data, 
subjective semantic features were used to determine 
the connectivity between nodes, resulting in a more 
transparent information propagation path between 
nodes and improved interpretability for clinical 
applications.

(III)	 We trained an edge-generation network to predict the 
edge connectivity between nodes without outgoing 
or incoming edges, which completes the information 
of graph data and improves the performance and 
stability of the model. We present this article in 
accordance with the TRIPOD reporting checklist 
(available at https://qims.amegroups.com/article/
view/10.21037/qims-23-2/rc).

Methods

The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013) and was 

approved by the ethics committee of the Shanghai Public 
Health Clinical Center. Informed consent was obtained 
from all the patients.

The following section describes the screening of the 
dataset and the proposed framework.

Dataset

The data were obtained from 668 patients attending 
Zhongshan Hospital and Shanghai Public Health Clinical 
Center between September 2015 to July 2019. The inclusion 
criteria for data were as follows: (I) patients underwent 
routine chest CT at 2 hospitals within 1 month before 
resection, (II) patients were examined using CT with a slice 
thickness less than or equal to 1 mm, (III) patients had no 
breath motion artifact, (IV) nodules were between 5 and 
10 mm, (V) nodules were ground-glass type, and (VI) the 
relation between the mask and raw CT was clear and true.

After data screening, we included a total of 338 nodules 
from 307 patients (some from the same patient but of 
different subtypes) 5–10 mm in size, consisting of 86 cases 
of IAC, 193 cases of MIA, and 59 cases of AIS. According 
to Son et al. [2016] (6), the persistent presence of GGNs 
in CT images is usually a sign of the presence of lung 
adenocarcinoma or its precursors. Therefore, all samples 
included were GGNs, with 112 mixed GGNs (mGGNs) 
and 226 pure GGNs (pGGNs). As we employed 5-fold 
cross-validation and the total number of data could not be 
divided by 5, there is a slight difference in the number of 
samples between the training and testing sets in each fold. 
The ratio of the training set to the testing set is 4:1, and 
they have the same distribution, as shown in Table 1.

Measurements were taken by 2 radiologists with more 
than 5 years of experience in the field of chest radiology. 
The 2 radiologists measured each image feature separately, 
and a third radiologist with more than 20 years of 
experience in the field of chest radiology reassessed any 
discrepant cases. The masks were reviewed by a radiologist 
with more than 6 years of experience in the field of chest 
radiology and by a radiologist with more than 20 years of 
experience in the field of chest radiology.

Method overview

The framework of the proposed approach consists of 
3 modules: a feature extraction module, feature fusion 
module, and classification module. The overall framework 
is shown in Figure 1. Our work is a supervised classification 

Table 1 Training and test set ratio 

Categories Training set (80%) Test set (20%) Total

MIA 154 39 193

IAC 69 17 86

AIS 47 12 59

Total 270 68 338

MIA, minimally invasive adenocarcinoma; IAC, invasive 
adenocarcinoma; AIS, adenocarcinoma in situ.

https://qims.amegroups.com/article/view/10.21037/qims-23-2/rc
https://qims.amegroups.com/article/view/10.21037/qims-23-2/rc
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Figure 1 The overall framework of our work, including the feature extraction module, feature fusion module, and classification module. 
CT, computed tomography; ROI, region of interest; MIA, minimally invasive adenocarcinoma; IAC, invasive adenocarcinoma; AIS, 
adenocarcinoma in situ; GCN, graph convolutional network; LASSO, least absolute shrinkage and selection operator.

model aimed at integrating multimodal features of 
pulmonary nodule CT images for classification. First, we 
employed ResNet (35) as the backbone network to extract 
deep features and used the PyRadiomics library, an open 
platform built in Python (Python Software Foundation), 
to extract radiomics features, while clinical and semantic 
features were annotated by experienced radiologists in 
advance. Subsequently, we employed a graph data structure 
to simulate the slice scan structure of CT images and fused 
all features. Moreover, we constructed a new graph dataset 
with semantic features with an edge-generation network, 
where each node represented a case of pulmonary nodules. 
Finally, traditional GNNs were used for node classification.

Feature extraction module
Deep feature extraction
In the deep feature extraction part, after consideration, we 
decided to use ResNet34 as the feature extraction network 
to extract the deep features of each slice of the CT images 
for all nodules. However, due to the issue of image scale, 
we removed the last module of ResNet34 to prevent the 
convolution kernel size from exceeding the image size. 
Consequently, the modified ResNet was named ResNet28. 
The parameters of the deep feature extraction network were 
obtained by using ResNet28 as the deep learning model. 
The model was trained for 200 epochs on the augmented 
ROI image data, and the parameters from the epoch with 



Li et al. A lung nodule diagnosis model based on GNNs5338

© Quantitative Imaging in Medicine and Surgery. All rights reserved.   Quant Imaging Med Surg 2023;13(8):5333-5348 | https://dx.doi.org/10.21037/qims-23-2

the best results were selected. We cropped ROIs 64×64 
in size from the center of the nodules, and these cropped 
ROIs were used as the input for the feature extraction part. 
A series of convolution layers, batch normalization layers, 
and rectified linear unit (ReLU) layers was used, and after 
flattening was performed by the fully connected layer, the 
extracted result was a 64-dimensional tensor. The structure 
of ResNet28 is shown in Figure 2.
Radiomics feature extraction
Traditional radiomics features were extracted for each 
slice (dimension of pixel is 512×512×1) in CT through 
the PyRadiomics library in Python and the least absolute 
shrinkage and selection operator (LASSO) regression method 
in the scikit-learn library (36,37). Finally, the extracted result 
for each slice was a 38-dimensional tensor, in which LASSO 
determined the value of λ according to the minimum mean 
squared error. The result of LASSO is shown in Figure 3. 
After the λ was determined, 38 stable radiomics features from 
716 features were finally saved for classification.

Feature fusion
Fused feature representation
After a concatenating operation is completed, deep 
features and radiomics features are input into the graph 
with a similar fixed structure with self-connection for 
feature fusion, as shown in Figure 4. This structure 
was first proposed by Hao et al. [2022] (34), and in our 
work, all the information in every slice is aggregated at 
the central node, which means that the information in 
the central node can be viewed as all the information 
extracted from the nodule’s CT image. Although all the 
features were extracted in a 2D manner, we could also 
obtain pseudo-3D results using this graph structure. 
Moreover, this structure effectively incorporates spatial 
information and transfers information between adjacent 
and subadjacent slice nodes. Due to the presence of self-
connections, each node can also effectively emphasize 
its own information. All the information in each slice is 
aggregated in the central node, which can be regarded 
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Figure 4 In the figure, each node represents a CT slice. The structure of the directed graph is adopted. Each node only has a directed 
edge with its adjacent node and central node, and each node has self-connection. At the very center is the fictitious spatial structure node, 
initialized with tensors of the corresponding dimension that are all zeros. CT, computed tomography.

as the summary of all the information extracted from 
the CT images of the nodule. Another advantage of the 
construction is that it is not necessary for all data to be 
of the same size. The feature fusion can be completed by 
only intercepting the relevant slice information of each 
nodule. The flexibility is improved compared to methods 
that must extract a fixed size, such as 3DCNN, and further 
saves memory for computing. 

Another reason for using fusion is that in the subsequent 
GNN, training is carried out on a per-nodule basis, and a 
same-dimensional feature that can represent each nodule is 
needed rather than the deep features or radiomics features 
extracted from each slice. The fused feature is only the 
feature vector in the central node. The node representations 
of the graph are generated using the information 
aggregation structure of the graph isomorphism network 
(GIN) (38). The GIN is a spatial-based convolutional 
GNN inspired by the Weisfeiler-Lehman (WL) test and is 
essentially used for distinguishing isomorphic graphs. GIN 
is employed in this method to make the nodules with similar 
sizes more similar in terms of information aggregation and 
representation, which naturally incorporates the semantic 
feature of nodule size. 

In our proposed method, since the shape of the graph 
is predetermined and only the feature information of the 
nodes needs to be aggregated and since the weights of 
each node in the CT are not the same, the pooling part of 
the graph readout is abandoned, and only the aggregated 
result in the central node is used as the embedding vector 
of the graph representation. Furthermore, considering the 
interpretability (in general, it is believed that a slice is only 
related to, at most, 2 adjacent slices above and below it), we 
only aggregate the neighbor node features within 2 steps 
for each node and only take the aggregated result of the last 
graph convolution layer. The feature aggregation function 

of GIN is as follows:

( ) ( ) ( )( ) ( ) ( )

( )

1 11k k k k k
v u

u N v
vh hh MLP ε − −

∈

 
= + +  

 
∑ 	 [1]

where ε is a learnable parameter, and ( )k
vh  is the aggregate 

result of layer k about node v.

Graph construction and node classification
Construction of graph data 
The fused feature is input into the graph database established 
by 9 class semantic features, which include type, size, 
spiculation, lobulation, vacuole sign, air bronchogram, 
vessel (normal or abnormal), tumor–lung interface (clear 
or not), and pleural indentation. Node classification can 
be performed using GAT or GCN. According to the 
study conducted by Hu et al. [2021] (39), the risk of IAC 
increases in nodules over 8mm, and the same increased 
risk is applicable to nodules with spiculation, lobulation, 
vacuole sign, vessel abnormalities, or pleural indentations. 
According to our experience and the advice of the radiologist, 
we added 2 signs of air bronchogram and an obvious 
tumor–lung interface. Ultimately, the similarity judgment 
was mainly divided into 3 aspects: (I) similarity is plus 1 if  
2 nodules have the same type; (II) the threshold for similarity 
determination is a size of 8 mm; (III) if 3 or more signs of the 
remaining 7 signs are the same between 2 nodules, every sign 
makes the similarity plus 1. Subsequently, edges in the graph 
are connected based on the magnitude of their similarity, 
with a similarity threshold of 5 being used in the model. As 
the connections between nodes were made using subjective 
methods, we can provide explanations for the propagation of 
information in the graph. Therefore, the graph constructed 
in this work is an interpretable directed graph with 338 nodes 
and 21,258 edges. It is also possible to customize the edge 
connection in a way that is considered more interpretable, 
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demonstrating the flexibility of our method.
Edge-generation network
After the graph data structure is constructed, due to its high 
subjectivity, it must be accompanied by certain limitations; 
otherwise, as shown in Figure 5A, the graph would not be 
fully connected. 

We refer to the dense middle part the of the graph 
network, in which the nodes are all connected, as the 
backbone. We can find that in the graph data structure 
constructed purely subjectively, there are many nodes left 
unconnected by edges with the backbone graph network, 
which means that their self-features cannot be updated in 
the process of feature aggregation. Therefore, to reduce 
the number of unconnected nodes and maximize the effect 
of feature aggregation, we propose an edge-generation 
network that is achieved through the following steps.

(I)	 Find all nodes that are not connected to the 
backbone graph;

(II)	 Take all nodes in the backbone as positive examples 
of the training set and extract the virtual edges as 
negative examples for training to learn the mode 
of the subjective connection. The loss function of 
training is as follows:

( ) ( ) ( )
1

1 log 1 log 1
N

BCE n n n n
n

L y x y x
N =

= − + − −  ∑ 	 [2]

where N is the number of samples, yn is the 
symbolic function, and xn is the prediction 
probability.

(III)	 Encode the overall image composed of all nodes. 
The encoder uses 2 layers of GCN convolution, 
where the hidden layer has a dimension of 128.

(IV)	 Decode the output of the encoder.
(V)	 Predict the probability of edge existence between 

nodes using the sigmoid, with the α edges with 
being highest probability being selected for 
completion of the graph connection. A new graph, 
as shown in Figure 5B, can be generated in this way. 

Experiments

In this section, our intra-, inter, and ablation experiments 
are reported and discussed. We fixed the random seed of 
all experiments to 42 and all the learning rates of models to 
0.001. The dataset was split in the manner shown in Table 1 
for all experiments except for deep-feature model with data 
augmentation in inter-experiments. To address the issue of 
imbalanced data, we introduced class weights into the loss 
function for each category based on its frequency in the 
dataset. Therefore, the loss function is as follows:

( )
1

1 log
M

CE ic ic c
i c

L y p w
M =

= − ∑∑ 	 [3]

where M is the number of categories, which in this 
experiment was 3; yic is a symbolic function that takes 1 
while the actual class of sample i equals c, and 0 otherwise; 
pic is the prediction probability that sample i belongs to class 
c; and wc is the weight of category c.

Metrics
We used accuracy, F1-score, Matthews correlation 
coefficient (MCC), and area under the curve (AUC) as the 
metrics in our experiments. All the metrics were averaged 
after 5-fold cross-validation. In each fold, the macroaverage 

A B

Figure 5 Visible graph structure with and without an edge-generation network. (A) Visible graph structure before edge generation and (B) 
visible graph structure after edge generation.
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was used for calculation, the formulae for which are as 
follows:

TP TNACC
N
+

= 	 [4]

 21 PF
P R

R××
=

+
	 [5]

( )( )( )( )
TP TN FP FNMCC

TP FP TP FN TN FP TN FN
× ×−

=
+ + + +

	 [6]

where P is precision, R is recall, TP is true positive, TN is 
true negative, FP is false positive, FN is false negative, and N 
is the total number of samples.

Interexperiments
This section describes the models used in the comparison 
with our proposed model and include the deep-feature 
model, radiomics feature model, and semantic models.
Deep-feature model
The first baseline model is ResNet28, as presented in  
Figure 2, to which we added a fully connected layer at 
the end. The second baseline was Local-Global Net (40), 
and the third baseline was 3D neural architecture search 
(3D-NAS) (41), both of which are classic algorithms for 
lung nodule classification. The optimizer for all these 
models is Adam, and there are 200 epochs in total in 
each fold. The first 2 models require 2D input, while the 
last model requires 3D input. For 2D input, an ROI of 
size 64×64 was cropped from the center of each nodule’s 
maximal axial slice. For 3D input, a cubic ROI of size 
32×32×32 was cropped, which included the nodule in the 
center. Data augmentation was performed by applying 
flipping, rotation (90°, 180°, and 270°), and Gaussian 
blurring to each ROI. As a result, the dataset used in this 
study was 6 times larger than that used in other models.
Radiomics feature model and semantic feature models
We employed support vector machine (SVM), random 
forest (RF), and adaptive boosting (AdaBoost) algorithms 
for the classification of radiomics features and semantic 
features. For SVM, we used a linear kernel with a 
penalty coefficient of 1.0. The RF algorithm consisted of  
50 decision trees as base classifiers. The base classifier for 
AdaBoost was decision tree, and the number of the base 
classifiers was set to 50.

Intraexperiments
All the models described in this section share the same 

structure, with differences only in the classification network 
or hyperparameters.
GNN model
For the graph node classification task, we tried 2 well-
regarded GNNs model, namely GCN and GAT (heads =3). 
The depth of the network is 2 layers, and the dimension of 
the hidden layer is 64. Each model has a dropout of 0.5.
Hyperparameter α
In  the  e xper iment ,  we  cons t an t l y  ad ju s t ed  the 
hyperparameter α to find the appropriate graph data 
completion method. The function of the hyperparameter 
is to determine the number of edges with the highest 
probability of connection between the unconnected nodes 
and other nodes. The probability of an edge between nodes 
is obtained by an edge generator.

Ablation experiments
Deep-feature model and deep-radiomics feature model
In the ablation experiments, during the feature fusion part, 
the radiomics features were removed, and only the deep 
features were used for fusion, which were subsequently 
sent to the next stage in order to prove the performance 
superiority of multimodal features over single-modal 
features.
Original model and edge generation model
In this experiment, we derived the detailed F1-scores for 
different categories in the multiclass task of GCN and GAT 
models with and without the edge generator. The purpose 
of this experiment was to demonstrate that the edge-
generation network could enhance the overall performance 
of the model.

Results

The results of all models used in this study on our dataset 
can be found in Table 2, and the t-test result between models 
can be found in Figure 6. Without data augmentation, our 
model achieved the best performance among all models. 
The results of our method are as follows: ACC =66.26% 
(±4.46%), AUC =75.86% (±1.79%), F1-score =64.00% 
(±3.65%), and MCC =48.40% (±5.07%). When data 
augmentation was applied to the deep feature model, our 
model still outperformed the Local-Global Net in all 
performance metrics. The Local-Global Net is a model 
that performs well in pulmonary nodule classification by 
using different modules to extract local and global features. 
In comparison with ResNet28, our model only had a lower 
ACC, while the other performance metrics were slightly 
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higher than those of ResNet28. However, our model was 
less stable than was ResNet28, indicating that our model 
and the ResNet28 model with data augmentation have 
highly comparable performance. The 3D-NAS, which 
is a low-computational complexity model based on 3D 
convolution, slightly outperformed our model in all the 
performance metrics. However, considering that our dataset 
was only one-sixth the size of the augmented dataset and 
that 3D-NAS is a state-of-the-art model that ranks highly 
in public datasets, we feel that this result is acceptable.

Table 3 presents the results of different GNNs as 
classifiers, along with the F1 scores of the 3 subtypes in 
each model. It can be observed that GAT outperforms 
GCN in overall performance on our dataset. Models with 
edge-generation networks perform better than do their 
counterparts without edge generators, particularly in the 
IAC and AIS minority classes, where the stability of models 
with edge a generator appears to be greatly improved.

Figure 7 presents the results of 4 metric indicators as a 
function of the hyperparameter α. The hyperparameter 
α regulates the number of edges generated by the edge-
generating network. We only considered the range from 
1 to 20 since nodes in the graph network become too 
significant and can distort the original judgments when the 
edge generation count exceeds 20. It can be observed that 
the optimal performance of our model could be obtained 
with α lying between 6 and 10. All GAT results presented in 
this paper were derived with α equal to 10.

Table 4 compares the results of models using multimodal 
feature fusion with those using only unimodal feature 
fusion. The results indicate that the models using 
multimodal feature fusion significantly outperformed those 
using only unimodal feature fusion.

Discussion

Traditional machine learning methods for lung nodule 
classification usually use radiomics and semantic features 
as inputs and employ machine learning classifiers for 
classification. However, such an approach can lead to a lack 
of deep features, which can affect the final results. Deep 
learning methods use deep models to extract image features 
and achieve better results but require large amounts of 
data and are difficult to interpret. Our model integrates 
multimodal features and constructs a graph data structure 
to fuse spatial information and semantic features, making 
the information propagation path clearer. When both the 
low-level features contained in the radiomics features and T
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Table 3 Results of the GAT and GCN models

Metrics
GAT GCN

Original Edge generation Original Edge generation

ACC 65.99±4.23 66.26±4.46* 65.42±2.91 64.82±6.38

AUC 71.34±3.15 75.86±1.79* 71.50±3.00 73.68±6.58

F1 61.13±5.35 64.00±3.65* 57.60±5.98 60.84±6.62

MCC 43.62±8.09 48.40±5.07* 42.34±7.33 44.04±8.59

F1, MIA 72.67±5.78 72.71±5.61* 73.64±4.44 74.26±5.03

F1, IAC 55.30±18.72 61.00±3.20* 50.44±26.25 57.58±8.19

F1, AIS 55.43±8.32 58.28±3.01* 48.71±13.37 50.69±10.05

The results are the mean ± standard deviation of 5-fold validation. *, represents the best result without data augmentation. ACC, accuracy; 
MCC, Matthews correlation coefficient; AUC, area under the receiver operating characteristic curve; F1, F1-score; MIA, minimally invasive 
adenocarcinoma; IAC, invasive adenocarcinoma; AIS, adenocarcinoma in situ; GAT, graph attention network; GCN, graph convolutional network. 
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the high-level features extracted from the deep features are 
expressed, the overall features of CT images can be more 
completely presented and received by the classification 
network. Our model is not only richer in feature dimensions 
but also better in interpretability compared to models 
employing only deep features. Therefore, as shown in 
Table 2, our model demonstrated a superior performance to 
those of traditional machine learning algorithms, including 
SVM, RF, and AdaBoost. Compared with deep learning 
models, ours has advantages when the data volume is small. 
However, due to the demand of features being too high 
and the difficulty in generating semantic features, the data 
required for our work cannot be expanded through data 
augmentation. Therefore, our model is slightly inferior 
to the self-organizing tree algorithm (SOTA) method 
3D-NAS, in which data augmentation is used. However, 
considering the difference in data volume, we believe that 

this difference is reasonable, and we will seek to improve 
our model in future work.

To address the issue of data imbalance, we increased 
the weight of each sample in the model’s loss function 
according to its proportion in the dataset. This led to 
improved performance of GAT over GCN in the selection 
of a node classifier. This is because GAT is an attention-
based network that assigns different attention coefficients 
to each vertex. These coefficients are used to compute node 
representations, which in turn are used to compute the loss 
function and guide the model training process. When we 
added the weight to the loss function, the corresponding 
attention coefficients became more precise during the 
backpropagation, resulting in a more accurate model.

The use of an edge-generation network for information 
completion on semantic feature–constructed graphs is a 
highlight of this work. Table 3 shows the comparative results 
between the original model and the model with the added 
edge-generation network, which validates the effectiveness 
of the edge-generation network. Compared with the 
original model, the model with the edge-generation 
network shows improvements in all performance metrics. 
Moreover, significant improvement in the stability of the 
minority class samples can also be observed. This is due 
to the existence of a large number of nodes without edges 
in the original graph data, and these nodes’ information is 
usually not propagated to other nodes in GNNs because 
of the lack of relationships with other nodes. Thus, there 
is information loss during the information propagation 
process. The classification prediction can only be based 
on the node embedding, which is closer to random 
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Figure 7 Relation between the hyperparameter value and the experimental metrics. ACC, accuracy; MCC, Matthews correlation coefficient; 
AUC, area under the receiver operating characteristic curve; F1, F1-score.

Table 4 Results of the models with deep-radiomics features and 
those with deep features only

Metrics Deep-radiomics feature model Deep-feature model

ACC 66.26±4.46 61.86±4.64

AUC 75.86±1.79 73.12±4.66

F1 64.00±3.65 57.9±3.89

MCC 48.40±5.07 40.60±4.50

The results are the mean ± standard deviation of 5-fold 
validation. ACC, accuracy; F1, F1-score; MCC, Matthews 
correlation coefficient; AUC, area under the receiver operating 
characteristic curve. 
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guessing, leading to high instability in the prediction 
results across different data distributions. However, when 
the edge-generation network learns and predicts the 
edge connections, the information can flow among these 
originally discrete nodes, which improves the stability. In 
the edge-generation network, the hyperparameter α is used 
to connect the originally discrete nodes to α adjacent nodes 
for feature information propagation. A too-large value 
of α may cause less important nodes to become central 
nodes in the information propagation, so the value of this 
hyperparameter needs to be manually set. In our original 
graph data, there are 258 nodes with edges and a total of 
21,258 directed edges. The edge count distribution, shown 
in Figure 8, is close to a random distribution. Considering 
that these initially unconnected nodes are less important 
than are those with edges, we expect to afford them 
relatively fewer undirected edges. Therefore, we believe it is 
reasonable to set up to 20 adjacent edges for nodes without 
edges. The experimental results show that connecting each 
node with 6–10 edges is the optimal range.

In terms of the number of the model parameters, besides 
the 20 million parameters in the ResNet28 deep model 
used for extracting deep features, the proposed model 
only uses slightly over 40,000 parameters in the edge-
generation network and 20,000 parameters in the GAT used 
as the classifier. This means that by adding the proposed 
subsequent structures and fusing multiple features on top 
of the deep network, better performance can be achieved 
in the multiclassification task of pulmonary nodules with 
almost no additional burden.

Although our model has many advantages, there are still 
limitations and room for improvement. First, the model uses 
multimodal features, including semantic features, making it 
difficult to perform data augmentation. Therefore, our model 
requires the collection of a large amount of medical data for 

data augmentation. We will consider generating imaging 
features for pulmonary images in future work to support 
data augmentation for the model. Second, due to subjective 
factors, although the edge-generation network is used, the 
construction of the graph still becomes unstable depending 
on the different connection patterns, resulting in poor 
performance in domain adaptation. Therefore, our method 
still needs to be improved in terms of robustness. One 
direction for consideration is the optimizing pf the first-order 
and second-order similarity losses for graphs in different 
domains. Finally, our work in clinical automation relies on 
the accuracy of the multitask detection of pulmonary nodule 
signs, which is also an area we will investigate further.

Conclusions

For lung cancer, the detection and screening of early 
lung adenocarcinoma subtypes are critical. Compared 
to using a single type of feature, leveraging the fusion of 
multiple deep and shallow features with semantic features 
of CT confers substantially more benefit in terms of the 
comprehensiveness of information. Owing to the growing 
sophistication of sign detection technology, there are many 
upstream benefits to our work.

Compared with traditional CNN and machine learning 
methods, our method has better performance and a 
relatively smaller number of parameters. The graph network 
is undoubtedly a superior choice for the relationship 
processing between CT slices and the connection between 
similar cases due to its implicit spatial relationship 
attribute. This enables our work to introduce spatial 
relationships while eliminating the disadvantage of large 
memory requirements for 3D convolution. In addition, 
due to the empirical subjective opinions introduced by the 
construction of subjective graph data and the supplement 
of the graph structure by the edge-generation network, the 
data construction method, similarly to hyperparameters, 
provides clinicians a more intuitive interpretability and 
better interactivity with computers.

To the best of our knowledge, this is the first attempt 
to combine GNN with multimodal features for the 
multiclassification of lung adenocarcinoma nodule subtypes. 
We hope that our work leads to further developments in this 
field.
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