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Background: Broad generalization of radiomics-assisted models may be impeded by concerns about 
variability. This study aimed to evaluate the merit of combatting batch effect (ComBat) harmonization in 
reducing the variability of voxel size-related radiomics in both phantom and clinical study in comparison 
with image resampling correction method.
Methods: A pulmonary phantom with 22 different types of nodules was scanned by computed tomography 
(CT) with different voxel sizes. The variability of voxel size-related radiomics features was evaluated using 
concordance correlation coefficient (CCC), dynamic range (DR), and intraclass correlation coefficient 
(ICC). ComBat and image resampling compensation methods were used to reduce variability of voxel size-
related radiomics. The percentage of robust radiomics features was compared before and after optimization. 
Pathologically differential diagnosis of invasive adenocarcinoma (IAC) from adenocarcinoma in situ (AIS) 
and minimally invasive adenocarcinoma (MIA) (AIS-MIA group) was used for clinical validation in 134 
patients.
Results: Before optimization, the number of excellent features in the phantom and clinical data was 
26.12% and 32.31%, respectively. The excellent features were increased after image resampling and ComBat 
correction. For clinical optimization, the effect of the ComBat compensation method was significantly better 
than that of image resampling, with excellent features reaching 90.96% and poor features only amounting 
to 4.96%. In addition, the hierarchical clustering analysis showed that the first-order and shape features 
had better robustness than did texture features. In clinical validation, the area under the curve (AUC) of the 
testing set was 0.865 after ComBat correction.
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Introduction

The recent rapid development of machine learning 
technology and computing power has enabled researchers 
to use big data of radiomics for precise clinical diagnosis (1). 
Radiomics refers to the high-throughput extraction of a large 
number of radiological image features of lesions, that is, the 
conversion of image information into digital information 
(2,3). Various studies have shown that the radiomics models 
have high diagnostic efficacy for pulmonary nodules in 
terms of differential diagnosis, nodule typing, preoperative 
prediction, or prognostic analysis (4-7). Lung cancer is 
one of the most serious diseases in the world, with a 5-year 
survival rate of around only 19% (8). The most common 
pathological subtype is lung adenocarcinoma (LUAD). 
However, it has been reported that the 5-year survival rate 
after complete surgery for preinvasive LUAD is close to 
100% (9). Accurate preoperative diagnosis of invasive LUAD 
is conducive to clinical decision-making, such as in surgical 
determination. However, the selected features and radiomics 
models in previous studies have been inconsistent and with 
poor reproducibility, which has limited their application in 
real-world medical practice (10,11).

Advances in computed tomography (CT) technology 
has revolutionized diagnostic imaging, enabling consistent 
increases in image quality alongside the decrease of voxel 
size. Several studies have shown that ultra-high-resolution 
CT (U-HRCT, including 1,024×1,024, and 2,048×2,048 
matrix size) scans can improve the image quality and the 
assessment of lung diseases in comparison with the 512×512 
matrix size (12,13). Several recent studies on the effect 
of voxel size in the variability of radiomics have achieved 
inconsistent results. Paul et al. and Yang et al. found that 
voxel size strongly affected the reproducibility of the 
radiomics features (14,15), but Crandall et al. reported that 
the voxel size had a minimal effect in feature value (16).

Shafiq-Ul-Hassan et al. optimized the stability of 
radiomics features using image resampling (17). Image 

upsampling (increasing the voxel size) was generally 
used to explore whether it can reduce the radiomics 
variability, but it was shown that it could result in loss 
of valuable image information and affect the clinical 
diagnostic performance. Batch effects, which conceal 
biological signals and lead to deviations in subsequent data  
analysis (18), can be generated by either different 
experimental data sources or data collection processes of 
images with different voxel sizes. Although the combatting 
batch effect (ComBat) harmonization can reduce these 
radiomics variabilities (19,20), few relevant studies have 
been conducted to date.

In this study, we aimed to evaluate the ability of the 
ComBat harmonization to reduce variability of voxel size-
related radiomics in the differential diagnosis of pulmonary 
nodules in both pulmonary phantom and actual patients.

Methods

This study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013). The study 
was approved by institutional ethics review boards of 
Shanghai Public Health Clinical Center, Shanghai 
Zhongshan Hospital, Beilun Second People’s Hospital, and 
Shanghai Changzheng Hospital (No. SK2020-174) and the 
requirement for individual consent for this retrospective 
analysis was waived.

Phantom image acquisition

The anthropomorphic thorax phantom simulating an 
intermediate-sized adult (PH-1; Kyoto Kagaku, Kyoto, 
Japan) was used in this study (https://www.kyotokagaku.
com/lineup/). There were 22 artificial nodules embedded 
in the artificial vascular bundle in the chest phantom: (I) 1 
irregular nodule 15 mm in diameter; (II) 7 concentric mixed 
ground glass nodules (mGGNs) of different diameters 

Conclusions: The ComBat harmonization can optimize voxel size-related CT radiomics variability in 
pulmonary nodules more efficiently than image resampling harmonization.
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Figure 1 Recruitment pathway for patients in this study. CT, computed tomography.

Patients with pathologically confirmed lung nodules 

from June 2017 to May 2020

(n=303)

Patients enrolled in this retrospective study

(n=134)

Excluded for the following reasons (n=169):

• The maximum diameter of the nodule was more than 3 cm (n=47)

• Either no scans of 512×512 or no 1,024×1,024 matrix CT 

scanning (n=72)

• Poor CT image quality, including artifacts or no continuous  

thin-slice (<2 mm) images (n=50)

(15 and 20 mm) with different spherical solid components 
(3, 5, 7, 9 mm); (III) 2 double eccentric mGGN 20 mm 
in diameter with different spherical solid components  
(3, 5, 7 mm); (IV) 12 pure nodules, including 4 pure solid 
nodules and 8 pure ground glass nodules (pGGNs) (details 
in Figure S1).

All data acquisitions were performed on a Philips 
Brilliance 16 slice CT scanner (Philips, Amsterdam, 
Netherlands). Scanning parameters were divided into 
two parts based on different voxel sizes: the conventional 
scanning with 512×512 matrix and the target scanning 
with 1,024×1,024 matrix. The voxel sizes of phantom data 
were 0.68×0.68×2.00 and 0.18×0.18×1.00 mm3, respectively 
(details in Table S1).

Clinical image acquisition

In this study, a total of 303 patients with pulmonary nodules 
were retrospectively recruited from June 1, 2017 to May 
30, 2020 at Beilun Second People’s Hospital. The patients 
were identified according to the recruitment pathway  
(Figure 1). Finally, a total of 134 patients (46 males and 
88 females, age 59.46±10.48 years) who met the inclusion 
criteria were enrolled in the study (Table 1).

As for the lung phantom, all images of patients were 
performed on the Philips Brilliance 16 slice CT scanner. 
The scanning parameters were also the same as those of the 
phantom data: conventional and target scanning. However, 
the patients were not retested because of the radiation 
dose. The voxel sizes of clinical data were 0.62×0.62×2.00–
0.77×0.77×2.00 and 0.15×0.15×1.00–0.23×0.23×1.00 mm3, 

respectively (details in Table S1). A flow diagram of this 
study is shown in Figure 2.

Region of interest segmentation and radiomics features 
extraction

Deep learning-based pulmonary nodule segmentation 
(both in phantom and clinical applications) was performed 
using the uAI Research Portal software (United Imaging 
Intelligence Inc., Shanghai, China) that was embedded into 
the widely used package-PyRadiomics (https://pyradiomics.
readthedocs.io/en/latest/index.html). All segmented three-
dimensional (3D) nodules were reviewed by two chest 
radiologists (Y Zhuo and Y Zhan) and manually adjusted if 
necessary. The uAI Research Portal software was used to 
extract radiomics features, including first-order statistics, 
shape, and texture features. A total of 14 filters were 
used during the process of features extraction (details in 
Appendix 1). Finally, a total of 2,600 radiomic features were 
extracted for each 3D nodule.

ComBat compensation method

To reduce radiomics variability from batch effects, the 
ComBat compensation method was performed on the 
BatchServer (https://lifeinfo.shinyapps.io/batchserver/) (21). 
Principal variance component analysis (PVCA) fits a mixed 
linear model to estimate the variation ratio of each factor, 
and was thus used to evaluate the effectiveness of batch 
effect correction. The emerging nonlinear dimensionality 
reduction method, uniform manifold approximation 
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Table 1 The clinical and CT images characteristics of participants with lung nodules

Characteristics 512×512 matrix (n=134) 1,024×1,024 matrix (n=134) P value

Age (years) 59.46±10.48 –

Gender (F/M) 88/46 –

Nodule type

pGGN 54 (40.30) –

mGGN 75 (55.97) –

Solid nodule 5 (3.73) –

Maximum diameter of nodule (mm) 12.79±5.55 13.06±5.54 0.642

Minimum diameter of nodule (mm) 9.89±3.99 10.06±4.07 0.766

Mean diameter of nodule (mm) 11.34±4.53 11.56±4.59 0.676

Data are presented as mean ± standard deviation, n, or n (%). CT, computed tomography; F, female; M, male; pGGN, pure ground glass 
nodule; mGGN, mixed ground glass nodule.

Figure 2 Methodology flowchart of this study. ComBat, combatting batch effect; ROC, receiver operating characteristic; IAC, invasive 
adenocarcinoma; MIA, minimally invasive adenocarcinoma; AIS, adenocarcinoma in situ.

and projection (UMAP), was also used to evaluate the 
effectiveness of batch effect correction in this study.

Image resampling

The original phantom and clinical images had different 

voxel sizes, 0.15×0.15×1.00–0.77×0.77×2.00 mm3. To reduce 
voxel size-related radiomics variability, all images were 
resampled for 3 different times: 0.5×0.5×0.5, 1.0×1.0×1.0, 
and 2.0×2.0×3.0 mm3, which included not only the 
conventional upsampling but also the downsampling so as 
to preserve as much image information as possible.
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Table 2 The type of radiomics features based on CCC, DR, and ICC in phantom and clinical data

Type Phantom data Clinical data

Excellent CCC ≥0.90 and DR ≥0.90 and ICC ≥0.75 ICC ≥0.75

Moderate CCC ≥0.90 and DR ≥0.90 and 0.40≤ ICC <0.75 0.40≤ ICC <0.75

Poor CCC <0.90 or DR <0.90 or ICC <0.40 ICC <0.40

CCC, concordance correlation coefficient; DR, dynamic range; ICC, intraclass correlation coefficient.

Radiomics variability and correction analysis

In the phantom application, test-retest robustness was 
calculated on concordance correlation coefficient (CCC) and 
dynamic range (DR) (22-24). Radiomics features with good 
reproducibility were defined when CCC and DR ≥0.90 (22).

Both in phantom and clinical applications, radiomics 
variability was identified by intraclass correlation coefficient 
(ICC) between different voxel sizes. ICC was divided into 3 
levels: ICC ≥0.75, 0.40≤ ICC <0.75, and ICC <0.40 (25,26). 
The radiomics features were defined as excellent, moderate, 
and poor based on CCC, DR, and ICC (Table 2).

Clinical evaluation

The clinical evaluation dataset was enrolled from July 1, 
2018 to June 30, 2020 at Beilun Second People’s Hospital 
and Shanghai Changzheng Hospital. Some studies suggested 
that sublobectomy could be an alternative approach for 
LUAD of no more than 2 cm in diameter (27-29). A clinical 
evaluation dataset with 512×512 matrix containing 186 lung 
nodules (pathologically confirmed LUAD) with a mean 
diameter of less than 2 cm was used in this study, including 
88 invasive adenocarcinoma (IAC) and 98 adenocarcinoma 
in situ (AIS) and minimally invasive adenocarcinoma (MIA) 
(AIS-MIA group). In the MIA-AIS group, there were 73 
cases of MIA and 25 of AIS (Table S2).

The radiomics features of all lung nodules were extracted 
and a logistic regression model was built after radiomics 
features selection. The models were also built with the 
excellent features after ComBat and image resampling 
correction. The receiver operating characteristic (ROC) 
curves were used to evaluate the performance of radiomics 
signature models.

Statistical analysis

The Wilcoxon rank-sum test was used for continuous 
variables between the two groups, and the categorical 

variables were compared with χ2 test. The SPSS software 
(version 20; IBM Corp., Armonk, NY, USA) was used 
to perform all statistical analysis. Statistical significance 
was indicated by a two-tailed P value of less than 0.05. 
Measurement data were expressed as mean ± standard 
deviation (SD).

We used two feature selection methods, max-relevance 
and min-redundancy (mRMR) and least absolute shrinkage 
and selection operator (LASSO), to select radiomics features. 
The LASSO method constructed a penalty function by 
adding constraint conditions, and a prediction model 
was constructed by performing 10-fold cross-validation. 
DeLong’s test was used between different ROC curves. 
Heml software (http://hemi.biocuckoo.org) was used to 
make a heatmap to visually show the radiomics variability. 
Hierarchical clustering analysis was used to evaluate the 
redundancy of CT radiomics features.

Results

Information of phantom and clinical data

The 22 artificial nodules of phantom included 8 pGGNs 
(36.36%), 9 mGGNs (40.91%), and 5 solid nodules (22.73%), 
of which 21 were spherical and 1 was irregular in shape.

The clinical and CT characteristics of 134 patients are 
shown in Table 1 and Figure S2, including 54 pGGNs 
(40.30%), 75 mGGNs (55.97%), and 5 solid nodules 
(3.73%).

Voxel size-related radiomics variability

In phantom application, among 2,600 features, 1,788 
(68.77%) radiomics features had both CCC and DR ≥0.90. 
According to ICC value, there were 679 (26.12%) excellent, 
325 (12.50%) moderate, and 1,596 (61.38%) poor features. 
Details are displayed in Table 3 and Figure 3.

In clinical application, there were 840 (32.31%) excellent 
features, 384 (14.77%) moderate features, and 1,321 
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(50.81%) poor features according to ICC value (details in 
Table 3 and Figure 3).

ComBat compensation

The PVCA and UMAP analyses showed that ComBat 
optimization reduced batch effects from 46.39% to 14.90% 
in the phantom and from 25.76% to 14.17% in clinical 
application (Figure 4 and Figure S3).

CT scanning on the phantom displayed 1,085 (41.73%) 
excellent, 693 (26.65%) moderate, and 822 (31.62%) poor 
features in contrast to 2,365 (90.96%) excellent, 106 (4.08%) 
moderate, and 129 (4.96%) poor features in patients 
based on ICC value after ComBat correction (Table 3 and  
Figure S4).

Image resampling

The CT resampling images of the phantom and clinical 
images are shown in Figure 5. The 3 different image 
resampling sizes (0.5×0.5×0.5, 1.0×1.0×1.0, and 2.0×2.0× 
3.0 mm3) in the phantom showed that the numbers of 
features with CCC and DR ≥0.90 were 2,358 (90.69%), 
2,298 (88.38%), and 2,351 (90.42%), respectively, including 
1,655 (63.65%) excellent, 502 (19.31%) moderate, and 443 
(17.04%) poor features based on ICC value after image 
resampling of 0.5×0.5×0.5 mm3. Among these features, 
the image resampling of 1.0×1.0×1.0 mm3 displayed 1,558 
(59.92%) excellent, 661 (25.43%) moderate, and 381 
(14.65%) poor features in contrast to 1,655 (63.65%) 
excellent, 654 (25.16%) moderate, and 291 (11.19%) poor 

Table 3 The number of radiomics features before and after compensation methods both in phantom and clinical data

Data Type Before optimization
Image resampling (mm3)

ComBat
0.5×0.5×0.5 1.0×1.0×1.0 2.0×2.0×3.0

Phantom data Excellent 679 (26.12) 1,655 (63.65) 1,558 (59.92) 1,655 (63.65) 1,085 (41.73)

Moderate 325 (12.50) 502 (19.31) 661 (25.43) 654 (25.16) 693 (26.65)

Poor 1,596 (61.38) 443 (17.04) 381 (14.65) 291 (11.19) 822 (31.62)

Clinical data Excellent 840 (32.31) 1,394 (53.62) 1,519 (58.42) 1,251 (48.12) 2,365 (90.96)

Moderate 384 (14.77) 637 (24.50) 745 (28.66) 1,116 (42.92) 106 (4.08)

Poor 1,321 (50.81) 569 (21.88) 336 (12.92) 233 (8.96) 129 (4.96)

Data are presented as n (%). ComBat, combatting batch effect.

Figure 3 The number of different-type radiomics features before and after optimization. The excellent features were increased after 
image resampling and ComBat correction, whereas poor features were reduced both in phantom and clinical application. (A) For phantom 
application, the optimization effect of ComBat compensation method was worse than image resampling; (B) for clinical application, 
the optimization effect of ComBat compensation method was better than image resampling. Original, before optimization; resampling 
0.5, image resampling of 0.5×0.5×0.5 mm3; resampling 1.0, image resampling of 1.0×1.0×1.0 mm3; resampling 2.0, image resampling of 
2.0×2.0×2.0 mm3. ComBat, combatting batch effect.
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Figure 4 The PVCA results of ComBat compensation method both in phantom and clinical application. (A,B) Batch effect decreased 
from 46.39% to 14.90% in phantom application; (C,D) batch effect decreased from 25.76% to 14.17% in clinical application. ComBat, 
combatting batch effect; PVCA, principal variance component analysis.
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features image resampling of 2.0×2.0×3.0 mm3 based on 
ICC value (Table 3 and Figure S5).

In clinical application, there were 1,394 (53.62%) 
excellent, 637 (24.50%) moderate, and 569 (21.88%) 
poor features after image resampling of 0.5×0.5×0.5 mm3, 
in contrast to 1,519 (58.42%) excellent, 745 (28.66%) 
moderate, and 336 (12.92%) poor features in image 
resampling of 1.0×1.0×1.0 mm3, and 1,251 (48.12%) 
excellent, 1,116 (42.92%) moderate, and 233 (8.96%) poor 
features in image resampling of 2.0×2.0×2.0 mm3 based on 
ICC value (Table 3 and Figure S6).

Redundancy of CT radiomics features

For excellent radiomics features, the de-redundancy 
hierarchical clustering analysis divided the original features 
into 10 groups in contrast to 15 groups by image resampling 
and ComBat compensation methods, respectively. The 
heatmap and hierarchical clustering analysis also showed 

that the first-order, shape, and texture features were 208 
(30.63%), 275 (40.50%), and 196 (28.87%), respectively, 
among 679 excellent features in phantom data in contrast 
to 391 (46.55%), 250 (29.76%), and 199 (23.69%), 
respectively, among 840 excellent features in clinical data 
before optimization (Figure 6).

Clinical evaluation

A logistic regression model of pre-optimization was 
built using 11 selected radiomics features with non-zero 
coefficients; the area under the curve (AUC) of the training 
set was 0.998 (accuracy, 0.983; sensitivity, 0.984; specificity, 
0.983), whereas that of testing set was 0.763 (accuracy, 0.545; 
sensitivity, 1.000; specificity, 0.211).

A logistic regression model of ComBat correction was 
built using 5 selected radiomics features with non-zero 
coefficients; the AUC of the training set was 0.997 (accuracy, 
0.977; sensitivity, 0.976; specificity, 0.977), whereas that 
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Figure 5 The resampling images of the phantom and clinical images. (A-D) The original voxel sizes of phantom data were 0.68×0.68×2.00 
and 0.18×0.18×1.00 mm3, all images were resampled for 3 different times: 0.5×0.5×0.5, 1.0×1.0×1.0, and 2.0×2.0×3.0 mm3; (E-H) the original 
voxel sizes of clinical data were 0.62×0.62×2.00–0.77×0.77×2.00 and 0.15×0.15×1.00–0.23×0.23×1.00 mm3, all images were resampled for 3 
different times: 0.5×0.5×0.5, 1.0×1.0×1.0, and 2.0×2.0×3.0 mm3.
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of testing set was 0.865 (accuracy, 0.736; sensitivity, 0.929; 
specificity, 0.630). The optimization effect of the ComBat 
compensation method was significantly better than image 
resampling correction of 0.5×0.5×0.5, 1.0×1.0×1.0, and 
2.0×2.0×2.0 mm3 (P=0.012, 0.017, and 0.034, respectively; 
details in Table 4 and Figure S7).

Discussion

Our study demonstrated that the voxel size affects the 
variability of radiomics features of phantom and clinical 
applications, which can be significantly improved by 
ComBat and image resampling correction. The image 
resampling was superior to ComBat compensation in 
phantom application, whereas ComBat compensation 
was significantly better than image resampling in clinical 
application. In addition, the hierarchical clustering analysis 
showed that the first-order and shape features of the 
original images had better robustness than those of texture 
features with different filters.

In this study, scanning parameters were divided into 
two parts based on different voxel sizes: the conventional 
scanning with 512×512 matrix, and the target scanning 
with 1,024×1,024 matrix that is a local scanning for nodules 

with the advantage of resolution improvement to provide 
more detailed features and simplify qualitative diagnosis, 
as indicated by previous reports about U-HRCT imaging 
(12,13).

Radiomics can provide a large amount of information to 
help clinical decision-making, but variability is a hinderance 
to its clinical application requiring urgent rectification. The 
variability in CT scans is mainly due to large differences in 
CT scan parameters, particularly the differences in voxel 
size. In our study, more than half of the features were poor 
after changing the voxel size both in phantom and clinical 
applications. Yang et al. found that voxel size strongly 
affected the robustness of positron emission tomography/
magnetic resonance (PET/MR) radiomics features, and that 
0.5×0.5×1.0 mm3 of voxel size was optimal for features in 
the primary tumor of nasopharyngeal carcinoma (15). The 
variability of the voxel size can be obtained by analyzing the 
pixel size and slice spacing. Paul et al. found that most deep 
features changed with the pixel size, which was the same 
for many traditional radiomics features (14). Our findings 
were consistent with those of the above reports. However, 
Crandall et al. found that the reproducibility of most PET/
CT features was barely affected by changes in voxel size in 
cervical cancer (16).

https://cdn.amegroups.cn/static/public/QIMS-22-992-Supplementary.pdf
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Figure 6 The results of heatmap and hierarchical clustering analysis of phantom and clinical data before optimization. (A) In phantom data, 
there were 679 (26.12%) excellent features, 325 (12.50%) moderate features, and 1,596 (61.38%) poor features. The hierarchical clustering 
was stopped arbitrarily at 10 groups of features; (B) in clinical application, there were 840 (32.31%) excellent features, 384 (14.77%) 
moderate features, and 1,321 (50.81%) poor features. The hierarchical clustering was stopped arbitrarily at 10 groups of features. The color 
map of the cystogram ranges from 0 to 1, values close to 1 have a red shade and values close to 0 have a green shade. The groups with red 
shade mean relatively high feature values. Black shade: empty value. H, high; L, low; 3D, three-dimensional.
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Table 4 Performance evaluation of models based on radiomics features before and after optimization in clinical validation

ROC Before optimization ComBat Resampling 0.5 Resampling 1.0 Resampling 2.0

Training set

AUC 0.998 0.997 0.978 0.989 0.991

Accuracy 0.983 0.977 0.930 0.947 0.953

Sensitivity 0.984 0.976 0.929 0.960 0.960

Specificity 0.983 0.977 0.897 0.937 0.949

Testing set

AUC 0.763 0.865 0.711 0.778 0.812

Accuracy 0.545 0.736 0.485 0.576 0.576

Sensitivity 1.000 0.929 0.897 0.929 1.000

Specificity 0.211 0.630 0.158 0.316 0.263

Resampling 0.5, image resampling of 0.5×0.5×0.5 mm3; resampling 1.0, image resampling of 1.0×1.0×1.0 mm3; resampling 2.0, image 
resampling of 2.0×2.0×3.0 mm3. ROC, receiver operating characteristic; ComBat, combatting batch effect; AUC, area under the curve.

Both image resampling and the ComBat harmonization 
could optimize voxel size-related CT radiomics variability 
in our study, but the diagnostic performance of the model 
with ComBat compensation method was significantly 
better than that of models with image resampling 
correction and model without optimization in the testing 
set (P<0.05) in clinical evaluation. The resampling method 
was traditionally considered to resolve the source of 
variation caused by different voxel sizes. Shafiq-Ul-Hassan 
et al. found that image resampling was an appropriate 
preprocessing step to obtain more reproducible CT 
radiomics features (17,30). Another study had shown that 
image resampling accompanied by Butterworth low pass 
filtering could effectively reduce the variability due to 
different voxel sizes (31).

The ComBat method was derived from genomics 
research, and the intended function was to reduce batch 
effects of data collection processes (32). Orlhac et al. 
compared the radiomics feature distributions before and 
after application of the ComBat compensation method 
and showed that the cluster distribution of each texture 
feature corresponding to different imaging parameters 
was corrected after fitting (20). Orlhac et al. also used the 
ComBat method to effectively adjust the PET radiomics 
feature distributions under 3 different imaging parameter 
settings, making multi-center joint research possible (19). 
Ligero et al. explored resampling, ComBat, and singular 
value decomposition (SVD) compensation methods 
for reducing CT radiomics variability, and found that 

ComBat showed the highest improvement of feature  
classification (33). In our study, not only the AUC but 
also the sensitivity and specificity of the ComBat model 
were higher than those of other models after ComBat 
optimization, because the radiomics features with small 
variability were selected after ComBat optimization, and 
the established model was more stable and more universal. 
The ComBat optimization method can not only remove the 
batch effect caused by different voxels, but also remove the 
batch effect caused by other factors, such as CT vendors (33). 
This might be one of the reasons for ComBat compensation 
performing significantly better than image resampling in 
our clinical application.

Our hierarchical clustering analysis showed that the first-
order and shape features of the original images had better 
robustness than those of texture features with different 
filters, which was consistent with previous reports (34,35). 
A systematic review showed that first-order CT features 
had higher repeatability and reproducibility than shape 
and texture features according to 41 full-text articles (34). 
Tunali et al. found that statistical, histogram, and a subset of 
texture features tended to be stable in peritumoral regions 
of lung cancer lesions (35). The first-order feature describes 
the distribution of individual voxel values, regardless of the 
spatial position relationship, whereas the texture features 
describe the relationship between voxels and regional 
contrast, which can be used to assess tumor heterogeneity. 
The high-level features emphasize the use of filters on the 
image processing and features extraction. Therefore, in 
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comparison with high-order features and texture, the first-
order features obtained from the histogram are more stable.

There were several limitations to this study. First, this 
study investigated the variability of voxel size-related CT 
radiomics features, but there would be other variables in the 
research process, such as the error of nodule segmentation, 
which could also affect the results. Second, we took voxel 
size as a whole, and did not conduct a more detailed study 
of pixel size and slice spacing. Third, different CT vendors 
and scanning parameters will result in more batch effects in 
radiomics analysis, which can be reduced by ComBat (33);  
multi-center validations are needed to evaluate the ability of 
ComBat harmonization. In addition, there were statistical 
differences between the gender, age, and nodule type 
of patients in the IAC and MIA-AIS groups in clinical 
evaluation. Although these factors may have certain impacts 
on the results, the data collected in a continuous period of 
time could better reflect the actual clinical problem.

In conclusion, the ComBat harmonization can optimize 
voxel size-related variability of CT radiomics both in 
phantom and clinical application, and the diagnostic 
efficiency and generalization of the optimized features are 
improved based on clinical evaluation. According to the 
results of this prospective multicenter large-scale study in 
which the variability of the scanning parameter was a major 
limitation, the ComBat method is easy to apply and endows 
the potential of radiomics.
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Appendix 1

Methods

Image acquisition
Scanning parameters were divided into 2 parts based on different voxel sizes both in phantom and clinical data. The first test 
scanning parameters were as follows: matrix, 512×512; field of view (FOV), 350 mm; slice thickness, 2 mm; tube voltage,  
120 kV; tube current, auto mA; pitch, 0.813; collimator width, 16×0.575 mm;; rotation time, 0.5 s; lung window settings (width/
level), 1,200/−600 Hounsfield units (HU); and mediastinal window settings (width/level), 350/40 HU. After repositioning, the 
retest data of the phantom was obtained by repeated scanning. The second test scanning parameters were as follows: matrix, 
1,024×1,024; FOV, 180 mm; slice thickness, 1 mm; The remaining scan parameters were set the same as those of the first 
scanning.

Radiomic features extraction
The uAI Research Portal software was used to extract radiomic features, including first-order statistics, shape, and texture 
features. Texture features included gray-level co-occurrence matrix (GLCM), gray-level size zone matrix (GLSZM), 
gray-level run length matrix (GLRLM), gray-level dependence matrix (GLDM), and neighborhood gray tone difference 
matrix (NGTDM). The features extraction was filtered by 14 parameters including boxmean, additivegaussiannoise, 
binomialblurimage, curvatureflow, boxsigmaimage, normalize, laplaciansharpening, discretegaussian, mean, specklenoise, 
recursivegaussian, shotnoise, laplacian of gaussian, and wavelet.

The inclusion/exclusion criteria of validation data
A clinical validation dataset with 512×512 matrix containing 186 lung nodules (pathologically confirmed LUAD) with a 
mean diameter of less than 2 cm was used in this study from July 1, 2018 to June 30, 2020 at Beilun Second People’s Hospital 
(Zhejiang, China) and Shanghai Changzheng Hospital (Shanghai China). Patients that met any 1 of the following criteria was 
excluded from the study: absence of CT examination within 1 month before surgery; absence of consecutive CT images with 
1.5 mm thickness or less; with maximum diameter more than 2 cm; complications with other tumors or pulmonary disease 
(such as obstructive pneumonia); with severe respiratory motion artifacts; with preoperative treatment (such as neoadjuvant 
therapy).

Supplementary
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Table S1 Parameters used for CT images both in phantom and clinical data

Scanning parameters
Phantom data Clinical data

512×512 1,024×1,024 512×512 1,024×1,024

FOV (mm) 350 180 318–395 149–232

Thickness (mm) 2 1 2 1

Pitch 0.891 0.891 0.891 0.891

Rotation time (s) 0.5 0.5 0.5 0.5

Tube voltage (kV) 120 120 120 120

Tube current (mA) Auto Auto Auto Auto

Voxel size (mm3) 0.68×0.68×2.00 0.18×0.18×1.00 0.62×0.62×2.00–0.77×0.77×2.00 0.15×0.15×1.00–0.23×0.23×1.00

CT, computed tomography; FOV, field of view.

Table S2 The clinical and CT images characteristics of participants with LUAD in clinical validation

Characteristics Total (n=186) IAC group (n=88) MIA-AIS group (n=98) P value

Age (years) 57.96±11.12 60.77±10.47 55.43±11.08 0.001

Gender (F/M) 125/61 52/36 73/25 0.019

Nodule type 0.000

pGGN 100 (55.76) 26 (29.55) 74 (75.51)

mGGN 72 (38.71) 49 (55.68) 23 (23.47)

Solid nodule 14 (7.53) 13 (14.77) 1 (1.02)

Data are presented as mean ± standard deviation, n, or n (%). CT, computed tomography; LUAD, lung adenocarcinoma; IAC, invasive 
adenocarcinoma; MIA, minimally invasive adenocarcinoma; AIS, adenocarcinoma in situ; F, female; M, male; pGGN, pure ground glass 
nodule; mGGN, mixed ground glass nodule.
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Figure S1 CT scanning of the artificial nodules embedded in the artificial vascular bundle in the chest phantom and. (A,B) Irregular nodule 
with 15 mm in diameter (red circle); (C,D) pure nodules, including 4 pure solid nodules and 8 pGGNs; (E,F) concentric mGGNs of 
different diameters (15 and 20 mm) with different spherical solid components (3, 5, 7, 9 mm); (G,H) double eccentric mGGN of 20 mm in 
diameter with different spherical solid components (3, 5, 7 mm). CT, computed tomography; pGGN, pure ground glass nodule; mGGN, 
mixed ground glass nodule.



© Quantitative Imaging in Medicine and Surgery. All rights reserved.  https://dx.doi.org/10.21037/qims-22-992

Figure S2 CT scanning of a 52-year-old man with pulmonary adenocarcinoma. (A,B) Images of lung and mediastinal window on 
conventional CT scanning with 512×512 matrix, the voxel size was 0.68×0.68×2.00 mm3; (C-E) the transverse, coronal, and sagittal images 
on CT target scanning with 1,024×1,024 matrix, respectively, and the voxel size was 0.18×0.18×1.00 mm3. CT, computed tomography.
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Figure S3 The UMAP by ComBat compensation method both in phantom and clinical application. (A,B) Batch effect decreased from 
46.39% to 14.90% in phantom application; (C,D) batch effect decreased from 25.76% to 6.15% in clinical application. ComBat, combatting 
batch effect; UMAP, manifold approximation and projection.



Figure S4 Heatmap of hierarchical clustering analysis of phantom data with ComBat correction. The excellent features were increased after 
ComBat correction and the poor features were reduced both in phantom and clinical data. (A) Phantom data of 1,085 (41.73%) excellent 
features, 693 (26.65%) moderate features, and 822 (31.62%) poor features. The hierarchical clustering was stopped arbitrarily at 15 groups 
of features; (B) clinical data of 2,365 (90.96%) excellent features, 106 (4.08%) moderate features, and 129 (4.92%) poor features. The 
hierarchical clustering was stopped arbitrarily at 15 groups of features. The color map of the clustogram ranges from 0 to 1, values close to 1 
have a red shade and values close to 0 have a green shade. The groups with red shade mean relatively high feature values. Black shade: empty 
value. ComBat, combatting batch effect.
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Figure S5 Heatmap of hierarchical clustering analysis of phantom data with image resampling. The excellent features were increased after 
image resampling and the poor features were reduced. (A) There were 1,655 (63.65%) excellent features, 502 (19.31%) moderate features, 
and 443 (17.04%) poor features after image resampling 0.5×0.5×0.5 mm3; (B) there were 1,558 (59.92%) excellent features, 661 (25.43%) 
moderate features, and 381 (14.65%) poor features after image resampling 1.0×1.0×1.0 mm3; (C) there were 1,655 (63.65%) excellent 
features, 654 (25.16%) moderate features, and 291 (11.19%) poor features after image resampling 2.0×2.0×2.0 mm3. The gradual color 
changes from green to red in heatmap represent the steady increase in feature values from 0 to 1. H, high; L, low; 3D, three-dimensional.
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Figure S6 Heatmap of hierarchical clustering analysis of clinical data with image resampling. The excellent features were increased after 
image resampling, whereas poor features were reduced. (A) There were 1,394 (53.62%) excellent features, 637 (24.50%) moderate features, 
and 569 (21.88%) poor features after image resampling 0.5×0.5×0.5 mm3; (B) there were 1,519 (58.42%) excellent features, 745 (28.66%) 
moderate features, and 336 (12.92%) poor features after image resampling 1.0×1.0×1.0 mm3; (C) there were 1,251 (48.12%) excellent 
features, 1,116 (42.92%) moderate features, and 233 (8.96%) poor features after image resampling 2.0×2.0×2.0 mm3. The gradual color 
changes from green to red in heatmap represent the steady increase in feature values from 0 to 1. 3D, three-dimensional; H, high; L, low.
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Figure S7 The selected radiomics features with non-zero coefficients. (A) The 11 features of model before optimization; (B) the 5 features 
of model with ComBat correction; (C-E) the features of models with image resampling correction of 0.5×0.5×0.5, 1.0×1.0×1.0, and 
2.0×2.0×2.0 mm3, respectively. 3D, three-dimensional; ComBat, combatting batch effect.


