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Background: While numerous prognostic factors have been reported for large vessel occlusion (LVO)-
acute ischemic stroke (AIS) patients, the same cannot be said for distal medium vessel occlusions (DMVOs). 
We used machine learning (ML) algorithms to develop a model predicting the short-term outcome of 
AIS patients with DMVOs using demographic, clinical, and laboratory variables and baseline computed 
tomography (CT) perfusion (CTP) postprocessing quantitative parameters.
Methods: In this retrospective cohort study, consecutive patients with AIS admitted to two comprehensive 
stroke centers between January 1, 2017, and September 1, 2022, were screened. Demographic, clinical, and 
radiological data were extracted from electronic medical records. The clinical outcome was divided into two 
categories, with a cut-off defined by the median National Institutes of Health Stroke Scale (NIHSS) shift 
score. Data preprocessing involved addressing missing values through imputation, scaling with a robust 
scaler, normalization using min-max normalization, and encoding of categorical variables. The data were 
split into training and test sets (70:30), and recursive feature elimination (RFE) was employed for feature 
selection. For ML analyses, XGBoost, LightGBM, CatBoost, multi-layer perceptron, random forest, 
and logistic regression algorithms were utilized. Performance evaluation involved the receiver operating 
characteristic (ROC) curve, precision-recall curve (PRC), the area under these curves, accuracy, precision, 
recall, and Matthews correlation coefficient (MCC). The relative weights of predictor variables were 
examined using Shapley additive explanations (SHAP).
Results: Sixty-nine patients were included and divided into two groups: 35 patients with favorable 
outcomes and 34 patients with unfavorable outcomes. Utilizing ten selected features, the XGBoost algorithm 
achieved the best performance in predicting unfavorable outcomes, with an area under the ROC curve 
(AUROC) of 0.894 and an area under the PRC curve (AUPRC) of 0.756. The SHAP analysis ranked the 

5830

	
^ ORCID: Burak Berksu Ozkara, 0000-0002-8769-3342; Mert Karabacak, 0000-0002-9263-9893; Apoorva Kotha, 0000-0002-8616-5695; 
Brian Cooper Cristiano, 0000-0001-9110-2165; Max Wintermark, 0000-0002-6726-3951; Vivek Srikar Yedavalli, 0000-0002-2450-4014.

https://crossmark.crossref.org/dialog/?doi=10.21037/qims-23-154


Ozkara et al. Outcome prediction with ML via CTP parameters5816

© Quantitative Imaging in Medicine and Surgery. All rights reserved.   Quant Imaging Med Surg 2023;13(9):5815-5830 | https://dx.doi.org/10.21037/qims-23-154

Introduction

Acute ischemic stroke (AIS) is caused by distal medium 
vessel occlusions (DMVOs) in 24–40% of cases and can 
result in significant morbidity. DMVOs are recently 
defined as occlusions in the M2–M4 middle cerebral artery, 
posterior inferior cerebellar artery, posterior cerebral artery, 
anterior inferior cerebellar artery, anterior cerebral artery 
and superior cerebellar artery (1). DMVOs can arise as a 
primary thromboemboli or an unintended endovascular 
thrombectomy result (2). They often result in severe deficits 
and disabilities, contrary to the conventional belief that 
they cause only minor symptoms (3). However, even though 
they are a significant cause of stroke, DMVOs are difficult 
to diagnose using standard-of-care methods. Furthermore, 
there are no clearly defined treatment recommendations 
and prognostic factors are not well known (4,5).

Accurate short-term and long-term outcome prediction 
in DMVO-AIS patients can facilitate evidence-based clinical 
decision-making, inform the selection of appropriate 
treatment strategies, and enable more tailored prognostic 
assessments for individual patients, ultimately improving 
patient outcomes and addressing existing treatment gaps. 
Numerous prognostic factors have been reported for 
large vessel occlusion (LVO)-AIS patients, but the same 
cannot be said for DMVOs (6). Since efficacy and safety 
of thrombectomy for this group remain unknown, the 
research is focused and limited to prognostic factors related 
to mechanical thrombectomy outcomes in DMVOs (2,7-9). 
In addition to managing prognostic expectations, accurate 
outcome prediction is required to improve personalization 
in managing DMVO-AIS patients prior to treatment, 
regardless of treatment choice.

The current gold standard for diagnosing DMVOs, 
which can be challenging, is computed tomography 
(CT) angiography (CTA) plus nonenhanced CT (4). In 
addition, cerebral perfusion imaging is now routinely used 
in assessing AIS (10). It has been shown that perfusion 
imaging provides prognostic information about functional 
outcome in AIS patients (11). Moreover, Amukotuwa et al. 
demonstrated that even novice readers could accurately 
and quickly identify DMVOs on time-to-maximum of the 
tissue residue function (Tmax) maps, a quantitative parameter 
acquired by postprocessing CT perfusion (CTP) data (4). 
Furthermore, Muehlen et al. showed that the hypoperfusion 
intensity ratio (HIR), a parameter derived from CTP-based 
automated perfusion software platforms, can provide helpful 
information on functional outcome in patients with LVO 
stroke who have poor revascularization after mechanical 
thrombectomy (12). Supporting these findings, Wan  
et al. showed that HIR was associated with the functional 
outcome of LVO-AIS patients (13). Furthermore, Guenego 
et al. showed that a HIR <0.3 is linked to a reduction 
in infarct growth following successful recanalization of 
DMVO (14).

Machine learning (ML) is a collection of computational 
methods for discovering complex patterns and relationships 
in data (15). ML algorithms have the ability to utilize high-
dimensional clinical data effectively, enabling the creation 
of precise patient risk assessment models. These models 
not only aid in the development of intelligent guidelines 
but also have the potential to impact healthcare decisions 
by customizing care. Advanced ML algorithms provide 
substantial benefits over traditional prognostic models, 
which typically utilize some form of logistic regression. 

following features in order of importance for the XGBoost model: mismatch volume, time-to-maximum of 
the tissue residue function (Tmax) >6 s, diffusion-weighted imaging (DWI) volume, neutrophil-to-platelet 
ratio (NPR), mean corpuscular volume (MCV), Tmax >10 s, hemoglobin, potassium, hypoperfusion index (HI), 
and Tmax >8 s.
Conclusions: Our ML models, trained on baseline quantitative laboratory and CT parameters, accurately 
predicted the short-term outcome in patients with DMVOs. These findings may aid clinicians in predicting 
prognosis and may be helpful for future research.
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Firstly, ML rarely requires prior knowledge of key 
predictors (16). Furthermore, advanced ML algorithms 
often allow for a greater number of predictors in a dataset 
compared to logistic regression, proving useful in large 
datasets with numerous predictors where relationships 
between predictors and outcomes may not be immediately 
evident. Finally, they can detect complex, nonlinear 
relationships within datasets that logistic regression cannot 
capture (17). As a result, advanced ML algorithms tend to 
be more dependable and precise than logistic regression 
techniques when analyzing the same dataset (18). In stroke, 
ML models have frequently been used and have successfully 
predicted prognosis (15,19-21).

Considering CTP’s expected impact on stroke diagnosis 
and management, we hypothesize that ML algorithms using 
CTP, clinical and laboratory variables as input parameters 
can successfully predict the outcome in DMVO patients. 
Thus, we used several ML algorithms to develop a model 
predicting the National Institutes of Health Stroke Scale 
(NIHSS) shift score of DMVO AIS patients based on 
demographic, clinical, and laboratory variables and CTP 
postprocessing quantitative parameters, regardless of the 
preferred treatment method. The NIHSS is a broadly 
investigated instrument useful for determining prognosis 
in the preliminary examination of AIS patients. We present 
this article in accordance with the TRIPOD reporting 
checklist (available at https://qims.amegroups.com/article/
view/10.21037/qims-23-154/rc).

Methods

Patient selection

We conducted a retrospective cohort study at two 
comprehensive stroke centers, namely Johns Hopkins 
Hospital (JHH) and Johns Hopkins Bayview Medical Center 
(JHBMC). To identify eligible participants, we screened 
consecutive patients admitted between January 1, 2017, 
and September 1, 2022. An arterial occlusion involving the 
anterior cerebral artery, M2–M4 middle cerebral artery, 
posterior cerebral artery, posterior inferior cerebellar artery, 
anterior inferior cerebellar artery, and superior cerebellar 
artery was defined as a DMVO (1). The diagnosis of AIS 
was established based on clinical assessment and confirmed 
through the use of brain CT or magnetic resonance 
imaging (MRI). The study encompassed patients who 
satisfied the following inclusion criteria: (I) admitted within 
24 hours of symptom onset; (II) ≥18 years of age; (III) initial 

non-contrast brain CT scan data to exclude the intracranial 
hemorrhage; (IV) primary DMVO diagnosis based on CTA 
and CTP; and (V) utilization of an automated perfusion 
software platform (RAPID 4.9, iSchemaView, Menlo 
Park, CA, USA) for hypoperfusion analysis based on CTP. 
Patients who had incomplete outcome data, individuals 
who experienced DMVO as a result of emboli caused by 
endovascular treatment for a different occlusion (referred to 
as secondary DMVO), and those who were discharged with 
a diagnosis of transient ischemic attack were not included in 
the study. The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013). The study was 
approved by ethics board of Johns Hopkins Hospital and 
individual consent for this retrospective analysis was waived.

Data extraction

Retrospectively, demographic and clinical data were 
obtained from electronic medical records. The following 
variables were acquired: race, sex, age, comorbidities 
(hypertension, diabetes mellitus, coronary artery disease, 
atrial fibrillation), history of malignancy, admission 
vitals (heart rate, systolic blood pressure, diastolic 
blood pressure), admission and discharge NIHSS score, 
mechanical thrombectomy and intravenous (IV) tissue 
plasminogen activator (tPA) treatment. Based on the 
recent study from Meyer et al., each patient’s NIHSS shift 
score (admission NIHSS score − discharge NIHSS score) 
is computed and designated as the clinical outcome (22).  
The clinical outcome was separated into two groups 
based on the median NIHSS shift score. Patients with an 
NIHSS shift score higher than the median were allocated 
to the favorable outcome group, while those with a score 
lower than the median were designated to the unfavorable 
outcome group. Our models predicted these favorable and 
unfavorable groups.

In accordance with our local stroke care standard 
protocol, peripheral venous blood samples were collected 
from all patients upon arrival at the emergency department. 
The blood samples were uniformly collected, processed 
using the same method, and analyzed at the identical 
clinical laboratory. The following baseline parameters were 
extracted retrospectively: hemoglobin, hematocrit, mean 
corpuscular volume (MCV), mean platelet volume (MPV), 
platelet count (PC), neutrophil-to-platelet ratio (NPR), 
blood urea nitrogen/creatinine ratio (BUN/Cr), glucose, 
sodium, potassium, and calcium.

Imaging notes were used to collect radiologic variables. 

https://qims.amegroups.com/article/view/10.21037/qims-23-154/rc
https://qims.amegroups.com/article/view/10.21037/qims-23-154/rc
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Additionally, a board-certified neuroradiologist with 6 years 
of experience (VSY) evaluated the CTAs of all patients in 
the study. This evaluation was performed in conjunction 
with the analysis of all available imaging and clinical data. 
The presence and exact location of any DMVO were 
documented, and the same neuroradiologist also gathered 
and confirmed information such as the Alberta Stroke 
Program Early CT Score (ASPECTS), the occluded vessel, 
the specific segment of occlusion, the level of occlusion, 
the laterality of the occlusion, and the occurrence of 
hemorrhagic transformation.

Thrombectomy procedures were conducted by either 
one of four skilled interventional neuroradiologists 
or endovascular neurosurgeons. The choice of the 
thrombectomy device used during the procedure was 
determined by the neurointerventionalist’s discretion 
and limited to those approved by the Food and Drug 
Administration. The collected data consisted of the 
reperfusion grade assessed by the treating interventionalist 
using the modified treatment in cerebral ischemia (mTICI) 
score, the number of passes made during the thrombectomy 
procedure, and the time taken from groin puncture to 
recanalization, measured in minutes.

Imaging protocols

Baseline comprehensive CT imaging was performed in JHH 
and JHBMC using helical scanners on the Siemens Flash 
and Drive (Siemens Healthineers, Erlangen, Germany). All 
imaging parameters used in the study were consistent with 
those reported in a previously published study (23).

The extracted data consisted of relative cerebral blood 
flow (rCBF) <20%, rCBF <30%, rCBF <34%, rCBF <38%, 
Tmax >4 s, Tmax >6 s, Tmax >8 s, Tmax >10 s, cerebral blood 
volume (CBV) <34%, CBV <38%, CBV <42%, mismatch 
volume, hypoperfusion index (HI), diffusion-weighted 
imaging (DWI) volume on follow up MRI within 7 days of 
symptom onset, infarct growth (assessed as the difference 
between the follow up DWI volume and the initial 
rCBF<30% volume on CTP), and follow up post treatment 
non-contrast CT infarct volume. The mismatch volume 
was calculated by subtracting the perfusion deficit volume 
from the ischemic core volume. HI is defined as the ratio 
obtained by dividing the volume of the lesion with Tmax 
greater than 10 seconds by the volume of the lesion with 
Tmax greater than 6 seconds.

Data preprocessing

Values for some of the variables that apply only to the 
patients who underwent mechanical thrombectomy, such as 
mTICI score or time from groin puncture to recanalization 
in minutes, were assigned as ‘not attempted’ for categorical 
variables and ‘0’ for continuous variables. Apart from that, 
we used imputation to prevent bias from being introduced 
by excluding patients with missing values. At least one 
value was missing from twelve continuous variables. After 
excluding variables with missing values for more than 
25% of the patient population, a nearest neighbor (NN) 
imputation technique was employed to fill in the missing 
values for the remaining continuous variables. The only 
categorical variable contained missing values was the 
variable ‘occlusion location’ and its missing values were 
credited as ‘unknown’.

To scale continuous variables and take outliers into 
consideration, the robust scaler was used. Normalization is 
crucial in order to standardize and assign equal weight to 
all feature values, ensuring that they are on the same scale. 
Using a min-max normalization, each continuous variable 
[such as body mass index (BMI) or laboratory data] was 
placed in the [0, 1] range. Categorical non-binary variables, 
such as race and mTICI Score, were encoded using a one-
hot encoding technique. On the other hand, variables with 
ordinal characteristics, such as mTICI score and number 
of passes, were encoded using an ordinal encoding method. 
Data were divided into training and test sets in a 70:30 ratio. 
For hyperparameter tuning, one-fourth of the training set 
was utilized as the validation set. Investigators conducting 
the ML analysis were blinded to the outcome categories.

Since admission and discharge NIHSS scores are directly 
related with our outcome, NIHSS shift, they were not 
included in the predictor variables. For selecting 10 features 
out of all other variables, we adopted the feature selection 
approach known as recursive feature elimination (RFE), 
which fits a model and eliminates the weakest feature (or 
features) until the required number of features is attained. 
Features are ordered according to importance, and RFE 
works to get rid of any dependencies and collinearity that 
could be present in the model by iteratively deleting a small 
number of features every loop.

ML analyses

XGBoost, LightGBM, CatBoost, multi-layer perceptron, 
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random forest, and logistic regression were six supervised 
ML algorithms that we used to predict the outcome using 
the predictor variables (24-28). Supervised ML algorithms 
are methods where the model learns from data that is 
already labeled—that is, it already knows the outcome 
it should arrive at. The chosen algorithms each have 
unique strengths. XGBoost, LightGBM, and CatBoost, 
for instance, are powerful gradient boosting frameworks 
that build models in a stage-wise fashion, learning from 
the mistakes of previous stages, which makes them 
highly accurate. The multi-layer perceptron is a type of 
neural network that can model complex patterns, while 
random forest builds multiple decision trees to make 
robust predictions. Lastly, logistic regression, despite its 
simplicity, is highly effective when the relationships in the 
data are linear. We optimized these algorithms using the 
Optuna optimization package, aiming to maximize the area 
under the receiver operating characteristic (ROC) curve 
(AUROC), which is a commonly used metric to evaluate 
the performance of binary classification tasks (29). Optuna 
is a software framework that is used for hyperparameter 
tuning in ML. Hyperparameters are settings in the model 
that we can adjust to change its performance. Optuna 
makes the tuning process efficient by providing a variety 
of optimization approaches. The Bayesian optimization 
technique used in this process was the Tree-Structured 
Parzen Estimator Sampler (TPESampler). Bayesian 
optimization methods, such as the TPESampler, help in 
guiding the optimization process by building a probability 
model of the objective function and use it to select the 
most promising hyperparameters to evaluate in the real-
world. After the hyperparameter tuning, we used the 
optimized settings along with the entire training dataset to 
construct the final models for predicting the outcome(s). 
The ML analyses were performed in Python version 3.7.15 
(RRID:SCR_008394), a popular programming language 
in data science due to its simplicity and the availability of 
numerous scientific computation libraries. The model’s 
source code can be found in the project’s GitHub repository 
(https://github.com/mertkarabacak/DMVO).

Performance evaluation

The performance of the models was assessed through 
visual analysis using ROC and precision-recall curve 
(PRC). Additionally, numerical evaluation was conducted 
using metrics such as AUROC, area under the PRC curve 
(AUPRC), accuracy, precision, recall, and Matthews 

correlation coefficient (MCC). We used Shapley additive 
explanations (SHAP) in addition to performance plots 
and metrics to look at the relative weights of predictor 
variables. To understand how models make predictions, the 
visualization technique SHAP is often employed in ML.

Statistical analysis

To analyze and compare the low and high NIHSS shift 
groups, we utilized various statistical tests based on 
the nature of the variables. For normally distributed 
continuous variables with equal variances, an independent 
t-test was conducted. In cases where the variances were 
unequal, Welch’s t-test was employed. For non-normally 
distributed continuous variables, the Mann-Whitney  
U test was utilized. Categorical variables were evaluated 
using Pearson’s chi-squared test. Normality of variables was 
assessed using the Shapiro-Wilk test, while Levene’s test 
was used to examine the equality of variances. Statistical 
significance was considered at a threshold of P<0.05. All 
statistical analyses were performed using Python version 
3.7.15 (RRID:SCR_008394).

Results

The study initially encompassed 148 DMVO-AIS patients 
admitted to JHH and JHBMC. However, we excluded 26 
patients due to incomplete outcome data and another 53 
due to the absence of quantitative CTP data. Thus, the 
final analysis included a cohort of 69 patients. The group 
with a favorable outcome consisted of 35 patients, while the 
group with an unfavorable outcome included 34 patients. 
The majority of both groups were female, with 60% in the 
favorable outcome group and 52.9% in the unfavorable 
outcome group. The average age was 67.51±13.54 years for 
the favorable outcome group and 62.5±12.75 years for the 
unfavorable outcome group. The admission NIHSS score 
had a median of 11.0 in the favorable outcome group and 
4.5 in the unfavorable outcome group. Thrombectomy 
was performed in 62.9% of the favorable outcome group 
and only 11.8% of the unfavorable outcome group. IV-
tPA treatment was administered to 45.7% of patients in 
the favorable outcome group and 29.4% in the unfavorable 
outcome group. Table 1  provides a comprehensive 
overview of the baseline clinical, laboratory, and radiologic 
characteristics of the patient population.

RFE yielded the following selected features: serum 
potassium, serum hemoglobin, MCV, Tmax >6 s, Tmax 

https://github.com/mertkarabacak/DMVO
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Table 1 Baseline clinical, laboratory and radiologic characteristics

Variables Favorable outcome (n=35) Unfavorable outcome (n=34) Total (n=69) P value

Atrial fibrillation 1.000

No 24 (68.6) 23 (67.6) 47 (68.1)

Yes 11 (31.4) 11 (32.4) 22 (31.9)

Coronary artery disease 1.000

No 24 (68.6) 23 (67.6) 47 (68.1)

Yes 11 (31.4) 11 (32.4) 22 (31.9)

Diabetes mellitus 0.624

No 25 (71.4) 27 (79.4) 52 (75.4)

Yes 10 (28.6) 7 (20.6) 17 (24.6)

Hemorrhagic transformation 0.973

No 33 (94.3) 31 (91.2) 64 (92.8)

Yes 2 (5.7) 3 (8.8) 5 (7.2)

Hypertension 0.968

No 3 (8.6) 4 (11.8) 7 (10.1)

Yes 32 (91.4) 30 (88.2) 62 (89.9)

IV-tPA 0.251

No 19 (54.3) 24 (70.6) 43 (62.3)

Yes 16 (45.7) 10 (29.4) 26 (37.7)

Laterality 0.877

Left 21 (60.0) 22 (64.7) 43 (62.3)

Right 14 (40.0) 12 (35.3) 26 (37.7)

Occlusion location 0.128

Distal 9 (25.7) 11 (32.4) 20 (29.0)

Medial 4 (11.4) 4 (11.8) 8 (11.6)

Proximal 17 (48.6) 8 (23.5) 25 (36.2)

Unknown 5 (14.3) 11 (32.4) 16 (23.2)

Malignancy 1.000

No 27 (77.1) 27 (79.4) 54 (78.3)

Yes 8 (22.9) 7 (20.6) 15 (21.7)

mTICI 0.001

1 1 (2.9) 0 (0.0) 1 (1.4)

2b 6 (17.1) 2 (5.9) 8 (11.6)

2c 2 (5.7) 0 (0.0) 2 (2.9)

3 13 (37.1) 2 (5.9) 15 (21.7)

Not attempted 13 (37.1) 30 (88.2) 43 (62.3)

Table 1 (continued)
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Table 1 (continued)

Variables Favorable outcome (n=35) Unfavorable outcome (n=34) Total (n=69) P value

Number of passes 0.001

1 15 (42.9) 3 (8.8) 18 (26.1)

2 3 (8.6) 1 (2.9) 4 (5.8)

3 2 (5.7) 0 (0.0) 2 (2.9)

4 2 (5.7) 0 (0.0) 2 (2.9)

Not attempted 13 (37.1) 30 (88.2) 43 (62.3)

Race 0.19

Black/African American 13 (37.1) 16 (47.1) 29 (42.0)

Other 3 (8.6) 0 (0.0) 3 (4.4)

White 19 (54.3) 18 (52.9) 37 (53.6)

Segment 0.607

A2 1 (2.9) 2 (5.9) 3 (4.4)

M2 30 (85.6) 23 (67.7) 54 (76.8)

M3 1 (2.9) 3 (8.8) 4 (5.8)

P1 1 (2.9) 1 (2.9) 2 (2.9)

P2 2 (5.7) 3 (8.8) 5 (7.2)

P3 0 (0.0) 2 (5.9) 2 (2.9)

Sex 0.727

Female 21 (60.0) 18 (52.9) 39 (56.5)

Male 14 (40.0) 16 (47.1) 30 (43.5)

Thrombectomy <0.001

No 13 (37.1) 30 (88.2) 43 (62.3)

Yes 22 (62.9) 4 (11.8) 26 (37.7)

Vessel 0.521

ACA 1 (2.9) 2 (5.9) 3 (4.4)

MCA 31 (88.6) 26 (76.5) 57 (82.6)

PCA 3 (8.6) 5 (14.7) 8 (11.6)

PICA 0 (0.0) 1 (2.9) 1 (1.4)

Age (years) 67.51±13.54 62.50 [12.75] 66.75±12.93 0.623

Admission NIHSS score 11.0 [8.5] 4.5 [4.5] 8.0 [7.0] <0.001

Glucose (mg/dL) 119.0 [49.5] 117.5 [32.25] 119.0 [47.0] 0.648

Heart rate (bpm) 86.29±20.30 79.5 [28.75] 83.0 [28.0] 0.627

Systolic blood pressure (mmHg) 152.66±24.04 156.91±28.22 154.75±26.08 0.503

Diastolic blood pressure (mmHg) 83.0 [22.0] 88.18±21.91 85.86±19.81 0.343

Sodium (mEq/L) 139.86±2.71 138.88±2.85 139.38±2.80 0.150

Table 1 (continued)
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Table 1 (continued)

Variables Favorable outcome (n=35) Unfavorable outcome (n=34) Total (n=69) P value

Potassium (mEq/L) 4.14±0.38 4.05±0.47 4.10±0.42 0.407

Calcium (mg/dL) 9.0 [0.6] 9.1 [0.67] 9.0 [0.6] 0.152

BUN/Cr 17.0 [6.5] 15.0 [6.75] 16.0 [7.0] 0.364

Hemoglobin (g/dL) 13.03±1.88 13.22±1.50 13.12±1.69 0.640

Hematocrit (%) 40.29±5.57 40.89±3.88 41.2 [5.5] 0.644

PC (×109/L) 207.0 [109.0] 236.21±69.83 217.0 [90.0] 0.666

Neutrophil/platelet 28.75 [15.68] 25.41 [10.7] 26.92 [15.58] 0.089

MPV (fL) 10.3 [0.85] 10.53±1.05 10.3 [1.3] 0.482

MCV (fL) 89.33±7.03 89.91±6.53 89.62±6.74 0.727

ASPECTS 9.0 [2.0] 10.0 [1.0] 10.0 [2.0] 0.088

Time from groin puncture to recanalization 
(min)

18.0 [32.0] 0.0 [0.0] 0.0 [25.0] <0.001

rCBF <20% (mL) 0.0 [7.0] 0.0 [0.0] 0.0 [4.0] 0.259

rCBF <30% (mL) 8.0 [28.5] 0.0 [8.0] 0.0 [15.0] 0.039

rCBF <34% (mL) 12.0 [35.0] 0.0 [11.0] 6.0 [22.0] 0.021

rCBF <38% (mL) 16.0 [44.0] 4.0 [13.0] 7.0 [33.0] 0.032

Tmax >4 s (mL) 163.0 [138.0] 89.0 [74.5] 112.0 [140.0] 0.003

Tmax >6 s (mL) 68.0 [57.5] 26.5 [33.25] 43.0 [62.0] <0.001

Tmax >8 s (mL) 48.0 [44.0] 14.5 [25.0] 25.0 [45.0] <0.001

Tmax >10 s (mL) 35.0 [39.0] 5.0 [20.75] 9.0 [38.0] 0.001

CBV <34% (mL) 0.0 [13.5] 0.0 [3.0] 0.0 [8.0] 0.209

CBV <38% (mL) 0.0 [17.0] 0.0 [4.75] 0.0 [12.0] 0.197

CBV <42% (mL) 4.0 [21.5] 0.0 [4.75] 0.0 [13.0] 0.097

Mismatch volume (mL) 46.0 [49.0] 21.0 [26.0] 33.0 [35.0] <0.001

HI 0.4 [0.35] 0.2 [0.38] 0.2 [0.4] 0.002

DWI volume (mL) 25.18 [32.02] 16.73 [31.75] 22.34 [32.93] 0.928

Infarct growth volume (mL) 14.57±21.94 14.17 [23.39] 12.2 [25.68] 0.288

Post-treatment NCCT infarct volume (mL) 27.17 [38.24] 21.01 [21.3] 23.04 [37.33] 0.280

Discharge NIHSS score 3.0 [7.5] 3.0 [5.0] 3.0 [6.0] 0.664

NIHSS shift score 9.0 [4.0] 1.5 [4.0] 5.0 [7.0] <0.001

Data are presented as n (%), mean ± SD, or median [IQR]. IV, intravenous; tPA, tissue plasminogen activator; mTICI, modified treatment 
in cerebral ischemia; ACA, anterior cerebral artery; MCA, middle cerebral artery; PCA, posterior cerebral artery; PICA, posterior inferior 
cerebellar artery; NIHSS, National Institutes of Health Stroke Scale; BUN/Cr, blood urea nitrogen/creatinine; PC, platelet count; MPV, mean 
platelet volume; MCV, mean corpuscular volume; ASPECTS, Alberta Stroke Program Early CT Score; CT, computed tomography; rCBF, 
relative cerebral blood flow; Tmax, time-to-maximum of the tissue residue function; CBV, cerebral blood volume; HI, hypoperfusion index; 
DWI, diffusion-weighted imaging; NCCT, non-contrast computed tomography; SD, standard deviation; IQR, interquartile range.
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Table 2 Performance of the algorithms

Algorithms Precision Recall F1 Accuracy MCC AUROC AUPRC

XGBoost 1.000 0.571 0.727 0.714 0.555 0.894 0.756

LightGBM 0.875 0.538 0.667 0.667 0.413 0.779 0.685

CatBoost 0.875 0.538 0.667 0.667 0.413 0.808 0.821

Multi-layer perceptron 1.000 0.571 0.727 0.714 0.555 0.837 0.756

Random forest 0.875 0.500 0.636 0.619 0.347 0.827 0.726

Logistic regression 1.000 0.571 0.727 0.714 0.555 0.846 0.734

MCC, Matthews correlation coefficient; AUROC, area under the receiver operating characteristic curve; AUPRC, area under the precision-
recall curve.

>8 s, Tmax >10 s, mismatch volume, HI, DWI volume. 
Using those 10 selected features, XGBoost showed the 
best performance in predicting unfavorable outcome 
with an AUROC of 0.894 and an AUPRC of 0.756. The 
XGBoost algorithm attained a precision of 1.000, a recall 
of 0.571, an F1 score of 0.727, an accuracy of 0.714, 
and an MCC of 0.555. Table 2 displays the metrics that 
assess the performance of the algorithms. AUROC and 
AUPRC curves for all models are shown in Figures 1,2. 
The following features used by XGBoost were ranked 
in order of importance by the SHAP analysis: mismatch 
volume, Tmax >6 s, DWI volume, NPR, MCV, Tmax >10 s, 
hemoglobin, potassium, HI, and Tmax >8 s. SHAP plot of 

the best performing model in terms of AUROC, XGBoost 
is shown in Figure 3. Figure 4A-4E exhibit the remaining 
SHAP plots.

Discussion

With more  research  indica t ing  that  mechanica l 
thrombectomy is safe and effective for DMVOs, accurate 
diagnosis and prognostic evaluation are needed (1,2,8,9,22). 
Our study showed that ML algorithms could accurately 
predict short-term outcomes (NIHSS shift score) patients 
with AIS due to DMVO, regardless of applied treatment. 
Using RFE-selected features, XGBoost demonstrated the 

Figure 1 Receiver operating characteristic curves. AUROC, area 
under the receiver operating characteristic curve.

	 0.0	 0.2	 0.4	 0.6	 0.8	 1.0
False-positive rate

Receiver operating characteristic curve

XGBoost AUROC: 0.894
LightGBM AUROC: 0.779
CatBoost AUROC: 0.808 
Multi-layer perceptron AUROC: 0.837
Random forest AUROC: 0.827 
Logistic regression AUROC: 0.846

1.0

0.8

0.6

0.4

0.2

0.0

Tr
ue

-p
os

iti
ve

 r
at

e

	 0.0	 0.2	 0.4	 0.6	 0.8	 1.0
Recall

Precision-recall curve

XGBoost AUPRC: 0.756
LightGBM AUPRC: 0.685
CatBoost AUPRC: 0.821 
Multi-layer perceptron AUPRC: 0.756
Random forest AUPRC: 0.726 
Logistic regression AUPRC: 0.734

1.0

0.9

0.8

0.7

0.6

0.5

0.4

P
re

ci
si

on

Figure 2 Precision-recall curves. AUPRC, area under the 
precision-recall curve.
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corpuscular volume; SHAP, Shapley additive explanations.

best performance predicting unfavorable outcomes, with 
an AUROC of 0.894 and an AUPRC of 0.756. While we 
acknowledge the potential influence of discharge time and 
duration of hospital stay on patient outcomes, our ML 
model was still able to accurately predict the NIHSS shift 
scores using the available data. Furthermore, although 
presentation NIHSS is known to be a strong predictor 
of AIS outcomes, we decided not to include it as an input 
in our ML models to focus on evaluating the predictive 
performance of the CTP parameters and other variables in 
our dataset independently of presentation NIHSS.

Because DMVOs are challenging to diagnose with CTA, 
CTP has been incorporated into routine AIS evaluation, 
with CTP being used more frequently in clinical practice 
(4,30). Becks et al. demonstrated that the brain CTP maps 
enhance the performance for intracranial vessel occlusion 
detection on CTA by improving the detection of distal and 
posterior circulation vessel occlusions (31). Furthermore, 
Amukotuwa et al. demonstrated that even inexperienced 
readers could correctly and quickly identify DMVOs 
on Tmax maps (4). Aside from these diagnostic advances, 
research has been conducted to demonstrate the prognostic 
value of quantitative CTP parameters in AIS patients. 
Fainardi et al. demonstrated that Tmax target mismatch could 
predict clinical outcome (modified Rankin score) in patients 
with LVO-AIS who received endovascular treatment 
within 24 hours from onset (32). Furthermore, Keenan  
et al. showed that CTP-based lesion thresholds could 
predict poor outcomes (discharge to a skilled nursing facility 
or death at discharge) in AIS patients who received IV-tPA 

within 4.5 hours of symptom onset (33). In addition, Wan 
et al. discovered a significant positive correlation between 
HIR and functional outcome (modified Rankin score) in 
patients with LVO-AIS, consistent across subgroups (13).  
Furthermore, in the case of middle cerebral artery 
occlusions, Seker et al. showed that Tmax >6 s, Tmax >8 s, 
and Tmax >10 s were higher in patients with poor outcome 
compared to patients with a good outcome (34). In our 
study, Tmax >6 s, Tmax >8 s, and Tmax >10 s were selected 
by RFE to predict the short-term prognosis, supporting 
the earlier finding. Our ML model, which incorporates 
quantitative baseline CTP parameters,  accurately 
predicts the short-term outcome in DMVO patients, thus 
corroborating these findings. As a side note, our study 
did not directly address potential concerns regarding the 
reliability and interpretation of CTP imaging within the 
first 6 hours of AIS onset, which could impact the reliability 
of CTP-derived perfusion parameters used in our ML 
models for outcome prediction; however, our focus was on 
assessing the predictive value of these parameters, rather 
than validating the accuracy of CTP imaging itself within 
this timeframe.

In the algorithm with the best performance, the 
XGBoost, mismatch volume was the most significant 
variable for predicting the outcome according to the SHAP. 
In patients with minor AIS, it has been shown that patients 
treated with IV thrombolysis followed by mechanical 
thrombectomy (bridging therapy) with a mismatch volume 
<40 mL were associated with a worse outcome than patients 
treated with IV thrombolysis alone (35). This effect was 
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Figure 4 SHAP for (A) CatBoost, (B) LightGBM, (C) multi-layer perceptron, (D) random forest, and (E) logistic regression. Tmax, time-
to-maximum of the tissue residue function; DWI, diffusion-weighted imaging; MCV, mean corpuscular volume; SHAP, Shapley additive 
explanations.

not observed in patients with a mismatch volume >40 mL. 
Patients with M1 or M2 occlusion were included in this 
multi-institutional study. This finding shows that mismatch 
volume may help identify patients who respond poorly to 
bridging therapy. Our study showed that mismatch volume 
could also help predict the short-term outcome in patients 
with a DMVO. Furthermore, Jiang et al. showed that DWI 

volume could provide prognostic information about AIS 
patients after thrombectomy (36). In our study, the DWI 
volume was one of the selected features with a high SHAP 
for predicting the outcome, which is supported by the 
aforementioned study. While these findings are important, 
prospective studies with larger sample sizes should be 
conducted to reveal the true potential of mismatch volume 
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and DWI volume in AIS patients.
In a particular study, researchers evaluated the HI as 

a means to estimate the initial rate of core progression 
in patients with medium vessel occlusion (MeVO) in 
comparison to those with LVO stroke over an extended 
time period following the onset of stroke (37). The findings 
indicated that an HI value greater than 0.5 was linked 
to rapid progression, and it could effectively distinguish 
individuals with fast progression from those with slow 
progression in both MeVO and LVO strokes within the 
initial 24 hours of AIS. This suggests that considering 
core progression rate at the time of stroke evaluation may 
have implications in the selection of patients with MeVO 
and LVO stroke for reperfusion therapy. Furthermore, in 
another study, Nomani et al. conducted a study involving 
106 patients with occlusion of any type to compare different 
thresholds for infarct progression. They evaluated the 
effectiveness of HI in distinguishing between fast and slow 
rates of infarct progression (38). The study found that HI 
categorized 100% of the cohort with an optimal cutoff of 
0.5 for any-type occlusion, showing high sensitivity and 
specificity. This indicated eligibility for reperfusion and 
clinical outcomes, with better results for those with HI 
≤0.5. In our study, HI played a significant role as one of 
the top features in the ML model. This further highlights 
the importance of considering HI in the evaluation and 
management of patients with AIS.

In our study, several laboratory values were selected 
after RFE and used in the model. In patients with AIS, 
He et al. discovered that a high NPR was associated with 
an increased risk of hemorrhagic transformation (39). 
Furthermore, it has been demonstrated that the platelet-to-
neutrophil ratio (PNR) could be a protective factor in the 
prediction of the prognosis of AIS (40). Kim et al. reported 
similar results (41). NPR was one of our study’s selected 
features with a high SHAP, showing the importance of this 
value in the short-term prognosis of patients with DMVO-
AIS. Furthermore, it has been shown that an abnormal 
hemoglobin level could be associated with a higher risk of 
poor functional outcome and stroke recurrence (42,43). 
In a study, it has been suggested that MCV could predict 
AIS short-term mortality (44). In addition, the relationship 
between serum potassium levels and stroke risk or stroke 
recurrence has been shown in the literature (45,46). Our 
ML algorithm included serum potassium levels, MCV, and 
hemoglobin in the model after RFE. Further research on 
the aforementioned relationships is needed.

Although our study provides valuable insights, it is 

important to acknowledge its limitations. Our study has its 
intrinsic limitations of retrospective studies. To validate our 
ML model, it would be necessary to conduct prospective 
studies with a larger sample size. A limitation of our study 
is that we focused on short-term outcomes, which may not 
always translate into subsequent standard 90-day outcomes 
in AIS; ideally, the inclusion of 90-day outcome data would 
have provided a more comprehensive assessment, as it is the 
standard outcome measure in AIS studies. It is important 
to recognize that algorithms utilizing gradient boosting 
can be sensitive to outliers and have a tendency to overfit. 
To handle outliers, the robust scaler was used, and RFE 
was used to prevent overfitting. Although the number 
of patients in this study appears to be small, it included 
more patients than most published studies on DMVO in 
the literature (2,5,7,14,47-49). Furthermore, excluding a 
significant proportion of the sample size may have an impact 
on the generalizability and robustness of our ML models. 
Another limitation of our study was that the generalization 
of our CTP-based model to posterior circulation stroke is 
questionable, and the accuracy of CT/CTP for posterior 
circulation stroke is debatable. Moreover, our study did not 
specifically assess the impact of atherosclerotic disease on 
patient outcomes, which could have resulted in a different 
behavior within this particular cohort, potentially affecting 
the generalizability of our findings. Also, our study did not 
account for the potential impact of medication use related 
to thrombectomies, such as antiplatelet/anticoagulation 
medications, which may have influenced patient outcomes 
and could be considered in future analyses to assess 
their contribution to prediction accuracy. In the future, 
another set of parameters related to the time aspect of 
thrombectomy may be added as well. Finally, even though it 
was not among the selected features, the operator reported 
mTICI scores might be overestimated (50).

Conclusions

In an effort to curb rising healthcare costs, emphasis has 
been placed on using registries and databases to monitor 
and determine risk-adjusted estimates for patient outcomes. 
Consequently, clinicians are tasked with managing 
extensive volumes of intricate data, necessitating more 
advanced analytical techniques. As risk identification 
and shared decision-making play crucial roles in patient 
care, incorporating ML classifiers into clinical prediction 
models can provide a significant advantage over traditional 
methods. Our ML models, which accurately predicted 
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short-term outcomes in patients with DMVOs using 
baseline quantitative CT parameters, can assist clinicians in 
making informed treatment decisions, personalizing care 
plans, and optimizing resource allocation. Furthermore, 
our findings may contribute to the development of clinical 
guidelines and decision support tools, ultimately improving 
patient outcomes and overall stroke care. Our ML model 
trained on baseline quantitative CTP parameters and 
laboratory data was able to predict the short-term outcome, 
NIHSS shift score, in patients with DMVO-AIS. According 
to the SHAP in the best-performing model, the most 
important variable was the mismatch volume in predicting 
the clinical outcome. Notably, admission NIHSS score, and 
age were not used in our model to predict the prognosis 
of stroke patients, which are normally very important 
predictors of prognosis. Using CTP parameters, we were 
able to accurately predict the prognosis of DMVO-AIS 
patients, demonstrating the importance of imaging. We 
hope that our study serves as a starting point for future 
research in this area.
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