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Background: Supervised machine learning methods [both radiomics and convolutional neural network 
(CNN)-based deep learning] are usually employed to develop artificial intelligence models with medical 
images for computer-assisted diagnosis and prognosis of diseases. A classical machine learning-based 
modeling workflow involves a series of interconnected components and various algorithms, but this makes 
it challenging, tedious, and labor intensive for radiologists and researchers to build customized models for 
specific clinical applications if they lack expertise in machine learning methods.
Methods: We developed a user-friendly artificial intelligence-assisted diagnosis modeling software (AIMS) 
platform, which supplies standardized machine learning-based modeling workflows for computer-assisted 
diagnosis and prognosis systems with medical images. In contrast to other existing software platforms, 
AIMS contains both radiomics and CNN-based deep learning workflows, making it an all-in-one software 
platform for machine learning-based medical image analysis. The modular design of AIMS allows users to 
build machine learning models easily, test models comprehensively, and fairly compare the performance of 
different models in a specific application. The graphical user interface (GUI) enables users to process large 
numbers of medical images without programming or script addition. Furthermore, AIMS also provides a 
flexible image processing toolkit (e.g., semiautomatic segmentation, registration, morphological operations) 
to rapidly create lesion labels for multiphase analysis, multiregion analysis of an individual tumor (e.g., tumor 
mass and peritumor), and multimodality analysis. 
Results: The functionality and efficiency of AIMS were demonstrated in 3 independent experiments in 
radiation oncology, where multiphase, multiregion, and multimodality analyses were performed, respectively. 
For clear cell renal cell carcinoma (ccRCC) Fuhrman grading with multiphase analysis (sample size =187), 
the area under the curve (AUC) value of the AIMS was 0.776; for ccRCC Fuhrman grading with multiregion 
analysis (sample size =177), the AUC value of the AIMS was 0.848; for prostate cancer Gleason grading with 
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Introduction

Computer-assisted analysis of medical images plays a 
key role in a variety of applications, such as population 
screening, diagnosis, treatment delivery, therapeutic 
evaluation, and auxiliary prognosis, across a broad range 
of medical fields (1-3). Benefiting from the ever-growing 
number of medical images, data-driven methods, such as 
radiomics (4) and deep learning (5), can achieve excellent 
performance by extracting (or learning) discriminative 
features from a massive set of medical images, facilitating 
human-level computer-assisted diagnosis systems for some 
specific tasks (6-9).

Radiomics, a machine learning-based methodology 
for medical  image quantitative analysis ,  was f irst 
proposed in 2012 (4). Aerts et al. (10) subsequently made 
a breakthrough in decoding tumor phenotype by using 
radiomics and revealed its powerful ability in radiation 
oncology. Radiomics extracts high-throughput quantitative 
image features based on the hypothesis that radiologic 
phenotypes may reflect genetic alterations in carcinogenesis 
and tumor biology. The discriminative features represent 
the morphologic and textural changes of lesions that are 
associated with disease processes, which are considered 
to be noninvasive biomarkers capable of predicting the 
biologic behavior of the tumor (11,12). Compared with the 
visual assessments of medical images, radiomics supplies 
quantitative, objective, and comprehensive biomarkers for 
noninvasive diagnosis and prognosis (13). However, the 
current radiomics architecture still confronts users with 
several challenges: (I) building optimal radiomics models 
is labor intensive for radiologists and researchers since the 
workflow of radiomics modeling includes tedious steps, 
including image preprocessing, lesion labeling, feature 
extraction, feature selection, classifier training, evaluation, 
and performance comparison. These interrelated steps 
contain many candidate algorithms and their combinations. 

(II) The radiomics features are human-defined, which leads 
the majority of the high throughput features potentially 
lacking discriminative power for a specific task. This means 
that the performance of the radiomics model may depend 
highly on feature selection. (III) Unreliable segmentation 
may have an adverse effect on feature extraction and even 
lead to incorrect predictions in the radiomics analysis (14).  
Generally, radiomics modeling requires expertise in 
machine learning and programming ability in building a 
customized and optimal model for a specific application.

Deep learning based on a convolutional neural network 
(CNN) is another well-known machine learning paradigm 
and is currently being used in a core role within computer-
assisted analysis systems due to its ability to perform 
feature self-learning from medical image datasets. The 
CNN models contain deeply nested compositions of 
simple parameterized functions (principally consisting of 
convolutions, scalar nonlinearity, moment normalizations, 
and their linear combinations), which are optimized by 
minimizing a loss function (15). Deep learning has been 
widely applied in medical image analysis tasks, including 
segmentation, classification, detection, and registration 
in various anatomical sites (e.g., brain, heart, lung, breast, 
abdomen, and prostate) (16,17). It also has demonstrated 
excellent performance in complex medical diagnosis tasks (18). 
In contrast to the radiomics architecture, the CNN can be 
trained in an end-to-end manner, automatically learning 
the features associated with the pathological diagnosis from 
imaging data. Thus, a precise lesion boundary and human-
defined feature extraction are not required. This means 
that the original images without segmentation masks can 
be input into a deep learning network, which can avoid 
the adverse effects of unreliable segmentation (15). Deep 
learning methods are widely employed in a variety of 
applications, such as pulmonary nodule detection (19), liver 
fibrosis staging (20), and the determination of breast cancer 

multimodality analysis (sample size =206), the AUC value of the AIMS was 0.980.
Conclusions: AIMS provides a user-friendly infrastructure for radiologists and researchers, lowering the 
barrier to building customized machine learning-based computer-assisted diagnosis models for medical 
image analysis.
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hormonal receptor status (21). Despite its proven value 
in medical image analysis, deep learning presents several 
challenges: (I) similar to the radiomics paradigm, deep 
learning also comprises many interconnected components 
in its workflow, including image preprocessing, network 
building, model training and optimization, evaluation, 
and performance comparison, which requires that 
radiologists and researchers have a high level of expertise 
in deep learning to build optimal models. (II) The feature 
representation is not directly interpretable, which means 
that deep learning architectures are conceptually similar 
to black boxes for researchers, resulting in an unknown 
association and correspondence between learned deep 
features and diagnosis results.

Generally speaking, it is challenging and tedious to 
build an application-specialized machine learning model 
(either with radiomics or deep learning) if radiologists 
or researchers do not have expertise in machine learning 
or lack programming skills. To solve this problem, 
it is highly necessary to develop accessible and user-
friendly software that can provide a convenient workflow 
for radiomics and deep learning-based medical image 
analysis. We thus developed an artificial intelligence-
assisted diagnosis modeling software (AIMS) platform to 
alleviate the abovementioned problems. Moreover, the 
functionality and effectiveness of AIMS was evaluated by  
3 experiments. The main advantages of AIMS are as follows: 
(I) it comprises both radiomics- and CNN-based deep 
learning paradigms and their corresponding standardized 
workflows; (II) the standardized workflows and modular 
design allow users to rapidly configure/build, evaluate, and 
compare different models for specific applications; (III) 
the user-friendly graphical user interface (GUI) enables 
users to automatically analyze large numbers of medical 
images without programming or editing scripts; and (IV) it 
provides an image-processing toolkit (such as segmentation, 
registration, and morphological operations) for convenient 
handling of lesion-labeling tasks. We present this article in 
accordance with the TRIPOD reporting checklist (available 
at https://qims.amegroups.com/article/view/10.21037/
qims-23-20/rc).

Methods

Design goals

The AIMS platform is aimed at providing a user-friendly 
infrastructure for radiologists and researchers to thus lower 

the barrier to building customized machine learning-based 
computer-assisted diagnosis models for medical image 
analysis. The design and implementation of AIMS follows 
several core principles, which satisfies the following key 
requirements: 

(I) Completeness: the developed software should 
supply multiple machine learning frameworks to 
cover the frequently used paradigms (radiomics- 
and CNN-based deep learning). It should also 
provide complete machine learning workflows for 
medical image analysis, including data preparing/
preprocessing, lesion labeling, classifier training, 
evaluation, performance comparison, and statistical 
result visualization.

(II) Standardization: the software should provide 
standardized machine learning workflows for 
medical image analysis.

(III) Friendliness: the platform should be simple, user-
friendly, and accessible to everyday users without 
expertise in machine learning or programming. 
Specifically, this means the developed software 
should be able to conveniently build machine 
learning models using GUI wizards without the 
need for any editing of scripts or configuration of 
files.

(IV) Flexibility: the software should include a flexible 
image processing toolkit for complex applications, 
such as semiautomatic segmentation for pixel-wise 
lesion labeling, registration for multiseries (both 
multimodality and multiphase) image analysis, and 
morphological operation for peritumoral analysis.

Software characteristics

The first characteristic of the AIMS platform is that it is 
an all-in-one software platform for medical image analysis 
based on machine learning. We designed a loosely coupled 
and modular architecture in AIMS, which comprised 
several modules (Figure 1): (I) the basic module set mainly 
includes data inputs and outputs (I/Os), a data manager, 
image visualization, and human-computer interaction. (II) 
The labeling module set, mainly includes segmentation, 
registration, and morphological operation. (III) The 
machine learning module set mainly includes feature 
extraction, selection, and modeling in the radiomics 
workflow, and includes image preprocessing, model 
training, and inferencing in the deep learning workflow. 
In this way, AIMS facilitates complete and standardized 

https://qims.amegroups.com/article/view/10.21037/qims-23-20/rc
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pipelines for radiomics and deep learning paradigms, and 
users can switch between the radiomics workflow and deep 
learning workflow to conveniently build optimal machine 
learning models in their studies. (IV) The evaluation 
module set mainly includes performance monitoring, 
feature visualization, statistics generation, and analysis.

The second characteristic of AIMS is that it provides 
user-friendly GUIs (Figure 2) to guide users in building 
their own models. This includes the pipelines of image 
processing and machine learning modeling. Various data 
I/Os are also provided to cooperate with other domain-

optimized software or toolkits. For example, AIMS could 
output a radiomics feature matrix as a Comma-Separated 
Values (CSV) file and internal statistical results as a  binary 
MATLAB® (MAT) file. Moreover, AIMS could support the 
construction of a comprehensive classification model by 
concatenating radiomics features and other biomarkers (22),  
such as clinical features and immunohistochemical 
indicators.

The third characteristic of AIMS is that it provides 
various lesion-labeling tools to rapidly generate lesion 
masks. Lesion labeling is a common but time-consuming 

Basic 
module Data I/O Data manager Image visualization Interaction

Segmentation Registration Morphological operation

Feature extraction Feature selection Radiomics model building

Preprocessing Deep learning model training Inference

Performance monitor Feature visualization Statistics & analysis

Labeling 
module

Machine 
learning 
module

Evaluation 
module

Figure 1 Brief overview of the AIMS architecture and its modules. I/O, input and output; AIMS, artificial intelligence-assisted diagnosis 
modeling software. 

Figure 2 The main graphical user interface of AIMS. The workflow window incorporates project setting, image labeling, training (feature 
extraction, feature selection, and model configuration in the radiomics workflow; modeling configuration in the deep learning framework), 
and testing. The image view window is designed to display medical images and labeled images with axial, coronal, sagittal, and 3-dimensional 
views. The image manage window is used to manage the image list. LoG, Laplacian of Gaussian filter; AP, arterial phase; WW, window 
width; WL, window level; AIMS, artificial intelligence-assisted diagnosis modeling software.

Workflow window Image view window Image manage window
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task in machine learning-based medical image analysis. In 
AIMS, some classical semiautomatic labeling methods and 
a UNet-based automatic segmentation (23) method are 
provided to rapidly create mask images. Semiautomatic 
labeling methods mainly include manual brush labeling, 
threshold segmentation, hole filling, and connected region 
extraction. In order to maximize the convenience of lesion 
labeling, registration is integrated with a map moving image 
and its mask with a fixed image (without a mask image) to 
create masks for multimodality or multiphase images, which 
is an ingenious and convenient way to create an initial mask 
for the fixed image. AIMS also provides morphological 
processing tools, which can be used to create peritumoral 
masks for peritumoral analysis in radiation oncology (24).

The comparison between AIMS and its competitive 
software is shown in Table 1.

AIMS is developed by using Qt1 for GUI, DCMTK2  
for Digital Imaging and Communications in Medicine 

(DICOM) I/O, the Visualization Toolkit (VTK) (30) for 
image visualization, the Insight Toolkit (ITK) (30) for 
classical image processing (semiautomatic segmentation, 
registration, morphological operation), PyRadiomics (25) 
for image feature extraction, scikit-learn (31) in Python for 
radiomics modeling, and MONAI3 for deep learning-based 
CNN modeling. All extracted features in the radiomics 
pipeline are compliant with definitions of the Imaging 
Biomarker Standardization Initiative (IBSI) (32). AIMS is 
currently executable for the Microsoft Windows 10 (64 bit) 
operating system. Researchers can freely access this software 
by contacting the corresponding author (Yakang Dai) or by 
https://github.com/AIMSibet/AIMS. The recommended 
configuration of computer is listed in in Table S1 in 
Appendix 1. 

Generally, AIMS provides both radiomics- and CNN-
based deep learning to construct completeness and end-
to-end pipelines. In each pipeline, it includes standardized 

Table 1 Comparison between AIMS and other existing software

Competing software
Free 

access
Segmentation Registration

Morphological 
operation

Feature 
extraction

Radiomics 
workflow

Deep learning 
workflow

PyRadiomics (25) √ × × × √ × ×

SlicerRadiomicsa √ √ √ √ √ √ ×

Qualia Radiomicsb √ √ √ × √ √ ×

FeAture Explorer (26) √ × × × √ √ ×

CaPTk (27) √ √ √ × √ √ ×

FeTS (28) √ √ × × × × ×

GaNDLFc √ √ × × × × √

MITK (29) √ √ √ √ × × ×

MevisLabd √ √ √ √ × × ×

AIMS √ √ √ √ √ √ √

a, an extension for 3D Slicer (https://github.com/AIM-Harvard/SlicerRadiomics), which encapsulates the PyRadiomics library to calculate a 
variety of radiomics features. b, this provides some contour tools and grow-cut segmentation for labeling small solid nodules and ground-
glass shadow nodules (https://github.com/taznux/radiomics-tools). c, a generalizable application framework for segmentation, regression, 
and classification using PyTorch (https://github.com/mlcommons/GaNDLF). d, this is a modular framework for image processing research 
and development with a special focus on medical imaging. It includes modules for segmentation, registration, and volumetry, as well as 
quantitative morphological and functional analysis (https://www.mevislab.de/mevislab). AIMS, artificial intelligence-assisted diagnosis 
modeling software; CaPTk, Cancer Imaging Phenomics Toolkit; FeTS, federated tumor segmentation tool; GaNDLF, generally nuanced 
deep learning framework; MITK, Medical Imaging Interaction Toolkit. 

 
1 Qt: a cross-platform application development framework, https://www.qt.io/
2 DCMTK: a collection of libraries and applications implementing large parts of the DICOM standard, https://www.dcmtk.org/en/
3 MONAI: multiple open-source PyTorch-based frameworks for deep learning in medical image analysis. https://github.com/Project-MONAI

https://cdn.amegroups.cn/static/public/QIMS-23-20-Supplementary.pdf
https://cdn.amegroups.cn/static/public/QIMS-23-20-Supplementary.pdf
https://github.com/AIM-Harvard/SlicerRadiomics
https://github.com/taznux/radiomics-tools
https://github.com/mlcommons/GaNDLF
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machine learning workflows with GUI to satisfy the 
requirements of standardization and friendliness. AIM 
supplies various and flexible image processing tools for 
complex applications. More details of AIMS are described 
in the following subsections.

Software workflow

Users can build customized models by following a step-by-
step GUI guide of AIMS. AIMS mainly contains 4 steps 
to build models (Figure 3): project configuration, lesion 
labeling/cropping, machine learning modeling (including 
radiomics and deep learning), and performance evaluation. 

Project configuration
Image preparation is the first procedure in the workflow. 
AIMS accepts 3D or 2D images in both DICOM file 
and Neuroimaging Informatics Technology Initiative 
(NIfTI) file formats. In order to simplify the preparation 
of multimodality or multiphase images, we designed a 
“patient-series-image” document architecture referring 
to and simplifying the 4 hierarchical architectures in the 
DICOM standard. After image preparation, users can 

configure the training dataset and validation dataset in 
experimental and control cohorts. The file architecture is 
shown in Figure 4.

Lesion labeling/cropping
The second step of machine learning modeling for medical 
image analysis is creating lesion masks (or subimages in deep 
learning workflow). AIMS provides a convenient image-
labeling toolkit to accelerate the time-consuming pixel-
wise lesion labeling. Radiomics extracts high-throughput 
features from the regions of interest (ROIs), which are 
usually generated by manually delineating the outline of the 
entire lesion in all contiguous slices. In order to meet the 
challenge of pixel-wise labeling in medical images, AIMS 
supplies a convenient and flexible segmentation toolkit, 
which incorporates classical semiautomatic methods, 
morphology methods, registration-based labeling methods, 
and deep learning-based automatic labeling methods. As 
lesion masks are not necessary for the end-to-end training 
of CNN models, AIMS provides a cropping tool to crop 
subimages from a large source of images to reduce the input 
image size, which can greatly accelerate CNN training. 
Finally, all masks and their corresponding source images (or 

Images
Radiomics

Feature extraction Feature selection Model building

Radiomics

• First order features
• Shape features
• GLCM features
• GLRLM features
• GLSZM features
• NGTDM features
• GLDM features

• Feature preprocessing 
• Variance threshold
• T-test
• Correlation analysis
• Maximum correlation and 

minimum redundancy
• Sequential feature selection

• CSVC
• NuSVC
• LASSO
• Logistic regression
• Random forest
• AdaBoost
• XGBoost

Project configuration

• Data cleaning
• Train/test split
• Experimental/control 

group
• Modality/temporal 

configuration

Lesion labeling

• 2D/3D manual labeling
• Semi-automatic 

segmentation
• Deep learning based 

segmentation
• Registration
• Morphological operation

• Data augmentation
• ROI crop/pad
• Interpolation and 

resampling
• Intensity 

normalization

• DenseNet 121
• DenseNet 169
• DenseNet 201

Preprocessing Network training

Deep learning

• AUC (95% CI)
• Accuracy
• Sensitivity
• Specificity
• Precision
• ……

• Feature heatmap
• Feature correlation 

heatmap
• Feature cluster 

heatmap
• ROC curves

Statistics Visualization

Performance evaluation

Figure 3 The workflow in AIMS. GLCM, gray-level co-occurrence matrix; GLRLM, gray-level run length matrix; GLSZM, gray-level 
size zone matrix; NGTDM, neighboring gray-tone difference matrix; GLDM, gray-level dependence matrix; CSVC, C-support vector 
classification; NuSVC, nu-support vector classification; LASSO, least absolute shrinkage and selection operator; ROI, region of interest; 
AUC, area under curve; CI, confidence interval; ROC, receiver operating characteristic; AIMS, artificial intelligence-assisted diagnosis 
modeling software.



Zhou et al. A development and validation study on AI-assisted diagnosis7510

© Quantitative Imaging in Medicine and Surgery. All rights reserved.   Quant Imaging Med Surg 2023;13(11):7504-7522 | https://dx.doi.org/10.21037/qims-23-20

subimages) are automatically saved as NIfTI files. 

Machine learning modeling
AIMS can implement either a radiomics workflow or a deep 
learning workflow according to the user’s configuration. 
In the workflow of radiomics analysis, AIMS offers a step-
by-step GUI wizard (feature extraction, feature selection, 
model building, and performance analysis) to guide users 
in building radiomics models. In the workflow of deep 
learning, AIMS offers a straightforward GUI for users to 
configure the parameters of the CNN models.
Radiomics-based modeling
The fundamental assumption of radiomics is that the 
distinguishing texture features macroscopically reflect the 
irregularity of nuclear shape and arrangement. Radiomics 
extracts quantitative features from large-scale sets of 
medical images, quantitatively analyzes these representative 
features, and maps them to clinical conclusions for diagnosis 
and prediction (12). The workflow of radiomics analysis in 
AIMS follows the guidelines of the IBSI (33).

AIMS builds reproducible radiomics features (32), 
which are categorized into 7 feature types: (I) first-order 
features; (II) shape-based features; (III) gray-level co-
occurrence matrix (GLCM) features; (IV) gray-level run 
length matrix (GLRLM) features; (V) gray-level size zone 

matrix (GLSZM) features; (VI) neighboring gray-tone 
difference matrix (NGTDM) features; and (VII) gray-
level dependence matrix (GLDM) features. AIMS extracts 
features not only from the ROIs in the original images but 
also from images derived with image filters. The image 
filters include Laplacian of Gaussian, square, square root, 
logarithmic, exponential, gradient, local binary pattern, and 
wavelets. AIMS can combine the extracted features from 
multiple images or multiple regions (e.g., tumor mass and 
peritumor) if their names are input into the GUI wizard. 
AIMS would then save the extracted and selected features 
into separate CSV files. Moreover, researchers can combine 
more complex features by copying other biomarkers (e.g., 
clinical features, immunohistochemical indicators) into CSV 
files to build a more elaborate machine learning model.

The purpose of feature selection is to reduce the 
number of features and remove relevant features to prevent 
overfitting. Feature selection is critical for building a 
radiomics model with high-performance, repeatability, 
and interpretability. In this step, AIMS first normalizes 
each feature column to avoid the effect of different scales. 
It subsequently supplies 4 types of methods for selecting 
normalized features: t-test, correlation analysis, minimum 
redundancy maximum relevance (mRMR) (34), and 
sequential feature selection (35).

Figure 4 The file architecture (from top directory to bottom directory) consists of the root, cohort folder, patient folder, series folder, and 
DICOM folder (or NIfTI files). Each cohort folder comprises some patient folders; each patient folder contains one or several series folders. 
In clinical practice, the image scan usually comprises multiseries images, such as multimodality images (e.g., CT and MRI), multiparameter 
images (e.g., T1WI, T2WI, DWI), and multiphase images (e.g., arterial, venous, delay phase images in contrast-enhanced CT). AIMS is 
designed to automatically extract and concatenate features from multiseries images. CT, computed tomography; DICOM, Digital Imaging 
and Communications in Medicine; NIfTI, Neuroimaging Informatics Technology Initiative; MRI, magnetic resonance imaging; T1WI, 
T1-weighted imaging; T2WI, T2-weighted imaging; DWI, diffusion-weighted imaging; AIMS, artificial intelligence-assisted diagnosis 
modeling software.
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AIMS provides 7 machine learning algorithms for 
building radiomics models, which are nu-support vector 
classification (Nu-SVC), C-support vector classification 
(C-SVC), random forest, adaptive boosting (AdaBoost), 
extreme gradient boosting (XGBoost), least absolute 
shrinkage and selection operator (LASSO), and logistic 
regression based on scikit-learn. AIMS can automatically 
choose the appropriate hyperparameters through grid 
search, and researchers can refine these hyperparameters to 
obtain better performance. AIMS can further execute cross-
validation on the training cohort and evaluate the prediction 
performance of optimized models on the independent 
test cohort. In order to intuitively analyze the role and 
relationship of selected features, AIMS automatically creates 
and saves feature heatmaps, which could be displayed 
in a statistical chart window of AIMS. Video 1 shows the 
operation of a radiomics workflow in AIMS.

Deep learning-based modeling
Deep learning-based modeling is an alternative paradigm 
for medical image analysis, which has been broadly applied 
in various applications due to its proven performance. 
Dif ferent  from radiomics-based models  that  use 
handcrafted features, the deep learning-based classifier 
can be trained in an end-to-end manner to automatically 
perform high-level feature self-learning with little prior 
task-specific knowledge needed. Therefore, we integrated a 
deep learning-based workflow in AIMS for medical image 
analysis. Specifically, DenseNet-169 (36) was incorporated 
as the default classification network in AIMS. The cross-
entropy loss function was used, and the Adam optimizer 
with a default learning rate of 10−4 was adopted. Similar to 
the deep learning-based segmentation in AIMS, a variety of 
hyperparameters of deep network can be set in classification 
tasks. In addition, DenseNet-121 and DenseNet-201 can be 
selected to adapt to different-scale classification tasks. Video 2 
shows the operation of a deep learning workflow in AIMS.

Evaluation and visualization
AIMS offers various metrics to evaluate the classification 
performance of the constructed machine learning models. 
The metrics include confusion matrix (true positive, true 
negative, false positive, false negative), accuracy, sensitivity, 
specificity, precision, receiver operating characteristic 
(ROC), area under the curve (AUC) with 95% confidence 
interval (CI), geometric mean (G-mean), F1-score, and 
Matthews correlation coefficient (MCC). AIMS can output 
a study report with the following information: study and 
dataset description, configuration of the entire machine 
learning workflow, and experimental results. The final 
model can be saved if the performance satisfies the need of 
the task. This model can be implemented using AIMS to 
predict prospective data for radiation oncology.

Results

In order to verify functionality and effectiveness of 
AIMS, we performed various retrospective analysis tasks 
in radiation oncology: multiphase (multiphase contrast-
enhanced) computed tomography (CT) analysis and 
multiregion (tumor mass region and peritumoral region) 
analysis for Fuhrman grading of clear cell renal cell 
carcinoma (ccRCC) and multimodality [biparametric 
magnetic resonance imaging (bpMRI)] analysis for Gleason 
grading of prostate cancer. The ccRCC Fuhrman grading 
was analyzed with the radiomics workflow, and the prostate 

Video 1 Operation of AIMS in the radiomics workflow. AIMS, 
artificial intelligence-assisted diagnosis modeling software.

Video 2 Operation of AIMS in deep learning workflow. AIMS, 
artificial intelligence-assisted diagnosis modeling software.
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cancer Gleason grading was performed with a deep learning 
workflow. In the experiments, AUC with 95% CI, accuracy, 
sensitivity, specificity, precision, MCC, and ROC were used 
to measure the performance of prediction models on the test 
cohorts. All image data were anonymous, and researchers 
were blinded to the clinical and histopathological reports of 
test cohorts.

This study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013), and the 
experiment was approved by the institutional review board 
of The Second Affiliated Hospital of Soochow University 
and Suzhou Science & Technology Town Hospital. 
Individual consent for this retrospective analysis was waived.

Multiphase analysis for ccRCC Fuhrman grading

Some studies have shown that the performance of models 
using multiphase images is higher than that of those using 
single-phase images (37-39). In this experiment, we used 
AIMS to build radiomics models with features extracted 
from multiphase images for ccRCC Fuhrman grading.

We collected 247 samples with contrast-enhanced CT 
images, which were acquired from the Second Affiliated 
Hospital of Soochow University (Suzhou, China). The 
dataset included CT images, histopathology reports, 
and clinical data of patients who had undergone surgical 
resections of ccRCC between January 2009 and January 
2019. A patient was included in this study if he/she 

underwent a preoperative contrast-enhanced computed 
tomography (CECT) with a 3-phase renal mass CT imaging 
protocol [corticomedullary phase (CP), nephrographic 
phase (NP), delay phase] had a histopathology report of 
ccRCC with a diagnosis with Fuhrman grades. Ultimately, 
187 were finally enrolled after the following exclusion 
criteria were applied: (I) lack of Fuhrman grades in 
histopathology reports (n=36); (II) lack of CT images (n=4); 
(III) incomplete contrast-enhanced phases (n=17); (IV) 
incomplete lesion in CT images (n=2); and (V) suboptimal 
CT imaging quality (n=1). The patient characteristics are 
shown in Table S2 in Appendix 2. All samples included 
in the study were confirmed by pathology reports, and a 
simplified 2-tiered Fuhrman grade system (40) was used, 
which categorized samples into low grade and high grade. 
Consequently, 131 samples (low grade =95, high grade 
=36) were assigned into the training cohort, and 56 samples 
(low grade =40, high grade =16) were assigned into the test 
cohort. The lesion masks were created by 2 radiologists 
(with 25 years of experience) through delineating the outline 
of entire tumor in all contiguous slices. The radiologists 
only labeled lesions in the CP of contrast-enhanced CT 
images. The tumor masks of other phase images were 
created with an affine registration method integrated in 
AIMS (Figure 5).

The software extracted 107 quantitative 3D radiomics 
features from each lesion region in a single-phase image 
and then created a phase-combined feature set for each 

A B C

Figure 5 Demonstration of ccRCC lesion masks created by registration-based methods in AIMS. Motion can be clearly observed in kidney 
contrast-enhanced CT images. (A) A lesion mask labeled by a radiologist on a corticomedullary phase CT image (moving image). (B) A 
lesion mask of a corticomedullary phase image directly mapped onto a nephrographic phase image without spatial transform; the white 
arrow indicates the falsely mapping region. (C) A lesion mask of a corticomedullary phase image mapped to a nephrographic phase image 
with affine registration. ccRCC, clear cell renal cell carcinoma; AIMS, artificial intelligence-assisted diagnosis modeling software; CT, 
computed tomography.

https://cdn.amegroups.cn/static/public/QIMS-23-20-Supplementary.pdf
https://cdn.amegroups.cn/static/public/QIMS-23-20-Supplementary.pdf
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lesion. Each feature was normalized to achieve a zero 
mean and unit variance across the entire training and test 
cohorts to avoid the effect of different scales. In order 
to select discriminative features, a sophisticated feature 
selection procedure was performed as follows. First, low 
reproducibility features were removed if the variance of 
the normalized feature value was smaller than 10−3. The 
intraclass and interclass correlation coefficients (ICCs) 

of segmentation were computed to assess the inter- and 
intra-observer reproducibility, respectively. The features 
with an ICC lower than 0.75 were considered to have 
poor agreement and were therefore removed. Second, 
Pearson correlation analysis was performed to identify the 
distinctiveness of features and to remove the redundant 
features if their absolute correlations were higher than 
0.1. The mRMR method was applied to identify the 
most important features for the criteria of both minimum 
redundancy and maximum relevance. Finally, only the top-20 
most important features in each feature set from the training 
cohort were selected and input into a C-SVC (41) to build 
multiphase-feature combined models. The performance 
of the multiphase-feature combined models was assessed 
using the test cohort. We built 7 types of radiomics 
models to verify the availability and effectiveness of the 
multiphase features: (I) features extracted from the CP; 
(II) features extracted from the NP; (III) features extracted 
from the excretory phase (EP); (IV) features extracted 
from the corticomedullary and nephrographic phases 
(CNP); (V) features extracted from the corticomedullary 
and excretory phases (CEP); (VI) features extracted 
from the nephrographic and excretory phases (NEP); 
and (VII) features extracted from the corticomedullary, 
nephrographic, and excretory phases (CNEP). 

The statistical performance of the 7 models on the test 
cohort is shown in Table 2 and Figure 6. The statistical 
results clearly show that the CNP model achieved the best 
overall performance among 7 models, which verified the 
effectiveness of multiphase analysis provided by AIMS. 
Our results also showed that the features extracted from 

Table 2 Performance of radiomics models on the test cohort

Model AUC (95% CI) Acc Sen Spe Pre MCC

CP 0.659 (0.508–0.810) 0.377 0.610 0.695 0.333 0.242

NP 0.711 (0.562–0.859) 0.626 0.701 0.767 0.652 0.219

EP 0.559 (0.402–0.716) 0.539 0.605 0.881 0.586 0.162

CNP 0.776 (0.653–0.899) 0.707 0.732 0.705 0.723 0.263

CEP 0.695 (0.553–0.838) 0.388 0.600 0.695 0.431 0.202

NEP 0.658 (0.502–0.812) 0.475 0.595 0.486 0.362 0.178

CNEP 0.633 (0.473–0.791) 0.461 0.547 0.595 0.321 0.201

The data are presented as the mean value. AUC, area under the curve; CI, confidence interval; Acc, accuracy; Sen, sensitivity; Spe, 
specificity; Pre, precision; MCC, Matthews correlation coefficient; CP, corticomedullary phase; NP, nephrographic phase; EP, excretory 
phase; CNP, corticomedullary and nephrographic phases; CEP, corticomedullary and excretory phases; NEP, nephrographic and excretory 
phases; CNEP, corticomedullary, nephrographic, and excretory phases.
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Figure 6 ROC curves of the multiphase analysis for ccRCC 
Fuhrman grading on the test cohort. CP, corticomedullary 
phase; NP, nephrographic phase; EP, excretory phase; CNP, 
corticomedullary and nephrographic phases; CEP, corticomedullary 
and excretory phases; NEP, nephrographic and excretory phases; 
CNEP, corticomedullary, nephrographic, and excretory phases; 
ROC, receiver operating characteristic; ccRCC, clear cell renal cell 
carcinoma.
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the CP had the most discriminating power for grading the 
malignancy of ccRCC among the 3 phases of contrast-
enhanced CT, which is consistent with a conclusion of 
another study (38). It is well known that ccRCC may 
enhance heterogeneously, with its peak enhancement 
occurring during CP, followed by a progressive washout (42).

Multiregion analysis for ccRCC Fuhrman grading

Several  previous studies  have demonstrated that 
the peritumoral microenvironment accurately and 
comprehensively reflects the characteristics and the 
heterogeneity of tumors (43), which suggests that features 
from the peritumoral region can help to distinguish the 
malignancy grades of tumors. In this experiment, we used 
AIMS to build radiomics models with multiregion features 
for ccRCC Fuhrman grading.

We  c o l l e c t e d  2 6 7  C T  i m a g e s  o f  C P  i m a g e s , 
histopathology reports, and the clinical data of patients who 
had undergone surgical resections for ccRCC Fuhrman 
grading. All data were downloaded from The Cancer 
Genome Atlas-Kidney Renal Clear Cell Carcinoma 
(TCGA-KIRC) dataset (44,45), and Fuhrman grades were 
confirmed by pathology reports. The images in TCGA-
KIRC were obtained from 7 centers4 in the United States 
between November 2010 and May 2014, with devices 
from multiple manufactures (GE HealthCare, Siemens 
Healthineers, and Philips, New York, Pittsburgh, Rochester, 
University of North Carolina Chapel Hill, Bethesda, MD, 
Houston, TX, Buffalo, NY, USA). The inclusion criteria in 
this experiment were as follows: (I) pathology-confirmed 
ccRCC after surgery and (II) CT scans in the NP before 
surgery and radiotherapy. Ultimately, 177 samples were 
enrolled the following exclusion criteria were applied: (I) 
only MR images available (n=70); (II) only CT plain scans 
available (n=8); (III) history of surgery and/or chemotherapy 
prior to CT scans (n=6); (IV) multiple lesions (n=5); and (V) 
poor quality of CT scans (n=1). The patient characteristics 
are shown as in Table S3 in Appendix 2. A simplified 2-tiered 
Fuhrman grade system was also used in this experiment. In 
order to build and validate the developed radiomics models, 
107 samples (low grade =67, high grade =40) were assigned 
into the training cohort, and 70 samples (low grade =38, 

high grade =32) were assigned into test cohort. Radiologists 
with 20 years of experience labeled the ROIs by delineating 
the outline of the entire tumor in all contiguous slices, and 
AIMS subsequently automatically created a corresponding 
peritumoral region by isotropically expanding 5 mm of the 
tumor in 3 dimensions (Figure 7).

The statistical performance of 3 models on the test 
cohort is shown in Table 3 and Figure 8. The results 
intuitively showed that the models using peritumoral 
features achieved better performance than did the mass 
model, which demonstrated the effectiveness of the 
multiregion analysis provided by AIMS. 

Multimodality analysis for prostate cancer Gleason 
grading

Multimodality images are widely applied in radiological 
diagnosis and can significantly improve the diagnostic 
accuracy (46,47). In this experiment, we used AIMS to learn 
deep learning features from multimodality images and built 
deep learning-based models for distinguishing clinically 
significant prostate cancer (csPCa; Gleason score ≥7) from 
nonclinically significant prostate cancer (ncsPCa; Gleason 
score <7).

We retrospectively collected 301 patients who underwent 
prostate bpMRI scans with T2-weighting (T2W) and 
apparent diffusion coefficient (ADC) imaging at the Second 
Affiliated Hospital of Soochow University (Suzhou, China) 
between January 2017 and March 2020. Ultimately, 206 
patients were enrolled after following exclusion criteria were 
applied: (I) lack of pathological results (n=52); (II) motion 
artifact corruption (n=31); and (III) mismatch between 
pathological results and bpMRI findings (n=12). The 
patient characteristics are shown in Table S4 in Appendix 2. 
The image dataset included 89 samples of csPCa and 117 
samples of ncsPCa, and all the samples were confirmed by 
pathology reports. Subsequently, 164 samples (csPCa =75, 
ncsPCa =89) were assigned into the training cohort, and 42 
samples (csPCa =14, ncsPCa =28) were assigned into the 
test cohort. Each lesion in the T2W images was pixel-wise 
labeled in all contiguous slices by a radiologist with 20 years 
of experience. Since some motion was present between 
T2W and ADC, we aligned T2W to ADC using an affine 

 
4 Memorial Sloan-Kettering Cancer Center, New York; University of Pittsburgh/UPMC, Pittsburgh; Mayo Clinic, Rochester; University of 
North Carolina, Chapel Hill; National Cancer Institute, Bethesda, MD; M.D. Anderson Cancer Center, Houston TX; Roswell Park Cancer 
Institute, Buffalo, NY.

https://cdn.amegroups.cn/static/public/QIMS-23-20-Supplementary.pdf
https://cdn.amegroups.cn/static/public/QIMS-23-20-Supplementary.pdf
https://cdn.amegroups.cn/static/public/QIMS-23-20-Supplementary.pdf
https://cdn.amegroups.cn/static/public/QIMS-23-20-Supplementary.pdf


Quantitative Imaging in Medicine and Surgery, Vol 13, No 11 November 2023 7515

© Quantitative Imaging in Medicine and Surgery. All rights reserved.   Quant Imaging Med Surg 2023;13(11):7504-7522 | https://dx.doi.org/10.21037/qims-23-20

Figure 7 Visualization of the lesion region (red) and its peritumoral region (yellow, dilating 5 mm on lesion masks) in the axial, coronal, 
and sagittal views. The peritumoral region is created by the morphology tool in the software. (A) Axial view; (B) coronal view; and (C) 
sagittal view. The software respectively extracted 1,760 quantitative 3D radiomics features from each lesion region and its corresponding 
peritumoral region. As a preprocessing procedure of feature selection, each radiomics feature is normalized to a zero mean and unit variance 
to eliminate the scale mismatch. We combined Pearson correlation analysis, mRMR, and LASSO for feature selection. Specifically, we 
randomly removed 1 of the pair-wise features if their Pearson correlation coefficient was larger than 0.1, subsequently selected the top-
40 ranked features using mRMR, and finally selected 20 discriminative features for malignancy grading using LASSO. We built 3 types of 
radiomics models to verify the availability and effectiveness of peritumoral features: (A) features only extracted from the tumor mass region 
(mass), (B) features only extracted from the peritumoral region (peritumor), and (C) features extracted from merging the peritumoral region 
and the tumor mass region (mass + peritumor). The C-SVC classifier was trained on the training cohort with 5-fold cross-validation, and the 
optimized C-SVC classifier validated the performance on the test cohort. mRMR, minimum redundancy maximum relevance; LASSO, least 
absolute shrinkage and selection operator; C-SVC, C-support vector classification.

A B C

Table 3 Performance of radiomics classifiers based on different feature sets on the test cohort

Model AUC (95% CI) Acc Sen Spe Pre MCC

Mass 0.811 (0.706–0.914) 0.743 0.687 0.789 0.733 0.417

Peritumor 0.828 (0.766–0.924) 0.686 0.643 0.974 0.816 0.412

Mass + peritumor 0.848 (0.759–0.937) 0.743 0.663 0.895 0.818 0.423

The data are presented as the mean value. AUC, area under the curve; CI, confidence interval; Acc, accuracy; Sen, sensitivity; Spe, 
specificity; Pre, precision; MCC, Matthews correlation coefficient.
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Figure 8 ROC curves of multiregion analysis for ccRCC Fuhrman 
grading on the test cohort. ROC, receiver operating characteristic; 
ccRCC, clear cell renal cell carcinoma.

registration method integrated in AIMS for mapping lesion 
masks in T2W to their corresponding ADC images (show 
in Figure 9). 

In order to reduce the time cost and computational 
burden, subimages were cropped from T2W and ADC 
images, which covered the whole lesion. Then, all 
the subimages were resampled to 80×80×16 pixels for 
model training. The pixel values in each subimage were 
normalized using Z-score. T2W and ADC images were 
further merged as a dual-channel image and input into 
DenseNet-169 network to build classification models. The 
network was trained with a 5-fold cross-validation on the 
training cohort, and the performance of the DenseNet-169 
network was assessed on the test cohort. The details of 
classification results are shown in Table 4 and Figure 10, with 
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A B C

Figure 9 Demonstration of prostate cancer masks created by registration-based methods in AIMS. (A) A lesion mask labeled by a radiologist 
on T2W (moving image). (B) A lesion mask of a T2W image directly mapped to an ADC image without spatial transform; the white arrow 
indicates a falsely mapped region. (C) A lesion mask of a T2W image mapped to an ADC image using affine registration. AIMS; artificial 
intelligence-assisted diagnosis modeling software, T2W, T2-weighted; ADC, apparent diffusion coefficient.

Table 4 Performance of the deep learning models and a radiologist for prostate cancer grading

Method Modality AUC (95% CI) Acc Sen Spe MCC

Radiologist T2+ADC 0.946 (0.877–1.00) 0.952 0.929 0.964 0.883

AIMS

T2 0.719 (0.555–0.864) 0.762 0.571 0.857 0.684

ADC 0.857 (0.755–0.949) 0.786 0.857 0.750 0.723

T2+ADC 0.980 (0.947–1.00) 0.953 1.000 0.929 0.903

The data are presented as the mean value. AUC, area under the curve; CI, confidence interval; Acc, accuracy; Sen, sensitivity; Spe, 
specificity; MCC, Matthews correlation coefficient; ADC, apparent diffusion coefficient; T2, T2-weighted; AIMS, artificial intelligence–
assisted diagnosis modeling software.
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Figure 10 ROC curves of the deep learning models on the test 
cohort. T2, T2-weighted; ADC, apparent diffusion coefficient; 
AUC, area under the curve; ROC, receiver operating characteristic.

the diagnostic performance of a radiologist with 13 years 
of experience included for comparison. It can be observed 
that the constructed DenseNet-169 model based on bpMRI 
performed better than did those based on single-parameter 
MRI and the radiologist. 

Discussion

The development of a common software infrastructure for 
medical image analysis and computer-assisted diagnosis 
is a highly demanded, urgent need. Some classical 
numerical optimization toolkits that offer standardized 
implementations to build algorithm workflows for medical 
image analysis include NiftyNet (48) and ITK (30) for 
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segmentation; Elastix (49), NiftyReg (50), Advanced 
Normalization Tools (ANTs) (51), and ITK (30) for 
registration; and VTK (30) for visualization. Some open-
source software, including 3D Slicer (30), MITK (29), 
NifTK (52), ITK-SNAP (53), and MevisLab (https://www.
mevislab.de/mevislab) provide standardized interfaces 
and loosely coupled frameworks with a GUI to build 
customized analysis workflow. However, these toolkits were 
developed for medical image processing (e.g., segmentation 
and registration) and not for machine learning and deep 
learning toolkits for medical image analysis. 

Recently, the software infrastructure for general purpose 
machine learning has also progressed rapidly. In the field 
of radiomics analysis, PyRadiomics (25) is an open-source 
Python package used for radiomics feature extraction. 
scikit-learn (31), a well-known toolkit in Python used for 
machine learning, has a convenient and simple application 
programming interface for classification, regression, 
clustering, dimensionality reduction, model selection, and 
evaluation (54). The Cancer Imaging Phenomics Toolkit 
(CaPTk) (27,55) was developed as a cancer imaging 
phenomics toolkit for radiographic image analysis of cancer 
and currently focuses on brain, breast, and lung cancer. 
As it pertains to deep learning-based analysis, some deep 
learning platforms, including TensorFlow (56), TORCH (57),  
MONAI (https://monai.io/), Theano (58), Caffe (59), 
CNTK (60), and MatConvNet (61), have been developed 
in order to meet the growing demand for the training of 
customized deep learning models. Although these toolkits 
have been designed to lessen the requirement of expertise, 
optimizing the interrelated components of the complex 
workflows for researchers without programming capability 
or expertise in machine learning remains a considerable 
challenge. The generally nuanced deep learning framework 
(GaNDLF) (https://github.com/mlcommons/GaNDLF) 
provides an end-to-end solution involving segmentation, 
regression, and classification while producing robust deep 
learning models without requiring intimate knowledge of 
deep learning or coding experience. The federated tumor 
segmentation (FeTS) tool (28) was developed to enable 
federated training of a tumor subcompartment delineation 
model at several sites dispersed across the world without the 
need to share patient data. However, some limitations exist 
in these toolkits. First, they lack end-to-end application 
pipelines for radiomics and deep learning training and 
inference. Second, they do not include all the necessary 
applications (segmentation, registration) or end-to-end 
machine learning pipelines (radiomics-based and deep 

learning-based classification). Third, they remain difficult 
to operate for ordinary researchers without expertise in 
machine learning or programming.

In this work, AIMS was developed as an AIMS platform 
based on medical images and machine learning. The 
development of clinically relevant, medical imaging tools 
and the associated algorithms has been driven by a specific 
medical need involving an understanding of a researcher’s/
clinician’s workflow. The main advantages of AIMS are as 
follows: (I) it is an all-in-one AIMS platform that includes 
both a radiomics and deep learning workflow. AIMS 
provides a comprehensive image segmentation package for 
tissue labeling, complete machine learning workflows for 
medical image analysis, and a variety of tools for medical 
image processing and visualization. (II) AIMS facilitates 
standardized machine learning processing procedures, 
such as image preprocessing, lesion labeling, classification 
training, evaluation, and performance comparison to 
cover the entire workflow of machine learning. The use 
of standardized approaches is a critical aspect of AIMS in 
creating reliable and reproducible models. In the radiomics 
workflow, AIMS provides standardized procedures of 
feature extraction, feature selection, model building, and 
statistical evaluation. In the deep learning-based workflow, 
AIMS provides some wide-used CNNs (DenseNet-169, 
DenseNet-121, and DenseNet-201) to train a deep learning 
classifier. (III) AIMS is simple and user-friendly and can 
be readily operated by users without machine learning 
expertise to rapidly and conveniently build customized 
machine learning models. Moreover, it offers well-designed 
GUI wizards to help researchers use each method. (IV) 
AIMS provides a flexible and powerful lesion-labeling 
toolkit for complex applications, such as multiphase, 
multiregion, and multimodality analysis. Specifically, 
AIMS facilitates semiautomatic segmentation, registration, 
morphological operations, and their combination to 
efficiently label images. The functionality and efficiency of 
AIMS was demonstrated in 3 independent experiments in 
radiation oncology, in which multiphase, multiregion, and 
multi-modality analyses were respectively performed. The 
AUC value of AIMS with multiphase analysis increased to 
9.14% for ccRCC Fuhrman grading, demonstrating that 
the multiphase combined model could effectively improve 
the prediction performance (62). The AUC value of AIMS 
in multiregion analysis increased to 4.36% for ccRCC 
Fuhrman grading, demonstrating that the peritumoral 
delineation correctly captured the characteristics and 
heterogeneity of the malignancies (43). The AUC value 

https://www.mevislab.de/mevislab
https://www.mevislab.de/mevislab
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of in with multimodality analysis increased to 14.35% 
for prostate cancer Gleason grading, demonstrating that 
bpMRI can be leveraged to detect and identify csPCa (63).

Lesion pixel-wise labeling is a time-consuming and 
subjective processing task, which is usually generated by 
manually delineating the outline of the entire lesion in all 
contiguous slices. Manual segmentation by experienced 
radiologists is often considered to the gold standard of 
lesion labeling. In order to meet the challenge of pixel-wise 
labeling in medical images, AIMS supplies a convenient and 
flexible segmentation toolkit, which incorporates classical 
semiautomatic methods, morphology methods, registration-
based labeling methods, and deep learning-based automatic 
labeling methods. The semiautomatic methods include 
manual brush labeling, live wire-based delineation, 
threshold segmentation, hole filling, and connected domain 
extraction. Users can flexibly combine these algorithms into 
a semiautomatic segmentation pipeline to reduce manual 
intervention and guarantee the efficiency, consistency, 
and reproducibility of labeling work (64). A few previous 
radiation oncology studies have demonstrated that 
peritumoral regions can accurately and comprehensively 
reflect genetic alterations, heterogeneity, and tumor biology, 
significantly bolstering tumor malignancy grading (24,43). 
Therefore, peritumor delineation is another common 
labeling task. AIMS provides a morphology tool that can 
facilitate efficient peritumor labeling. Three basic methods-
dilation, erosion, and subtraction-have been integrated 
into AIMS for the processing of binary mask images. 
Registration-based labeling methods are designed to be 
auxiliary tools for rapidly label lesions on multiseries images. 
AIMS supplies 2 options for registration: landmark-based 
rigid registration and volume-based rigid/affine registration. 
For landmark-based rigid registration, users should select 
at least 6 landmarks in both the moving image and fixed 
image, and the pair-wise landmarks in different images 
should be located on the same anatomical structures. For 
volume-based rigid/affine registration, AIMS automatically 
aligns the mask image to the unlabeled image via a rigid or 
affine spatial transform. Deep learning-based segmentation 
is a powerful tool for automatic lesion labeling. AIMS uses 
a residual UNet-based (65) segmentation training interface 
to build a customized segmentation model for a specific 
type of tissue or lesion. The default network consists of 
5 encoding-decoding branches with 16, 32, 64, 128 and 
256 channels, respectively. Each encoder block consists 
of 2 repeated residual units of 3×3×3 convolutions (with a 
stride of 2), instance normalization and parametric rectified 

linear unit (PReLU) activations (66). The decoder blocks 
have a similar architecture as the encoder blocks, using 
transpose convolutions with a stride of 2 for upsampling. 
The segmentation network is trained by minimizing the 
Dice loss function using the Adam optimizer (67) with a 
default learning rate of 10−3. The default number of training 
epochs is 100, and the batch size is set to 1. The size and 
dimension of input images, channel number, residual units, 
feature normalization, loss function, learning rate, batch 
size, and training epoch number can be set in a GUI wizard 
to adapt various segmentation tasks. The deep learning-based 
segmentation model can automatically generate initial lesion 
masks, and the initial masks can be refined conveniently 
by using the provided semiautomatic labeling tools. 
Consequently, the cost of manual labeling can be greatly 
reduced, which helps to accelerate the subsequent analysis.

The limitations of the current AIMS and our future work 
are discussed below. First, the class imbalance problem is 
highly common in medical diagnosis and has not yet been 
effectively addressed with AIMS. We will implement data 
resampling techniques to alleviate class imbalance (68). 
Currently, AIMS is able to tackle binary classification tasks 
conveniently, but it is not yet equipped with adequate 
methods for multiclass classification. We will incorporate 
more inherently multiclass methods for feature selection 
and classifier construction to further facilitate the use of 
AIMS in the future. Second, although the graphical training 
interface is provided for building a customized segmentation 
model, only the Residual UNet is supported, which may be 
insufficient for various medical image segmentation tasks. 
We will incorporate more advanced deep networks, such as 
nnU-Net (23); in addition, other well-verified segmentation 
models (69,70) will be deployed to speed up the labeling 
process. Furthermore, AIMS should include a text-data 
interface in the development of an image-text combined 
model, which would be an effective means to improving the 
classification performance. Third, while some deep learning 
computation is performed on Linux-based computers, the 
current AIMS version only supports installation on Windows 
systems, limiting AIMS’s cross-platform applicability. AIMS 
is dependent on PyRadiomics and MONAI for feature 
extraction and deep learning, both of which require the 
runtime environment for AIMS operation. Fourth, although 
the image datasets in the experiments came from multiple 
centers, the small sample size is a limitation in this work. 
More prospective and multicenter experimental research with 
a large sample size is necessary in future studies to empirically 
validate the performance of AIMS.
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Conclusions

AIMS was developed as an artificial intelligence assisted 
diagnosis modeling software platform based on medical 
images and machine learning and is a new tool for 
radiologists and researchers to use in artificial intelligence-
assisted diagnosis studies. All the experiments conducted 
in this study attested to the accessibility and efficiency of 
AIMS in radiation oncology.
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Supplementary

Appendix 1 Recommended system requirements

Table S1 Recommended hardware requirements for AIMS are as follows

Name Requirement

CPU Intel Core i5-10400F 2.9 GHz 6-Core Processor and higher

GPU NVIDIA RTX 2070 (8 GB) and higher

Memory ≥32 GB

Storage ≥100 GB

Pytorch 1.7.1 or higher

CUDA runtime library 10.1 or higher

Appendix 2 Patient characteristics

Table S2 Demographics and patient characteristics in section “Multiphase analysis for ccRCC Fuhrman grading” 

Characteristic All patients (n=187) Training cohort (n=133) Test cohort (n=54) P value

Gender 0.269

Male 127 91 36

Female 60 42 18

Fuhrman grade 0.339

Low-grade 135 95 40

high-grade 52 38 16

Age (mean ± STD, year) 58.80±13.88 59.84±13.65 58.15±11.32 0.249

Tumor size (mean ± STD, mm) 60.18±30.43 59.32±27.30 62.12±34.58 0.430

Table S3 Demographics and patient characteristics in section “Multiregion analysis for ccRCC Fuhrman grading” 

Characteristic All patients (n=177) Training cohort (n=107) Test cohort (n=70) P value

Gender 0.478

Male 117 73 44

Female 60 34 26

Fuhrman grade 0.304

Low-grade 107 65 42

High-grade 70 42 28

Age (mean ± STD, year) 59.93±12.02 58.12±11.34 62.48±12.95 0.294

Tumor size (mean ± STD, mm) 61.27±31.37 64.34±29.34 56.65±33.38 0.441

Table S4 Demographics and patient characteristics in section “Multimodality analysis for prostate cancer Gleason grading”

Characteristic Total number (n=206) Training cohort (n=164) Test cohort (n=42) P value

Pathology 0.025

csPCa 89 75 14

ncsPCa 117 89 28

Age (years) 70.87±7.34 71.34±7.21 69.11±6.72 0.340


