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Introduction

Liver lesion segmentation of medical images generated 
by, for example, ultrasonography, computed tomography 
(CT) and magnetic resonance (MR), is to distinguish the 
underlining pixels of lesions from normal tissues (1-3).  

Fishing out lesions is critical to disease diagnosis and 
therapy, particularly for those with tiny size, i.e., less than 
1 square centimeter in practice (4,5). It has been widely 
affirmed, as well as confirmed, that operating on lesions at 
their very early stage (having a very small size) can yield 
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positive results, even radically clearing them (6). However, 
segmentation of small lesions is very challenging due 
to the lack of adequate lesion areas for feature learning. 
Furthermore, there is a pressing need for sufficient samples 
for model training, especially tiny lesions.

To alleviate the constraints, various augmentation 
approaches have been proposed and applied to deep 
neural network training (7-10), which can be divided 
into two types, i.e., context-agnostic and context-aware 
augmentation. The context of an object is the surrounding 
environment in which the object is embedded. As shown 
in Figure 1, the blue and orange lines delineate the context 
in which the lesions are located. In context-agnostic 
augmentation, context is ignored; while in context-aware 
augmentation, the surrounding context is enclosed during 
augmentation.

Context-agnostic augmentation includes (I) simply 
copy and paste (8,11-13) and (II) mixing up objects with 
their labels (9,14-19). These methods have been proven 
to be effective in promoting the performance of semantic 
segmentation. However, the lack of context can be 
preventive to further improve these models’ predictive 
ability (20,21). To address this, context-aware augmentations 

are proposed. The most widely used approach to achieve 
this goal is augmentation by a bounding box, i.e., repeating 
the object based on its bounding box or an enlarged 
bounding box (22,23). This type of augmentation is simple 
to implement, but the context is not equally distributed. 
Referring to Figure 1 again, the context is significantly 
richer along the diagonal than parallel to the axes when the 
rectangular context is used.

Various context shapes and expansions are possible 
(Figure 1). These characteristics, to our knowledge, have yet 
to be studied. Inspired by the observation, we try to figure 
out the answers to these questions: (I) to what extent does 
the context contribute to semantic segmentation, (II) which 
context shape is most helpful, (III) how large the context 
should be expanded and, (IV) how to fuse a context into a 
background?

To answer these questions, we have conducted extensive 
experiments for liver lesion segmentation on a newly 
constructed high-quality and large-volume dataset. Our 
experiments are carried out strictly according to the logic 
of the questions and gradually moving from the initial 
scenario to the in-depth scenario. We have also performed 
experiments on the most widely used dataset LiTS (24). 

Figure 1 Illustration of various lesion contexts. The areas in orange are lesions, while the banded regions between the blue and orange lines 
are the context. The context expansions are confined by the blue lines with various intensities, and the uniformity is revealed by the shape.

Liver                                      Lesion                   Rectangular context               Circular context           Polygonal context
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Our data, as well as the source codes, are available at https://
github.com/lzhLab/LSM.

Methods

Datasets

Two datasets are used in this comprehensive study: the 
widely used dataset LiTS (24) and a newly constructed 
dataset LSM (short for liver lesion segmentation masks).

LiTS contains 131 volumes and 58,638 slices, of which 
18,863 slices have lesions. Among these lesions, 8,831 have 
an area smaller than 1 square centimeter, which are deemed 
as small lesions, while the rest are large lesions. In terms of 
lesions at the volumetric level, there are 593 lesions. The 
classification of the lesion size is determined in accordance 
with (25), where small objects are defined as those whose 
size is less than 32*32 pixels.

LSM has 706 volumes and 91,283 liver-containing 
slices. In total, there are 48,858 lesions at the slice level  
(6,623 lesions at the volume level), of which 25,909 are 
small. To construct this high-quality and large-volume 
dataset, the lesions are delineated by three radiologists, and 

the final masks are the majority vote of the three. In case the 
consistency of a lesion mask is less than 0.5, the inconsistent 
one(s) will be sent back and refined again. The consistency 
is calculated as the ratio between the majority vote and 
the constituent mask. This dataset consists of various 
thicknesses. In particular, 17,671 slices are in 0.625 mm,  
7,217 are in 1 mm, 66,068 are in 1.25 mm, 283 are in  
2.5 mm, and 44 are in 5.0 mm.

The overview of the two datasets is shown in Table 1, 
while the detailed lesion size distributions are in Figure 2.

Please be noted that, although the classification of lesion 
size is in 2D, it is similar to the situation in 3D as most 
lesions in LiTS and LSM are very small and only occupy 
two to three slices; see Figure 2. Of course, 3D classification 
will give more accurate results.

The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013). As this study 
does not involve human subjects, ethical approval and 
informed consent are not required.

Context determination

Three classical shapes of lesion-specific context are 

Table 1 Details of LiTS and LSM

Dataset #Volumes #Slices #Liver slices #Lesions slices #Lesions† #Small lesions

LiTS 131 58,638 19,156 7,190 18,863 8,831

LSM 706 264,861 91,283 31,477 48,858 25,909
†, the number of lesions is determined at the slice level, not the volume level.

Figure 2 Detailed lesion size distribution of LiTS and LSM. The width and height of lesions are measured in pixel. 
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explored, including rectangular, circular, and polygonal 
contexts. These three shapes represent increasingly better 
context uniformity but more burdensome implementation 
complexity.

The rectangular context is achieved by excluding the 
lesion from its bounding box and scaling it with a factor. 
The width and height of the bounding box equal the size of 
the lesion determined along the axes, while scaling is carried 
out by varying with the aspect ratio unchanged. Generally, 
is no less than 1, and a larger value indicates more context 
information. 

For a circular context, the diameter is the maximum 
between the width and height of a lesion, and the center 
is the geometric mean of the bounding box. Similar to the 
rectangular one, the context can be enlarged by scaling 
the diameter by a factor α as well. Clearly, the context is 
more equally distributed along a lesion’s boundary than the 
rectangular one (Figure 1).

The polygonal context is achieved by convolving a 
lesion with a kernel. Let ×∈ H WI R  be an image with size 
H×W, Ixy be the intensity of the pixel at position (x,y) and 

Ie be a lesion contained in I, i.e., ∀ ∈e
xyI I . The mask of Ie 

is ×∈ H WM R  with Mxy ∈ {0, 1}. Mxy equals 1 if (x,y) ∈ Ie, 
otherwise 0. To achieve the shape-specific context expansion 
on Ie, a circular kernel k(x,y;r) filled with 1s is convoluted on 
M by

( ) ( )
( )

, : , ; 1
max , 1

=
′ + +=

i j K i jxy r
M x i yM 	 [1]

where r is the radius of the kernel that is flexible during 
augmentation. Based on M', the expanded region Ie' can 
be obtained by I'= I ⊙ M', where ⊙ is the matrix dot 
production.

Context-aware lesion embedding

Embedding a context-aware lesion into another place of a 
liver is to replace the target region with the lesion itself and 
fuse the context with the surrounding background.

Suppose a lesion Ie is to be embedded into a liver-
contained image at position (x,y), and the original mask as 
well as the context-aware mask of the lesion are M and M', 
respectively. Then the lesion-embedded image I' is
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where λxy is the weight of the context at position (x,y) 
surrounding the lesion. Three weighting strategies are 
examined, including uniform, Gaussian and inverse 
Gaussian.

For the uniform weighting strategy, λ equals 0.5 at every 
position.

Regarding Gaussian, ( )( )2, ; ,λ µ σ= N d x y , d(x,y) is the 
Manhattan distance between the interested point (x, y) and 
the nearest point (x', y') of M having M(x', y') =1, and N(⋅) is 
the normal distribution. In this study, μ is set to 0 and σ is 
optimized as

0 1σ  / 2 ln 2
2

d + =   
	 [3]

where d0 is the maximal distance between the expanded 

pixels to the nearest lesion, i.e., ( )0 max min ,=d d x y . For 
inverse Gaussian, λ is ( )( )21 , ; ,µ σ− N d x y  Analogously, μ 
is 0, and σ is the same as the Gaussian one.

Note that the above three approaches cover all the typical 
weighting strategies, in which the uniform one says the 
influence of context is equal at every position, the Gaussian 
one gives higher weight to the pixels that are closer to the 
lesion while lower those far away, and the inverse Gaussian 
is precisely the opposite of the Gaussian one. The context 
of the inverse Gaussian weighted lesions varies the most, 
while the Gaussian weighted ones the least.

Context-aware lesion augmentation

Two types of operations are applied to context-aware 
lesion augmentation to increase the number of lesions, 
including scale and rotation. The scale comprises scale-
down and scale-up. Small lesions will be enlarged by 
scale-up, while large ones will be shrunk by scale-down. 
The two operations are carried out based on a predefined 
probability. Regarding rotation, any angle between 0 and 
360 degrees can be randomly selected. Lesions and their 
surrounding context are rotated according to the randomly 
sampled angle correspondingly. Although there have many 
other image operators, such as crop, shift, and shear, they 
are ignored here because new images generated by these 
operations are impractical.

Results

Evaluation metrics

Five measurements, which are widely used in medical image 
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segmentation evaluation (26), are borrowed, including dice 
similarity coefficient (DSC), volume overlap error (VOE), 
average symmetric surface distance (ASSD), maximum 
symmetric surface distance (MSD) and root mean square 
error (RMSE). They are defined as:

( ) 2
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where P is the prediction, G is the ground truth, Z = 
|S(P)|+|S(G)|, S(X) is the boundary of the region X, and d(x, S) 
is the distance between any point x and a boundary S with 
d(x, S) = miny∈s ‖x − y‖ and ‖⋅‖ the Euclidean distance.

The above metrics have covered all the main groups 
of image segmentation evaluation methods, i.e., spatial 
overlap, volume overlap, and spatial distance (24).

Baseline performance

To fairly compare the performance of various augmentation 
settings, baseline performance is obtained by applying 
three classical network architectures to the datasets with 
fivefold cross-validation. The three models are FCN (27), 
U-Net (28), and DeepLabv3+ (29), where the backbone 
is ResNet-34 (30). The detailed performance is shown in  
Table 2. Without specification, all the results shown here 
and beyond are evaluated at a volume level other than the 
slice level to eliminate validation bias. 

Two main observations can be drawn from the results: 
(I) the performance obtained from LSM is markedly better 
than that from LiTS; (II) the performance generated from 
the large lesions is significantly better than the results 
yielded from the small ones. For the first observation, the 
superiority is mainly from the larger data volume, i.e., 707 
vs. 131. In addition, the strict delineation protocol used in 
LSM construction can be beneficial to the improvements 
as well. Regarding the second, it consolidates the isolation 
of lesions by size during performance evaluation. Since the 
performance on LSM is markedly better than that on LiTS, 
we further conducted a cross-dataset analysis to examine 
the generalizability of the newly constructed dataset. That 
is, taking LSM for training and validation while using 
LiTS for testing, and vice versa. Table 3 shows that the 
generalizability of LSM is significantly better than LSM. 

Table 2 Base-line performance of liver lesion segmentation on LiTS and LSM by using FCN, U-Net and DeepLabv3+

Data Size Model DSC↑ VOE↓ ASSD↓ MSD↓ RMSE↓

LiTS Small FCN 0.444 0.346 7.643 2.684 0.042

U-Net 0.468 0.320 6.525 2.344 0.038

DeepLabv3+ 0.412 0.340 8.185 2.826 0.043

Large FCN 0.756 0.301 15.54 4.868 0.112

U-Net 0.768 0.284 14.46 4.644 0.106

DeepLabv3+ 0.767 0.288 14.51 4.678 0.109

LSM Small FCN 0.707 0.257 2.939 1.129 0.024

U-Net 0.717 0.232 2.616 1.022 0.023

DeepLabv3+ 0.720 0.217 3.038 1.186 0.025

Large FCN 0.832 0.197 9.690 3.361 0.082

U-Net 0.857 0.166 9.075 2.994 0.076

DeepLabv3+ 0.830 0.206 9.813 3.456 0.084

DSC, dice similarity coefficient; VOE, volume overlap error; ASSD, average symmetric surface distance; MSD, maximum symmetric 
surface distance; RMSE, root mean square error.



He et al. Context-aware liver lesion segmentation5048

© Quantitative Imaging in Medicine and Surgery. All rights reserved.   Quant Imaging Med Surg 2023;13(8):5043-5057 | https://dx.doi.org/10.21037/qims-22-1399

In particular, the absolute Dice score is increased by 20% 
when LSM is used as training data compared to LiTS. 

Figure 3 shows the detailed dice during the three models’ 
training and validation on LiTS and LSM. After being well 
trained, the discrepancies between training and validation 
dice obtained from LiTS are significantly larger than that 
from LSM. This might be caused by the small amount 
of data with high heterogeneity contained in LiTS. This 
speculation is also supported by LiTS’s faster convergence 
speed than LSM.

These observations indicate that preparing large-volume 
and high-quality datasets, like LSM, is necessary and helpful 
for liver lesion segmentation.

Herein only three classical and popular architectures 

of neural networks are employed because (I) they are 
representative and (II) this study focuses on context-aware 
augmentation analysis other than posting brand-new 
models. Among the three architectures, U-Net outperforms 
the other two in most cases. Hence, in the following 
analysis, U-Net is used to evaluate the performance under 
various scenarios on LSM without further specification.

Augmentation improves segmentation

We first ask whether augmentation is helpful for segmenting 
liver lesions. To this end, we performed copy and paste 
(CaP), scale, and rotation of the lesions contained in LSM, 
and carried out segmentation using U-Net. Results show 

Table 3 Generalizability analysis of LSM and LiTS

Train & Val. Test Size Model DSC↑ VOE↓ ASSD↓ MSD↓ RMSE↓

LiTS LSM Small nnU-Net (2D) 0.443 0.258 1.473 3.327 0.025

Large 0.477 0.266 4.751 12.58 0.025

LSM LiTS Small 0.653 0.497 7.839 3.041 0.029

Large 0.767 0.358 26.41 7.386 0.083

DSC, dice similarity coefficient; VOE, volume overlap error; ASSD, average symmetric surface distance; MSD, maximum symmetric 
surface distance; RMSE, root mean square error; FCN, fully convolutional network.

Figure 3 The training and validation dice of FCN, U-Net and DeepLabv3+ on LiTS and LSM. FCN, fully convolutional network.
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that augmentation increases segmentation performance by 
at least 5.6% in terms of dice score; see Table 4. In addition, 
scale and rotation are more effective than CaP in promoting 
segmentation accuracy, both for small and large lesions.

Next, we wonder how many times a lesion should be 
repeated. Thus, newly augmented datasets generated 
from LSM with lesions repeated from 0 to 4 times were 
constructed, and the same U-Net model was trained 
and tested. Results show that two-time replication yields 
better performance in terms of dice score (Table 5). This 
observation agrees with previous findings (25).

All the augmentation methods are randomly selected 

to increase lesion diversity at this stage. Hence, the full 
capability of different methods can be unveiled.

Context-aware augmentation further improves 
segmentation

Now we are interested in whether context information 
further improves the accuracy of lesion segmentation. To 
this end, we duplicate each lesion twice with its rectangular 
context enclosed and train the U-Net model with the same 
settings as the previous experiments. The results conducted 
on LSM show that context-aware augmentation yields 

Table 4 Liver lesion segmentation performance under various augmentation methods.

Size Method DSC VOE ASSD MSD RMSE

Small None 0.717 0.232 2.616 1.022 0.023

CaP 0.770 0.230 2.458 0.970 0.023

Scale 0.779 0.228 2.434 0.949 0.023

Rotation 0.786 0.223 2.429 0.946 0.023

Large None 0.857 0.166 9.075 2.994 0.076

CaP 0.910 0.117 5.668 1.871 0.061

Scale 0.915 0.115 5.476 1.800 0.061

Rotation 0.916 0.119 5.766 1.907 0.060

Augmentation is only carried out once for each lesion with a predefined probability, and different augmentation methods are carried out 
separately. DSC, dice similarity coefficient; VOE, volume overlap error; ASSD, average symmetric surface distance; MSD, maximum 
symmetric surface distance; RMSE, root mean square error.

Table 5 Segmentation performance under different copy numbers of lesions

Size #Copy DSC VOE ASSD MSD RMSE

Small 0 0.717 0.232 2.616 1.022 0.023

1 0.770 0.230 2.458 0.970 0.023

2 0.773 0.226 2.359 0.931 0.022

3 0.766 0.233 2.461 0.978 0.023

4 0.751 0.236 2.516 1.006 0.023

Large 0 0.857 0.166 9.075 2.994 0.076

1 0.910 0.117 5.668 1.871 0.061

2 0.922 0.114 5.581 1.835 0.061

3 0.890 0.122 8.291 2.594 0.071

4 0.887 0.132 8.850 2.790 0.074

DSC, dice similarity coefficient; VOE, volume overlap error; ASSD, average symmetric surface distance; MSD, maximum symmetric 
surface distance; RMSE, root mean square error.
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better performance, particularly for larger lesions. Precisely, 
the DSC score is lifted from 0.773 to 0.791 for small lesions 
(P value <2.2e−16), and this value is increased from 0.922 
to 0.930 for large lesions (P value <2.2e−16). The detailed 
results are shown in Table 6.

Better uniformity yields higher accuracy

Context inclusion by bounding box is the most widely used 
strategy for context-aware augmentation because it is easy 
to implement. However, the dispersion of context obtained 
in this way is skewed because lesion shapes are rarely in 
rectangles, rather they are close to circles; cf. lesion shape 
distribution shown in Figure 2. To examine the effect of 
context uniformity on lesion segmentation, three types of 
context are investigated, i.e., rectangle-based (Rec), circle-
based (Cir), and polygon-based (Ply). The rectangle-based 
context has the poorest uniformity, while the polygon-based 
context has the finest uniformity. In addition, to make a fair 
comparison, the context of the three shapes is determined so 
that they have a similar ratio between the pixels of context 
and lesions. Specifically, we calculate the average ratio 
between the number of pixels composing the rectangular 
context and the number of pixels within the lesions. This 
ratio is further used as a benchmark to determine the radius 
of circles as well as the bandwidth enclosing the lesions.

Experimental results show that various context inclusion 
methods generate different results, and the dice scores are 
consistently improved along with the refinement of context 
uniformity. In particular, polygon-based context generates 
the highest results, while rectangle-based context yields 
the poorest results. It is the same for both small and large 
lesions. See details in Table 7. The dices and losses obtained 

during training and validation shown in Figure 4 also 
demonstrate the usefulness of context uniformity.

Context expansion has a limit

The context should not be too large or too small. When 
a context is expanded to include the entire liver, the 
augmentation collapses to mirror the original image; on 
the contrary, it is the reflection of the lesions themselves. 
Hence, we ask to what extent the context should be 
expanded.

To this end, we vary the context size and calculate 
segmentation performance. In particular, the rectangle-/
circle-based context is expanded by a factor 1, 1.5 and 
2, while the bandwidth of the polygon-based context is 
increased from 1 to 11 pixels in step 2. Results show that 
1.5 times context expansion yields the highest performance 
compared to those with expansion factors 1 and 2. 
Regarding the polygonal context, 5- or 7-pixel bandwidth 
generates the best results for small and large lesions, 
respectively. In addition, either increasing or decreasing the 
context size will weaken the models’ performance, as seen in 
Table 8. Detailed examples of lesion augmentation with the 
best expansion limit are shown in Figure 5.

Context fusion favors higher diversity

Intuitively, copy-and-paste a context-aware lesion from 
one place to another is irrational as the context may differ 
between the source and target, thus causing sudden changes. 
To mitigate this inconsistency, different weighting strategies 
for context fusion are examined, including uniform, 
Gaussian, and inverse Gaussian.

Table 6 Lesion segmentation performance with/without context

Shape Size DSC VOE ASSD MSD RMSE

None Small 0.717 0.232 2.616 1.022 0.023

Large 0.857 0.166 9.075 2.994 0.076

CaP Small 0.773 0.226 2.359 0.931 0.022

Large 0.922 0.114 5.581 1.835 0.061

Rec† Small 0.791 0.222 2.356 0.929 0.023

Large 0.930 0.111 5.485 1.843 0.061
†, rectangle enclosed context. Here the rectangle size is the same as the bounding box. CaP, copy and paste; DSC, dice similarity 
coefficient; VOE, volume overlap error; ASSD, average symmetric surface distance; MSD, maximum symmetric surface distance; RMSE, 
root mean square error.
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Since the rectangular and circular context is not uniformly 
dispersed, and the performance obtained from these data is 
not as good as those generated from the polygonal context, 
they are ignored in this context fusion experiment. For 
polygonal context fusion, 5-pixel and 7-pixel bandwidths are 
applied to small and large lesions, as the best performance 
can be achieved under these conditions.

Results show that context fusion significantly improves 
the segmentation performance (Table 9). Interestingly, the 
inverse Gaussian-weighted context fusion generates the 
highest dice score for large lesions, while the Gaussian-
weighted method produces the best results for small 
lesions. We speculate that small lesions are more sensitive 
to context. Hence, a lower variance produces better results. 

Figure 4 The training and validation dices and losses of lesion segmentation under various context uniformity. CaP, copy and paste; Rec, 
rectangular context; Cir, circular context; Ply, polygonal context.

Table 7 Segmentation performance comparison with various context uniformity on LSM

Size Shape DSC VOE ASSD MSD RMSE

Small CaP 0.770 0.230 2.458 0.970 0.023

Rec 0.783 0.224 2.434 0.949 0.023

Cir 0.786 0.218 2.347 0.925 0.023

Ply 0.792 0.218 2.341 0.921 0.022

Large CaP 0.910 0.117 5.668 1.871 0.061

Rec 0.914 0.115 5.529 1.865 0.061

Cir 0.917 0.115 5.516 1.837 0.061

Ply 0.918 0.116 5.508 1.832 0.061

CaP, copy and paste; Rec, rectangular context; Cir, circular context; Ply, polygonal context; DSC, dice similarity coefficient; VOE, volume 
overlap error; ASSD, average symmetric surface distance; MSD, maximum symmetric surface distance; RMSE, root mean square error.
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Table 8 Lesion segmentation performance under various context expansions and uniformity

Context shape Size Extent DSC VOE ASSD MSD RMSE

Rec Small 1.0×† 0.783 0.224 2.434 0.949 0.023

1.5× 0.788 0.220 2.374 0.936 0.023

2.0× 0.772 0.229 2.540 0.977 0.024

Large 1.0× 0.914 0.115 5.529 1.865 0.061

1.5× 0.916 0.114 5.474 1.830 0.061

2.0× 0.908 0.122 5.624 1.887 0.063

Cir Small 1.0× 0.786 0.218 2.347 0.925 0.023

1.5× 0.792 0.217 2.340 0.914 0.022

2.0× 0.778 0.220 2.353 0.932 0.023

Large 1.0× 0.917 0.115 5.516 1.837 0.061

1.5× 0.918 0.114 5.461 1.817 0.061

2.0× 0.913 0.116 5.668 1.871 0.062

Ply Small 1p‡ 0.792 0.218 2.341 0.921 0.022

3p 0.796 0.218 2.336 0.920 0.023

5p 0.803 0.216 2.318 0.911 0.022

7p 0.797 0.218 2.340 0.920 0.023

9p 0.796 0.218 2.346 0.924 0.023

11p 0.790 0.219 2.421 0.928 0.024

Large 1p 0.918 0.116 5.508 1.832 0.061

3p 0.919 0.116 5.506 1.831 0.061

5p 0.921 0.115 5.504 1.820 0.061

7p 0.926 0.114 5.451 1.813 0.061

9p 0.920 0.117 5.562 1.822 0.063

11p 0.914 0.120 5.758 1.874 0.064
†, context expansion scale factor; and ‡, bandwidth (in pixel) of context enclosing lesions. Rec, rectangular context; Cir, circular context; 
Ply, polygonal context; DSC, dice similarity coefficient; VOE, volume overlap error; ASSD, average symmetric surface distance; MSD, 
maximum symmetric surface distance; RMSE, root mean square error.

To highlight the impact of different fusion strategies on 
context-aware lesion augmentation, we reveal the difference 
of context intensity in terms of log ratio between a fused 
pixel and the original one, see Figure 6. As can be seen, the 
Gaussian and reverse Gaussian fusion strategies apparently 
increase the diversity of lesion-surrounded context. 
Moreover, the unbalanced weighting strategy can preserve 
the original contextual continuity very well (white colored 
pixels indicate marginal changes in pixel intensity).

Performance with optimal components combined

On top of the gradual explorations, we come up with the 
final integration having context’s shape, expansion and 
fusion considered. At the optimal parameter settings for 
different context shapes, the polygon-encircled context 
yields the best performance. In addition, context-aware 
models outperform context-agnostic models consistently. 
See Figure 7.
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Discussion

The context-aware augmentation analysis is mainly carried 
out on 2D images as the lesions are usually small, however, 
the strategy can be easily extended to 3D intuitively. To 
verify our hypothesis, we performed experiments on 3D 
volumes with and without context-aware augmentation by 

using nnU-Net (31) and MONAI (32) on LiTS and LSM, 
respectively. Results show that context-aware augmentation 
under the Gaussian fusion strategy improves segmentation 
performance remarkably; see Table 10. Moreover, the 
improvements in 3D are significantly larger than that in 
2D. This is mainly due to the reduced lesion-to-liver ratio 
in 3D. Therefore, augmentation is particularly beneficial.

Figure 5 Liver lesion augmentation in various contexts. The augmented lesions are highlighted by a white box at the target region, while 
the details of lesions along with their surrounding context (in light blue) are zoomed in at the bottom-right corner.

Table 9 Segmentation performance comparison with Uniform, Gaussian and Rev Gaussian weighted context fusion strategies

Size Weight DSC VOE ASSD MSD RMSE

Small Uniform 0.806 0.216 3.317 0.910 0.022

Gaussian 0.824 0.214 3.228 0.902 0.020

Rev Gaussian 0.813 0.215 2.310 0.907 0.021

Large Uniform 0.930 0.111 5.297 1.754 0.061

Gaussian 0.928 0.112 5.379 1.765 0.062

Rev Gaussian 0.932 0.110 5.294 1.691 0.060

Rev Gaussian means reverse Gaussian weighting strategy. DSC, dice similarity coefficient; VOE, volume overlap error; ASSD, average 
symmetric surface distance; MSD, maximum symmetric surface distance; RMSE, root mean square error.

Liver                              Copy-paste                         Rectangular                            Circular                             Polygonal
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Figure 6 Impact of the context fusion strategy. The lesion-surrounded context regions are highlighted with color bands, where red indicates 
higher intensity than the original while blue represents the opposite. The color intensity is determined by the log ratio between a fused pixel 
and the original one.

Figure 7 Performance on LSM under various context types combined with optimal settings. Panel (A) is for small lesions and panel (B) is 
for large lesions. DSC, dice similarity coefficient; VOE, volume overlap error; ASSD, average symmetric surface distance; MSD, maximum 
symmetric surface distance; RMSE, root mean square error.
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Table 10 Liver lesion segmentation performance comparison under various augmentation strategies achieved by 3D models

Data Model Aug DSC↑ VOE↓ ASSD↓ MSD↓ RMSE↓

LiTS nnU-Net None 0.460 0.632 16.02 97.059 0.010

Gaussian 0.775 0.338 2.571 39.270 0.038

MONAI None 0.385 0.292 77.27 271.29 0.032

Gaussian 0.602 0.264 13.82 76.195 0.057

LSM nnU-Net None 0.767 0.350 5.787 63.297 0.008

Gaussian 0.806 0.302 3.343 48.252 0.008

MONAI None 0.560 0.284 8.852 52.939 0.044

Gaussian 0.728 0.201 4.840 55.397 0.039

DSC, dice similarity coefficient; VOE, volume overlap error; ASSD, average symmetric surface distance; MSD, maximum symmetric 
surface distance; RMSE, root mean square error.

Conclusions

Data augmentation with context has been proven helpful 
in semantic segmentation. Hence, it has been heavily 
used. However, existing context determination approaches 
mainly rely on an object’s bounding box, which inevitably 
results in highly skewed context dispersion. To examine the 
effect of context, we comprehensively analyze the shape 
uniformity, expansion limit, and fusion strategy of context. 
We find that the polygonal context with the best context 
uniformity produces the highest accuracy in liver lesion 
segmentation, and the context should have a proper limit 
compared with its corresponding lesion size. In addition, an 
unevenly distributed weighting strategy for context fusion 
is more beneficial to lesion segmentation. Although the 
results above are drawn from liver lesion segmentation, the 
findings may shed light on other semantic segmentation 
tasks, particularly medical images.
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