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Background: Bone density measurement is an important examination for the diagnosis and screening of 
osteoporosis. The aim of this study was to develop a deep learning (DL) system for automatic measurement 
of bone mineral density (BMD) for osteoporosis screening using low-dose computed tomography (LDCT) 
images.
Methods: This retrospective study included 500 individuals who underwent LDCT scanning from 
April 2018 to July 2021. All images were manually annotated by a radiologist for the cancellous bone of 
target vertebrae and post-processed using quantitative computed tomography (QCT) software to identify 
osteoporosis. Patients were divided into the training, validation, and testing sets in a ratio of 6:2:2 using a 
4-fold cross validation method. A localization model using faster region-based convolutional neural network 
(R-CNN) was trained to identify and locate the target vertebrae (T12–L2), then a 3-dimensional (3D) 
AnatomyNet was trained to finely segment the cancellous bone of target vertebrae in the localized image. 
A 3D DenseNet was applied for calculating BMD. The Dice coefficient was used to evaluate segmentation 
performance. Linear regression and Bland–Altman (BA) analyses were performed to compare the calculated 
BMD values using the proposed system with QCT. The diagnostic performance of the system for 
osteoporosis and osteopenia was evaluated with receiver operating characteristic (ROC) curve analysis.
Results: Our segmentation model achieved a mean Dice coefficient of 0.95, with Dice coefficients greater 
than 0.9 accounting for 96.6%. The correlation coefficient (R2) and mean errors between the proposed 
system and QCT in the testing set were 0.967 and 2.21 mg/cm3, respectively. The area under the curve (AUC) 
of the ROC was 0.984 for detecting osteoporosis and 0.993 for distinguishing abnormal BMD (osteopenia 
and osteoporosis).
Conclusions: The fully automated DL-based system is able to perform automatic BMD calculation for 
opportunistic osteoporosis screening with high accuracy using LDCT scans.
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Introduction

Osteoporosis is a systemic disease characterized by a 
reduction in bone mineral density (BMD) and a systemic 
loss of microarchitecture, which leads to fragility  
fractures (1). Osteoporosis has become a common disease 
in the elderly population, affecting more than 200 million 
people worldwide (2). As osteoporosis is asymptomatic in its 
early stages, early diagnosis plays a vital role in preventing 
osteoporotic fractures caused by this disease (3).

BMD measurement is one of the main bases for the 
diagnosis of osteoporosis. Dual-energy X-ray is considered 
a standard technique for measuring BMD (4). Quantitative 
computed tomography (QCT) is another clinically 
validated method for measuring BMD which can also 
provide structural information (5). QCT provides more 
accurate BMD measurements and unlike dual-energy X-ray 
absorptiometry (DXA), it is not susceptible to factors such 
as severe degenerative changes in the hip or spine, vascular 
calcification, oral contrast, and certain foods or dietary 
supplements containing high levels of heavy minerals and 
elements (6-8). However, QCT still has several limitations, 
such as the need for dedicated software and phantom, 
fewer well-trained technicians, and the frequent need for 
calibration. In addition, even with standard scan protocols 
that typically include L1 and L2, the radiation dose in QCT 
is significantly higher than in DXA (9).

Nowadays, low-dose computed tomography (LDCT) 
is recommended in emphysema detecting, lung cancer 
screening, hepatic steatosis evaluation, and so on (10-12). 
Based on this, chest combined with upper abdomen LDCT 
scan is frequently used in physical checkups. As several 
studies have supported the viability of low-radiation-dose 
QCT in BMD measurement (13,14), the images obtained 
in the LDCT scans covering the L1 and L2 spine can be 
used for the BMD measurement using the dedicated QCT 
software without additional cost and exposure (15).

According to numerous studies, BMD is calculated 
using computed tomography (CT) values of cancellous 
bone obtained from standard CT scans, with a correlation 
coefficient between 0.399 and 0.891 (16). However, 
in addition to the different internal vertebral body 

characteristics, their CT values also depend on scanner 
characteristics, X-ray tube voltage, and other factors (17). 
Therefore, traditional CT scans are only partially effective 
in the diagnosis of osteoporosis because CT results obtained 
under different scanner models require calibration.

The deep learning (DL) technique has been successfully 
used for the analysis of radiological images, such as 
diagnosis of diseases (18), image processing (19-21), and 
parameter analysis (22-24). Numerous studies have also 
applied DL in the area of BMD measurement. Yasaka  
et al. (25) developed a convolutional neural network (CNN) 
model to predict the BMD obtained from DXA using 
unenhanced abdominal CT images. Pan et al. (26) developed 
a 3-dimensional (3D) segmentation model and a CT value 
based 1-degree linear function to automatically measure 
BMD using low dose chest CT scans. Fang et al. (27)  
presented a system combined with 2-dimensional (2D) 
U-Net for segmentation and DenseNet-121 for BMD 
calculation using sagittal images from standard spinal or 
abdominal CT scans. 

In this study, we developed and validated a DL system 
using several 3D networks to automatically locate and 
segment the cancellous bones of T12, L1, and L2 vertebral 
bodies and measure BMD for opportunistic osteoporosis 
screening using LDCT scans. This was the first study to use a 
3D DL system instead of 2D models for BMD measurements 
in LDCT scans without the need for calibration function. 
We present this article in accordance with the TRIPOD 
reporting checklist (available at https://qims.amegroups.com/
article/view/10.21037/qims-22-1438/rc).

Methods

The study was conducted in accordance with the Declaration 
of Helsinki (as revised in 2013). The study was approved by 
institutional ethics board of the First Affiliated Hospital of 
Xi’an Jiaotong University and the requirement for individual 
consent for this retrospective analysis was waived.

Study population

Data were collected from general population who 
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underwent chest and upper abdominal LDCT examination 
in the Department of Radiology at the First Affiliated 
Hospital of Xi’an Jiaotong University between April 2018 
and July 2021. All data were anonymized before use. 

The inclusion criteria were as follows:
(I) having undergone LDCT examination of the chest 

combined and upper abdomen, with scan range 
from the apical lung to the lower edge of the liver; 

(II) willingness to participate in this clinical study.
The exclusion criteria were as follows:
(I) images could not be used for QCT analysis;
(II) the presence of a metal or bone cement implant;
(III) the target vertebrae had not been completely 

covered in the CT examination;
(IV) secondary osteoporosis, such as osteoporosis caused 

by renal failure, diabetes, and hyperparathyroidism;
(V) Schmorl’s nodes, severe scoliosis, and vascular 

calcification.
Finally, 500 individuals from the general population 

(mean age 66.03±9.71 years, range 39 to 90 years, mean 
height 170.82±6.42 cm, mean weight 71.71±10.32 kg) were 
enrolled in this study; 121 were diagnosed with osteoporosis 
and 186 were diagnosed with osteopenia. Due to the limited 
computational power, we were limited to the number of 
enrollments, but were certain that the data for the final 500 
cases enrolled were completely random and unselected. 
There were no missing data in this study. According to 
the size of the dataset, the 500 participants were randomly 
divided into a training set, a validation set, and a test set at a 
ratio of 6:2:2 using a 4-fold cross validation method to obtain 
more accurate model results from training. Figure 1 shows 
the illustration of our dataset and the 4-fold cross validation 
method.

Image acquisition and reconstruction

All individuals underwent a plain CT scan on a 256-rows 
detector CT system (Revolution CT; GE, Waukesha, WI, 
USA) from the apical lung to the lower edge of the liver 
using the following scan parameters: 120 kVp, SmartmA  
(10–130 mA), gantry rotation time of 0.5 seconds per 
rotation, helical pitch of 0.992:1 to obtain a preset noise 
index of 16. The SmartmA is an automatic exposure control 
system that uses z-axis and angular tube current modulation 
to customize the dose to the size and shape of an individual. 
The range 10–130 mA was determined by the noise index 
set to 16. Noise index allows the user to select the amount 
of noise that will be present in the reconstructed images; 
before scanning, the user defines the desired image quality 
(noise index). A higher noise index is related with a lower 
milliampere-second, and as a result, a lower radiation dosage. 
The average volume CT dose index (CTDIvol) for the 
patient population in our study was low at 6.54±2.53 mGy.

Images were reconstructed with 512×512 reconstruction 
matrix and 1.25-mm slice thickness and interval using a 
standard reconstruction kernel. 

QCT image post-processing

All CT images were post-processed by QCT Pro Model 4 
(Mindways Software, Inc., Austin, TX, USA). The quality 
control analysis was performed by using a unified European 
Spine Phantom (ESP; No. 145, QRM GmbH, Möhrendorf, 
Germany). The central layer of the vertebral body was 
selected to calculate the average bone density value.

Although there are no consensus standards for diagnosing 
osteoporosis based on spine QCT measurements, some 
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Figure 1 The illustration of the distribution of our data set and the 4-fold cross validation method.
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institutions provide a diagnostic category that approximately 
equates to the requirements of the World Health 
Organization (WHO) guidelines. Our diagnosis process 
was performed according to the guidelines introduced by 
the International Society for Clinical Densitometry (ISCD) 
and American College of Radiology (ACR): osteoporosis, 
if BMD values are below 80 mg/cm3; osteopenia, if BMD 
values are from 80 to 120 mg/cm3; and normal, if BMD 
values are over 120 mg/cm3 (28,29). In our study, diagnosis 
was made using the absolute lumbar QCT BMD values, 
averaged over the cancellous bone density of 2 lumbar 
vertebrae (commonly the L1 and L2 vertebrae, with T12 
vertebra substituted if either L1 or L2 was non-measurable).

Development of the BMD measurement system

The development of this automated BMD measuring 
system consisted of the following 3 main stages. First, 
train a localization model to identify and locate the target 
vertebrae (T12–L2) in the region for coarse segmentation. 
Second, train a segmentation model to finely segment 
the cancellous bone of target vertebrae in the localized 
image. Finally, train a DenseNet based classification 
model for BMD measurement, the output of which is the 
mean BMD value. All models in this study are from open-
source programs. Figure 2 shows the overall process of 

development and validation of this system.

Vertebra localization

Image preprocessing
This model needs to convert axial CT images into maximum 
intensity projection (MIP) images, which can be used to 
better show the location of target vertebrae (T12, L1, L2).

The image preprocessing consisted of the following  
3 steps. First, select the maximum density projection map 
formed by the rays perpendicular to the coronal plane 
direction, where the horizontal coordinates correspond to 
the coordinates of the X-axis in the original CT data and 
the vertical coordinates correspond to the coordinates of the 
Z-axis. Second, use the labeling tool to label the 3 vertebrae 
in the generated maximum density projection map as a whole. 
The label was determined by a radiologist after appropriate 
widening from the edges of the annotated data. Third, divide 
data into a training set, a validation set, and a test set.

Development of a localization model
The localization model was mainly constructed to obtain 
the upper and lower coordinates of the target vertebrae 
in the Z-axis direction in the original CT data. The 
object detection algorithm chosen was the faster region-
based convolutional neural network (R-CNN), which 
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Figure 2 The overall process of development and validation of this system. LDCT, low-dose computed tomography; BMD, bone mineral 
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mainly consists of Fast R-CNN (Facebook AI Research) 
and Region Proposal Network (RPN) (30). RPN mainly 
provides region proposal information, whereas Fast R-CNN 
is mainly responsible for extracting input image feature-
maps, receiving input image features from RPN input, and 
unifying the map size and outputting the class of the target 
object as well as the position information.

Vertebra segmentation

Image preprocessing
All 500 LDCT scans were manually annotated by a 
radiologist with 3 years of experience in CT imaging for 
the contours of target vertebrae, who was blinded to the 
diagnosis, to develop the segmentation model. Another 
radiologist with 5 years of experience performed a visual 
examination before inputting segmentation data into the 
model. The location of the 3 vertebrae in the cropped CT 
data were obtained by the localizing model, of which the 
X-, Y-, and Z-axes ranged from (180 to 330), (200 to 420), 
and (ZL-5 to ZU+5), respectively, where the ZL and ZU roots 
were based on the upper and lower positions of the three 
vertebral bodies in the Z-axis direction provided by the 
localizing model. All cropped data were processed using 
a window level of 0 Hounsfield units (HU) and window 
width of 400 HU. All CT values in the data were scaled to 

(0, 1) using the min-max normalization method. The size 
of the input segmentation model was set to 150×220×120. 
If the size of the cropped data was smaller than this set 
size, then the input condition was met by up- and down-
complementing by 0. 

Development of segmentation model
The segmentation model chosen was the 3D AnatomyNet 
model (Department of Computer Science, University of 
California, Irvine, CA, USA) (31), a variant of U-Net as 
can be seen from the structure picture. The purpose of 
using only 1 down-sampling layer in the encoder part 
was to occupy less GPU memory and improve the ability 
to segment small regions; secondly, the Squeeze-and-
Excitation residual block was used instead of the previous 
convolution operation as the building block of AnatomyNet, 
which is equivalent to introducing an attention mechanism 
between channels, so that the interdependencies between 
channels can be adaptively modelled and calibrated, and 
therefore better able to extract effective features and 
increase the representational power of the network. The 
structure of AnatomyNet is shown in Figure 3.

BMD calculation

In this study, a 3D DenseNet model (Cornell University, 
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Tsinghua University, and Facebook AI Research) for the 
calculation of averaged BMD value was constructed. The 
uniformly sized images obtained from the segmentation 
model were randomly divided into a training set, a 
validation set, and a test set in a ratio of 6:2:2 and used as 
the dataset for the input of BMD calculation model.

DenseNet-BC uses dense blocks that connect the entire 
layers. Each layer obtains inputs from previous layers and 
passes via its own feature maps to preserve the accuracy of 
classifier.

As shown in Figure 4, this detection model was a 
121-layer 3D-DenseNet-BC with the following structure 
of the network in order: initial convolutional layer, max-
pooling layer, dense block 1, transition layer 1, dense block 
2, transition layer 2, dense block 3, transition layer 3, dense 
block 4, global average pooling layer, and fully connected 
layer.

The Initial convolution layer consists of a convolution 
kernel of step stride 2, padding 3 and size 7×7×7, followed 
by a batch normalization layer and a rectified linear unit 
(ReLU) activation function. The maximum pooling 
layer consisted of a pooling kernel with a step stride of 
2, a padding of 1, and a size of 3×3×3. The numbers of 
bottleneck layers for dense block 1 to dense block 4 were 6, 
12, 24, and 16, respectively. The overall network structure 
of each bottleneck layer was in the following order: BN-
ReLU-Conv(1×1×1)-BN. The overall network structure 
of each bottleneck layer was as follows: BN-ReLU-
Conv(1×1×1)-BN-ReLU-Conv(3×3×3). Each transition 
layer connects 2 adjacent dense blocks. Each transition layer 
contains in turn a BN layer, a ReLU layer, a convolution 
layer, and an average pooling layer. A compression factor 
was added to the transition layer, which was set to 0.5 in 

the described method. In the convolution layer, the step 
size was 1 and the kernel size was 1×1×1. In the pooling 
layer, the step size was 2 and the kernel size was 2×2×2. 
Global average pooling was performed after dense block 4. 
The output feature map size was specified as 1×1×1. More 
specific structure and definition of models in this system are 
shown in Appendix 1.

Statistical analysis

The software SPSS 22.0 (IBM Corp., Armonk, NY, USA) 
was used for statistical analysis. The Dice coefficient, 
which effectively quantifies the spatial overlap between 
segmentation and ground truth, was used to evaluate 
segmentation performance. It is calculated by taking 
twice the number of elements that are common to both 
the segmentation set and ground truth set and dividing 
it by the sum of the number of elements in each set. 
The normality of all continuous variables was verified. 
To compare the BMD values predicted by the proposed 
system with the ground truth obtained by QCT, linear 
regression and Bland–Altman (BA) analyses were 
performed. To evaluate the diagnostic performance of the 
proposed system for predicting osteoporosis and abnormal 
BMD (osteoporosis and osteopenia), the area under the 
curve (AUC) from receiver operating characteristic (ROC) 
curve analysis and the sensitivity, specificity, positive and 
negative predictive values were calculated. All analyses 
were 2-tailed and P<0.05 was considered statistically 
significant.

The training process was run on a Xeon E5-2664 v4 
Gold (Intel, Santa Clara, CA, USA) CPU 3.20 GHz with 
NVIDIA (Santa Clara, CA, USA) Tesla P100 GPU. 
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Figure 4 Structural diagram of the 3D-DenseNet-BC used by the calculation module. BMD, bone mineral density.
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Results

Vertebra localization

Manual inspection was performed to check if the targeted 
vertebrae were correctly localized by Faster R-CNN. We 
also used Recall and Precision to measure the probability 
of target retrieval and the probability of correct target 
classification. The results showed that the overall 
positioning effect for 3 vertebral bodies was very good, 
with both recall and accuracy reaching 100%, indicating 
that 3 vertebral cancellous bones could be found on each 
image.

Vertebra segmentation

The proposed method achieved a mean Dice coefficient 
of 0.95 for vertebrae segmentation on the testing dataset, 
with Dice coefficients greater than 0.90 accounting for 
96.6%. The average Dice coefficient for the validation set 
was 0.95, with 95% having a Dice coefficient greater than 
0.9. In the training set, the average Dice coefficient for the 
segmentation evaluation metrics was 0.952, with 96.9% 
having a Dice coefficient greater than 0.9. Figure 5 shows an 
example of the segmentation results.

The performance of the proposed system in the 
measurement of mean BMD

The performance of  the proposed system in the 
measurement of mean BMD is shown in Figure 6. Linear 
regression analysis showed a strong correlation between 
the proposed system and QCT for the measurement of 
mean BMD, with a correlation coefficient (R2) of 0.967 in 
the testing set and 0.952 in the validation set. The slopes of 
linear regressions using the proposed system and QCT were 
also close to 1, showing that the proposed system could 
measure vertebral BMD accurately. Additionally, BA analysis 
showed good agreement between the proposed system 
and QCT for mean BMD measurement. Compared with 
the results of QCT, BMD measurement by the proposed 
system generated mean bias of 2.21 and 0.79 mg/cm3  
in the testing and validation set, respectively. The 95% 
limits of agreement were (−10.16, 14.57) mg/cm3 in the 
testing set and (−15.01, 16.59) mg/cm3 in the validation set.

Diagnostic performance of the proposed system for 
osteoporosis and osteopenia diagnosis

The diagnostic performance of the proposed system for 

A

B

Figure 5 Results of segmentation of three vertebrae (T12–L2). (A) The manual segmentation provided by the operator. (B) The results of 
automatic segmentation.
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detecting osteoporosis and abnormal BMD is shown in 
Table 1. The AUC of the proposed system for detecting 
osteoporosis was 0.987 in the validation set and 0.984 in 
the testing set. The AUC for distinguishing abnormal 

BMD (osteopenia and osteoporosis) from normal bone 
mass was 0.984 in the validation set and 0.993 in the testing 
set. For detection of osteoporosis, the proposed system 
achieved 98.99% in sensitivity and 92.36% in specificity in 
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Figure 6 Linear regressions and BA plot of mean BMD values between the proposed system and QCT. (A) Linear regression in testing set 
(n=100). (B) Linear regression in 4 validation sets (n=4×100). (C) BA plot comparing mean BMD values in testing set. (D) BA plot comparing 
mean BMD values in validation sets. The mean difference (solid line) and limits of agreement (dotted line) are shown. BA, Bland–Altman; 
BMD, bone mineral density; QCT, quantitative computed tomography.

Table 1 The performance of the proposed system for osteoporosis and abnormal bone mass diagnosis, using QCT as the reference standard

Diagnosis AUC (95% CI) Sensitivity (n/N) Specificity (n/N) PPV (n/N) NPV (n/N)

Validation set

Osteoporosis 0.987 (0.980–0.995) 98.99% (98/99) 92.36% (278/301) 80.99% (98/121) 99.64% (278/279)

Abnormal BMD  
(osteopenia and osteoporosis)

0.984 (0.974–0.994) 95.98% (239/249) 92.72% (140/151) 95.60% (239/250) 93.33% (140/150)

Testing set

Osteoporosis 0.984 (0.965–1) 95.45% (21/22) 91.03% (71/78) 75.00% (21/28) 98.60% (71/72)

Abnormal BMD  
(osteopenia and osteoporosis)

0.993 (0.982–1) 96.55% (56/58) 100.00% (42/42) 100.00% (56/56) 95.45% (42/44)

QCT, quantitative computer tomography; AUC, area under the curve; CI, confidence interval; PPV, positive predictive value; NPV, negative 
predictive value; BMD, bone mineral density.
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the validation set, and 95.45% in sensitivity and 91.03% in 
specificity in the testing set. The sensitivity and specificity 
of the proposed system for distinguishing abnormal BMD 
from normal bone mass were 95.98% and 92.72% in the 
validation set and 96.55% and 100.00% in the testing set, 
respectively.

Discussion

In this study, we developed a 3D deep neural network model 
to automate BMD measurement for detecting osteoporosis 
and osteopenia using chest and abdomen LDCT scans. To 
our knowledge, this was the first study to automate BMD 
measurement in LDCT scans using a 3D DL system. 

Vertebrae localization and segmentation in LDCT 
scans are the basis of automating BMD measurement. In 
this study, we used a Fast-RCNN network trained by MIP 
images to localize the target vertebral bodies. Besides, we 
employed 3D-AnatomyNet to conduct segmentation of 
the cancellous bone of the target vertebrae (T12–L2). The 
average Dice coefficients of segmentation on the testing 
and validation sets were both 0.95, demonstrating that 
the automated segmentation was highly associated with 
manual annotation. Additionally, over 95% cases had a Dice 
coefficient greater than 0.9.

We selected QCT as a reference standard for BMD 
measurement instead of DXA of the lumbar spine because 
QCT might give a more accurate evaluation of the 
performance of our proposed system. Although DXA 
is the most commonly used technology for diagnosing 
osteoporosis and performing serial BMD measurements, 
it is susceptible to abdominal aortic calcification and 
spinal degeneration. QCT is also a reliable indicator for 
measuring spinal BMD. It is a 3D metric that only measures 
the density of the cancellous bone of the vertebra. Unlike 
DXA, its measurement area does not contain cortical bone. 
However, QCT still requires frequent calibration, dedicated 
software, and complex post-processing work. Therefore, 
the application of this proposed 3D DL system may help to 
simplify the procedure of BMD measurement, thus making 
osteoporosis screening more easily accessible.

Previous studies (25-27) have mainly used 2D networks 
or linear function to calculate BMD values, meaning 
that the results are not representative of all anatomical 
information within cancellous bone or are affected by the 
instability of CT values. The methods used in our system 
are based on several leading 3D DL models, which use a 
classification model instead of converting CT values to 

BMD values, allowing the system to be independent of the 
linear relationship between CT values and BMD values in 
clinical use, thus achieving reliable results without regular 
calibration. At the same time, we segmented all cancellous 
parts of the vertebral body, thus avoiding the problems 
caused by manual selection of regions of interest (ROIs). 
Following the ISCD and ACR’s recommendations, the 
averaged L1 and L2 BMD (with T12 vertebra substituted 
if either L1 or L2 is non-measurable) was used as the 
diagnosis metric of our proposed system. Our results 
demonstrated that the BMD values measured by our system 
had a strong statistically significant correlation with the 
values acquired by QCT. The correlation coefficient (R2) 
between our system and QCT reached 0.967 in the testing 
set. For diagnostic performance, the testing set of our 
proposed system achieved 95.45% in sensitivity and 91.03% 
in specificity for diagnosing osteoporosis, and 96.55% in 
sensitivity and 100.00% in specificity for distinguishing 
abnormal bone mass (osteopenia and osteoporosis) from 
normal bone mass using the images in LDCT scans. 
Compared to the results of a previous study (26), our system 
had a better sensitivity as well as a higher AUC for the 
diagnosis of osteoporosis. In addition, the computational 
time to process a case in this model was only about 8.46 
seconds on our server, making it possible to use it in a 
clinical situation. To reduce the potential risk associated 
with the radiation dose received by the patient, the LDCT 
data used in our study had a mean effective CT dose of 
4.61±1.98 mSv and, for comparison, the normal dose for 
a routine application is approximately 9 mSv for the same 
scan range. 

This paper still has several limitations. Firstly, our 
model was developed and evaluated using data from a 
single institution and a single scanner. As a result, more 
studies using data from several other institutions are 
needed to demonstrate the generalizability of the results, 
whereas adjustment of the training set with large amounts 
of data from different manufacturers’ sources at different 
institutions is needed to increase the reproducibility of 
this model. The segmentation data was annotated by 
1 radiologist, and although a visual examination was 
conducted by another radiologist, it might still cause bias. 
The ROI mismatch between QCT and the developed 
system is also a limitation in this study, because this can 
cause make direct comparison of the results of the training 
model and QCT difficult.

In conclusion, the proposed 3D DL-based system enables 
automatic vertebrae segmentation and BMD calculation 
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using LDCT images of the thorax and upper abdomen and 
provides high accuracy for diagnosing osteoporosis and 
osteopenia, meaning that this DL-based system extends 
the utility of LDCT scans beyond their intended routine 
clinical purpose and makes osteoporosis screening more 
accessible. This DL-based system extends the scope of 
purpose of LDCT scans beyond their intended routine 
clinical use and has potential to become a clinically available 
osteoporosis screening tool.

Conclusions

This study developed an automated DL-based system 
to measure BMD using LDCT scans for opportunistic 
osteoporosis screening with high accuracy. 
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Appendix 1
Faster R-CNN model

Following figure shows the specific structure of the Faster R-CNN model.

Supplementary

The specific scheme consisted of the following steps.
1. Train the dataset using faster R-CNN and select the optimal model based on the recall and average accuracy of the 

evaluation metrics of the validation set.
2. Input the test set into the already trained faster R-CNN model and output the recall and average precision of the 

evaluation metrics to test the generalization ability of the model.
3. Input the training set, validation set, and test set into the trained faster R-CNN model respectively, save the vertical 

coordinates of the 3 vertebrae detection frames in the target image, and compare them with the labelled positions to 
observe the difference between them.

R-CNN, region-based convolutional neural network

3D AnatomyNet model

The specific scheme of 3D AnatomyNet model consisted of the following steps.
1. Divide the data into a training set, a validation set, and a test set according to a ratio of 6:2:2.
2. Train the training and validation sets using the AnatomyNet model and use the model with the highest average Dice 

coefficient of the evaluation metrics on the validation set as the final model.
3. Input the test set data into the trained segmentation model and check the average Dice coefficient to test the 

generalization ability of the model.
4. Input the training set, validation set, and test set into the trained model and output the Dice coefficients and 

segmentation results for each data to check whether there are multiple bones or mis-segmented vertebrae.
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3D DenseNet model

The initial convolutional layer comprises convolution of a kernel size of 7×7×7, stride of 2, and padding of 3, followed by a 
BN layer and a ReLU activation function. The use of the ReLU activation function adds a non-linear factor to the neural 
network, which can improve the expressive power of the network and, to a certain extent, effectively alleviate the problem 
of gradient explosion and gradient disappearance during the training process of the network. It is defined by the following 
equation:

( ) {0,x 0
x,x 0ReLU x ≤

>=  [1]

The Max-pooling layer comprises pooling of a kernel size of 3×3×3, stride of 2, and padding of 1.
The bottleneck layer is used in dense block 1 to dense block 4, with the number of bottleneck layers in dense block 1 to 

dense block 4 being 6, 12, 24, and 16, respectively. Each bottleneck layer consists of 2 parts, each of which includes a BN 
layer, a ReLU layer, and a convolutional layer; the convolutional layer in the first part consists of a 1×1×1 convolutional kernel 
with a stride of 1; the convolutional layer in the second part consists of a 3×3×3 convolutional kernel with a stride of 1 and a 
padding of 1. Introducing 1×1×1 convolution before 3×3×3 convolution in each layer reduces the number of input feature-
maps to improve computational efficiency.

Each transition layer connects 2 contiguous dense blocks, and each transition layer contains in turn a BN layer, a ReLU layer, 
a convolution layer, and an average pooling layer. The convolution layer comprises convolution of a kernel size of 1×1×1 and 
stride of 1. The pooling layer comprises pooling of a kernel size of 2×2×2 and stride of 2. To further improve the compactness 
of the model, a compression factor θ was added to the transition layer to reduce the number of feature-maps output by the 
transition layer. If a dense block contains m feature-maps, adding a compression factor will generate θm output feature-maps 
(0<θ≤1) for the subsequent transition layers. We set θ=0.5, growth rate=32 in our experiments.

Global average pooling was performed after dense block 4, specifying the output feature map size as 1×1×1.
The softmax layer was a softmax function applied to the output of the fully connected layer of the network to predict the 

class probability. Suppose y1,y2 are the output results of the fully connected layer of the network, the softmax function is 
defined as follows:
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We trained the model for 50 epochs. The α-balanced variant of the focal loss was chosen as the loss function, which plays 
the role of balancing hard and easy samples, with the following expressions:

( ) ( ) ( )t t t tFL p 1 p log pγα= − −  [3]

pt∊[0,1] is the model’s estimated probability for the class labeled 1. Meanwhile, αt∊[0,1]  is used to adjust the weights of 
positive and negative samples, and the tunable focusing parameter γ smoothly adjusts the rate at which tunable focusing, 
allowing the model to focus more on learning the features of hard samples, γ≥0. 

Our experiment set the loss function parameters αt=0.6, γ=2, initial learning rate of 3e-5, used the MultiStepLR decay 
strategy, milestones=[16,33], gamma=0.1, and used Adam as the default optimizer. After 50 epochs of iterative training, the 
model parameters were saved for each epoch and the best result was selected as the final model parameters.

ReLU, rectified linear unit; BN, batch normalization


