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Background: Renal cancer is one of the leading causes of cancer-related deaths worldwide, and early 
detection of renal cancer can significantly improve the patients’ survival rate. However, the manual analysis 
of renal tissue in the current clinical practices is labor-intensive, prone to inter-pathologist variations and 
easy to miss the important cancer markers, especially in the early stage.
Methods: In this work, we developed deep convolutional neural network (CNN) based heterogeneous 
ensemble models for automated analysis of renal histopathological images without detailed annotations. The 
proposed method would first segment the histopathological tissue into patches with different magnification 
factors, then classify the generated patches into normal and tumor tissues using the pre-trained CNNs and 
lastly perform the deep ensemble learning to determine the final classification. The heterogeneous ensemble 
models consisted of CNN models from five deep learning architectures, namely VGG, ResNet, DenseNet, 
MobileNet, and EfficientNet. These CNN models were fine-tuned and used as base learners, they exhibited 
different performances and had great diversity in histopathological image analysis. The CNN models 
with superior classification accuracy (Acc) were then selected to undergo ensemble learning for the final 
classification. The performance of the investigated ensemble approaches was evaluated against the state-of-
the-art literature.
Results: The performance evaluation demonstrated the superiority of the proposed best performing 
ensembled model: five-CNN based weighted averaging model, with an Acc (99%), specificity (Sp) (98%), 
F1-score (F1) (99%) and area under the receiver operating characteristic (ROC) curve (98%) but slightly 
inferior recall (Re) (99%) compared to the literature.
Conclusions: The outstanding robustness of the developed ensemble model with a superiorly high-
performance scores in the evaluated metrics suggested its reliability as a diagnosis system for assisting the 
pathologists in analyzing the renal histopathological tissues. It is expected that the proposed ensemble deep 
CNN models can greatly improve the early detection of renal cancer by making the diagnosis process more 
efficient, and less misdetection and misdiagnosis; subsequently, leading to higher patients’ survival rate.
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Introduction

Renal cancer, or also commonly known as kidney cancer, 
is one of the most common cancers, accounting for 
approximately 2% of global cancer diagnoses and deaths in 
2020 (1). Two-third of the renal cancer patients are men, 
which makes renal cancer the seventh most frequently 
occurring cancer among men (1,2). Renal cell carcinoma 
(RCC) responsible for 85% of all renal cancer incidents, 
and clear cell renal cell carcinoma (CCRCC) originated 
from proximal tubule epithelial cells is the most common 
RCC subtype, contributing around 70% of the RCC cases 
(2,3). The survival rate of kidney cancer patients is highly 
dependent on the stage at diagnosis. Patients with clinically 
localized RCC (stage I) have 92.5% of 5-year survival rates, 
followed by 72.5% for regional RCC (stage II/III), and 
merely 12% for metastatic RCC (stage IV) (3). As a result, 
the early stage RCC diagnosis is important and decisive for 
effective patient treatment and thus saving lives.

Histopathological analysis is the clinical gold standard 
for malignancy diagnosis, subtype classification, or tumor 
grading on renal tissues. In the standard diagnostic and 
grading procedure of renal cancer, the pathologists have 
to manually evaluate the nucleoli and morphology of 
the renal tissues from low to high magnification power 
under a microscope (4-6). For instance, in renal tissues, 
basophilic tumor nucleoli are well captures in high-power 
magnification histopathological images, but for giant 
tumor cells such as eosinophilic tumor nucleoli are better 
captured at a lower magnification power (6). However, this 
conventional and manual visual analysis of renal tissues by 
pathologists is extremely laborious, time consuming, and 
subjective, where the conclusion drawn by a pathologist 
can be different from another. The correct analysis of 
renal tissues is highly dependent upon the experience 
and expertise of the pathologists. This makes the manual 
histopathological analysis prone to human errors such as 
misdetection and misdiagnosis, leading to a delay in the 
treatment and thus a lower survival rate (7).

The shortcomings of manual analysis  arise the 
development of computer-aided diagnosis (CAD) systems 
to assist pathologists by providing an autonomous and 
efficient analysis of the histopathological images (8). The 

digitalization of biopsy slides and advancements in CAD 
systems have started to gain the attention of the medical 
community and enhance the overall analysis workflow. 
These systems not only reduce the time and cost of 
cancer diagnosis but also the inter-pathologist variability 
in diagnostic decisions (9). In this regard, various CAD 
systems have been developed, and recently, deep machine 
learning approaches are widely adopted in the systems for 
different analysis tasks due to its favorable characteristics 
and great performances (10).

The key components in deep learning techniques, 
convolutional neural networks (CNNs), have been widely 
used in CAD systems because the conventional algorithm-
based machine learning approaches require supervision 
in feature extraction, whereas the use of deep CNNs can 
automatically learn high-level features without any domain 
knowledge (11-13). Many researchers have studied the 
performances of various CNN architectures at different 
model scale or depth. The studies demonstrated that 
although CNNs with greater scale or depth were able to 
result outstanding classification performance, they often 
have a significant drawback in execution time (9,14-16). 
Several lightweight architectures were proposed to address 
the drawback, which at the same time, able to yield a 
noticeable high accuracy (Acc) at a low latency (17-20).

Transfer learning has been frequently used in deep 
learning to train CNN models with limited dataset faster 
and accurately by transferring the knowledge obtained 
from a large-scale dataset to the target dataset for effective 
spatial features extraction. This technique is especially 
useful in the medical domain, where medical images and 
annotations are often more expensive and time-intensive to 
obtain (21,22). Fine-tuning is one of the transfer learning 
approaches which retrains several layers of the pretrained 
models to enable better feature extraction according to the 
target domain to obtain a better performance (23). Partially 
frozen of layers in CNN for fine-tuning was reported to 
have better classification performance compared to fully 
frozen or no frozen strategies as it managed better in both 
generic and specific features of the histopathological images 
(9,19,24).

Moreover, the complex nature of histopathological 
images makes it challenging to determine the distinguishing 
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features using a single classification approach. Therefore, 
ensemble learning techniques which involve multiple 
classification models are often implemented to deal with 
the complexity of histopathological images (9,25). Majority 
voting and averaging were the commonly used statistical 
approaches for improving the classification results from 
several base CNNs (9,26). Meanwhile, the use of neural 
network as classification layers for the combined base 
CNNs could perform slightly better than the statistical 
approaches (27).

The selection of image labelling method also plays an 
important role in histopathological image classification as 
it will gives different results and conclusions to the tissue 
samples. Patch-based labelling method is popular especially 
for histopathological images as it can perform cancer type 
discrimination, cancerous region indication, and prognosis 
analysis (27-32). However, such method not only requires 
expert pathologists to label the region-of-interest (ROI) 
accurately, but it is also leading back to the issues arose 
by manual histopathological image analysis, where the 
pathologists need to do this patch-by-patch and one whole 
slide image (WSI) can have thousands of patches depending 
on the image size and resolution (28,29). To alleviate the 
burden from high-detailed annotations, several studies have 
implemented WSI-based or slide-based labelling method 
and managed to yield very good results (28,33-35). The use 
of multiple instance learning (MIL) approach can further 
extend the capability of WSI-level labelling to classify the 
patches more accurately without the need of patch-level 
annotations (36,37). Yet, there are limited studies on the 
feasibility of non-ROI-annotation classification, particularly 
when it comes to different magnification factors of the 
histopathological images.

This work aims to investigate the performance of 
heterogeneous ensembled deep learning models in the 
diagnosis of annotation-free and multi-magnification 
renal histopathological images. For this purpose, tissue 
segmentation and extraction of WSIs into smaller image 
patches were done initially for the image pre-processing 
steps. Five different pre-trained CNN architectures and 
their variants were used to discriminate the different 
magnification factors renal image patches into normal 
and tumor classes respectively. The best performed deep 
learning models were then combined with different 
ensemble techniques to classify the renal histopathological 
images. Lastly, the studied models were evaluated to 
determine their reliability as a good diagnosis system. In 
this regards, early diagnosis of renal cancer can be done 

with the best investigated model, to prevent its progression 
and lower its morbidity rates in renal cancer patients. 
We present this article in accordance with the TRIPOD 
reporting checklist (available at https://qims.amegroups.
com/article/view/10.21037/qims-23-46/rc).

Methods

The WSIs with extremely high image resolutions 
underwent image pre-processing steps to generate image 
patches with smaller dimensions before they were fed to 
the deep learning models. The image patches generated in 
different magnification factors were then used for model 
training, validation, and testing by using the pre-trained 
CNNs with transfer learning. The best three and five 
models with the highest Acc underwent ensemble learning 
to perform the final classification. The proposed models 
were evaluated with various metrics. The overall workflow 
of this study is depicted in Figure 1.

Dataset preparation

The Clinical Proteomic Tumor Analysis Consortium Clear 
Cell Renal Cell Carcinoma (CPTAC-CCRCC) dataset (38)  
from The Cancer Imaging Archive (TCIA) was used in 
this study to evaluate the performance of the proposed 
method in classifying the renal histopathological images 
into normal and tumor classes. The dataset consists of 783 
hematoxylin and eosin (H&E) stained WSIs, composed by 
259 normal and 524 tumor (particularly CCRCC) renal 
tissue slide images. The WSIs were scanned by Aperio 
digital pathology slide scanner manufactured by Leica, at 
a 40× magnification in red, green, and blue (RGB) color 
system, and the slides are consistently having a (0.494, 
0.494) mpp pixel aspect ratio (PAR). Subtypes of CCRCC: 
rhabdoid variant CCRCC and partly papillary CCRCC, in 
the dataset are grouped together, all these were classified 
as the tumor class. In the tumor WSIs, all the tissues 
were assumed to be tumor although it was possible to have 
some normal or non-tumor area in the slide since detailed 
annotations of tumor lesions were not provided. A stratified 
hold-out validation method was used for dataset splitting to 
ensure each set has similar distribution of classes. The dataset 
was partitioned into 70% (181 normal and 366 tumor WSIs), 
20% (52 normal and 105 tumor WSIs), and 10% (26 normal 
and 53 tumor WSIs) for the training, validation, and testing 
sets, respectively. Although the dataset is imbalanced, where 
the tumor class has contributed approximately 67% in the 

https://qims.amegroups.com/article/view/10.21037/qims-23-46/rc
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dataset, dataset imbalance treatment was not performed. 
This is because a greater contribution in tumor class reflects 
the actual scenario in histopathological studies; hence, 
maintaining the class distribution can make the proposed 
classification model more apt to actual histopathological 
situation. The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013).

Histopathological image pre-processing

PyHIST (39) histopathological image pre-processing tool 
proposed by Muñoz-Aguirre et al. was used to generate 
image patches from the WSIs. The pipeline of PyHIST 
consists of three main processing steps: tissue masking, 
tiling, and patch extraction. A mask was generated with 
Otsu thresholding method for the histopathological image, 
followed by the generation of a grid of non-overlapping 
tiles on top of the mask with a tile size of 224×224 pixels. 
The output downsampling factors selected for the patches 
were 16, 8, 4, and 2, which representing magnification levels 
of 1.25×, 2.5×, 5×, and 10×, respectively, as shown in Figure 2.  
Meanwhile, both mask downsampling and tile crossed 
image downsampling were set as defaults.

The content threshold was set to 0.5 to extract tiles with 
50% or more tissue coverage. Although image patches with 
greater coverage of tissues is favorable as they have less non-
informative area, the number of generated patches needs to 

be considered. Lesser image patches can be generated when 
the threshold is set to be higher. However, this can lead to 
insufficient histopathological images for model training, 
which can be significant especially for the low magnification 
setting. One of the major drawbacks of PyHIST is that it 
does not remove artefacts such as blur, folded tissue, and 
pen ink from the WSI before masking, which reduces the 
quality of histopathological image patches for classification. 
Thus, manual image data cleaning was performed to remove 
undesirable image patches generated. The number of image 
patches after data cleaning for each magnification factors 
is tabulated in Table 1. After image patches were generated 
from the WSIs, each of the patches was labelled according 
to its corresponding WSI-level label without ROI.

Classification model development

In this work, five CNN architectures (VGG, ResNet, 
DenseNet, MobileNet, and EfficientNet) and their variants 
were applied for transfer learning with pretrained weights 
from ImageNet to classify the histopathological images 
of renal cancer in the CPTAC-CCRCC dataset. Fine-
tuning technique was adopted for transfer leaning and its 
schematic diagram is shown in Figure 3. In the fine-tuning 
approach, 80% of the pretrained layers in convolutional 
base were frozen while another 20% of the layers were 
remain unfrozen for model re-training with the selected 

Whole slide image Mask Tilecrossed Patches

Model training Ensemble learning Binary classification

CNN-1

CNN-2

CNN-n

Ensemble model

Normal

Tumor

Figure 1 Overall schematic workflow. The H&E stained WSI is tiled into magnified (e.g., 2.5× magnification factor) image patches and fed 
to the CNN models, followed by ensemble model, for classification into normal or tumor class. H&E, hematoxylin and eosin; WSI, whole 
slide image; CNN, convolutional neural network. 
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1.25× 2.5× 5× 10×

Normal tissue

CCRCC tissue 
(Tumor)

Partly papillary 
CCRCC tissue 

(Tumor)

Rhabdoid 
Variant CCRCC 

tissue 
(Tumor)

Figure 2 Sample generated H&E stained normal and CCRCC tissue images patches with four different magnification factors. H&E, 
hematoxylin and eosin; CCRCC, clear cell renal cell carcinoma.

Table 1 Number of image patches after data cleaning for each 
magnification factor 

Dataset WSI
Magnification factor

1.25× 2.5× 5× 10×

Training 547 12,803 52,479 211,576 843,986

Validation 157 3,507 14,426 58,055 231,501

Testing 79 1,936 7,945 32,050 127,629

Total 783 18,246 74,850 301,681 1,203,116

WSI, whole slide image.

histopathological dataset.
Four new trainable classification layers were created 

to replace the excluded pretrained classification layers for 
histopathological image classification. A global average 
pooling layer was appended to flatten the vectors into 
single dimension, followed by a fully connected layer with 
512 neurons and a rectified linear unit (ReLU) activation 
function. A dropout layer with a rate of 0.5 was added to 
further minimize overfitting and lastly, a fully connected 
sigmoid layer was added as a classifier to perform the binary 
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classification on the histopathological images. AdaBound (40)  
optimizer which inherited the advantages of Adam and 
stochastic gradient descent (SGD) optimizers was selected 
to optimize the new layers on the histopathological images 
with a very low learning rate of 0.0001, and binary cross-
entropy was used as the loss function.

In the model training, an input image size of [224, 224, 3]  
was used for all the CNN models. The models were 
trained at different magnification factors separately with 
a maximum of 50 epochs and a batch size of 32. An early-
stopping callback with a patience of 5 was implemented to 
obtain the epoch with the best validation Acc effectively 
and mitigate the possibility of overfitting. The best weight 
of the model was saved after the completion of training 
and the models with a high Acc would undergo ensemble 
learning to perform the final classification.

Ensemble learning

It is clearly proven in the literature (9,26,27) that the 

adoption of ensemble learning is able to improve the 
generalization of the deep learning system and leads to a 
better prediction. Ensemble leaning combines the decision 
of multiple classifiers, either at final or intermediate stages, 
to overcome the limited capacity of a single classifier 
and hence improve the robustness of the classification 
framework. A wide variety of ensemble techniques are used 
to develop a robust and accurate ensemble model, such as 
voting, bagging, boosting, and stacking.

In this work, four multi-model ensemble approaches, 
namely majority voting, unweighted averaging, weighted 
averaging, and stacking, were used to yield a more accurate 
and robust classification performance. The number of models 
in ensemble was often kept small to avoid the diminishing 
returns in performance. Therefore, the CNN models with 
best performance, particularly ones with the top-3 and top-5 
highest Acc, were selected for ensemble learning.

Majority voting
Ensemble learning based on majority voting (Figure 4A), 

Pretrained network Fine-tuning method

Input Input

Pretrained 
Convolutional 

base

Pretrained 
Convolutional 

base

Fine-tuned 
Convolutional 

base

Pretrained 
Classification 

layers

Fully connected 
layer

Fully connected 
layer

Output Output

New 
Classification 

layers

Global average 
pooling

Fully connected 
layer (ReLU)

Dropout

Fully connected 
layer (Sigmoid)

Frozen 

Trainable

Legend

A B

Figure 3 An overview of transfer learning technique. (A) Pretrained network; (B) fine-tuned network. ReLU, rectified linear unit.
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or so-called hard voting, takes the mode of the predicted 
class from each of the CNN models as final prediction. 
The number of models involved in ensemble learning, 
including majority voting, was set to odd number to avoid 
the scenario of having two modes during voting. Since 
each of the individual CNN models stands an equal chance 
for voting the final prediction class, it will be less biased 
towards the prediction of a particular CNN model as the 
effect is mitigated by the majority vote count. However, it 
is possible to result a dominance of event when majority of 
the similar base learners are having identical preference of 
a particular event (41). Hence, majority voting will perform 
better when CNN models from different architectures are 
involved for ensemble learning.

Averaging
Averaging-ensemble learning (Figure 4B) is another widely 

used technique, and both unweighted and weighted 
averaging were implemented in this study. Both averaging 
approaches took the mean of the probability predicted 
from each model, and then predicted the class of the 
histopathology image based on the new probabilistic 
score resulted from the ensemble model. In unweighted 
averaging ensemble, each classifier was designed to 
have equal contribution to the final probability score. In 
contrast, for the weighted averaging ensemble, each of the 
contributing models had different weightage and the weight 
coefficients were manipulated empirically until the best 
result was obtained. It has advantage over the unweighted 
averaging especially when the models have considerable 
different performance, where model with better result can 
have a greater weight coefficient. Meanwhile, unweighted 
averaging is preferred when the models share similar 
performance (42).

Figure 4 An overview of ensemble learning techniques. (A) Majority voting; (B) averaging; (C) stacking. CNN, convolutional neural 
network.
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Stacking
Stacking (Figure 4C) is an ensemble learning approach which 
uses a meta-learner to integrate the output of multiple 
base classifiers. There are usually two levels of classifiers in 
stacking. Stacking starts by training the heterogenous base 
classifiers at the first level, which are the selected CNNs in 
this case, to generate a new dataset for the meta-learner in 
second level. There would be a chance of overfitting if the 
new generated training set consists of exact training samples 
used by the base learners at first level. Hence, validation set is 
employed for the base classifiers to generate a clean training 
set for the meta-learner in second level. Currently, various 
machine learning algorithms have been used as a meta-
learner, such as Naïve Bayes, random forests, and gradient 
boosting machine (43). Logistic regression was selected as 
a meta-learner in this study as it is the most popular binary 
classification scheme used in stacking.

Model evaluation and visualization

Evaluation metrics
The performance of the trained CNN models and 
ensembled models was evaluated by using evaluation 
metrics: Acc, specificity (Sp), precision (Pr), recall (Re), 
and area under the curve (AUC) of receiver operating 
characteristic (ROC) curve. Since the selected dataset 
has a class imbalance problem, the F1-score (F1) was also 
computed as it is an unbiased estimator which provides 
equal weightage to Pr and Re. Moreover, the Matthews 
correlation coefficient (MCC) was used as one of the 
evaluation criteria. It is a useful measure in imbalanced 
dataset as it considered all the confusion metrics: true 
positive (TP), false negative (FN), true negative (TN), and 
false positive (FP), proportionally both to the positive and 
negative classes. Besides, the reliability of the proposed deep 
learning model as a diagnosis system was also considered. 
Xie et al. (11) reported that a reliable diagnosis system 
should achieve the requirement of Re ≥80%, Sp ≥95%, Pr 
≥95%, and diagnostic odds ratio (DOR) ≥100. Hence, the 
proposed methods were evaluated according to the stated 
requirements above to identify the fulfilment as a reliable 
diagnosis system. The mathematical formulations of MCC 
and DOR are presented in Eqs. [1,2]:

( ) ( )
( ) ( ) ( ) ( )

TP TN FP FN
MCC

TP FP TP FN TN FP TN FN
× − ×

=
+ × + × + × +

 [1]

TP TNDOR
FP FN

×
=

×
 [2]

Prediction visualization
Gradient weighted class activation mapping (Grad-CAM) 
technique was implemented to visualize how the models 
predict and classify the renal histopathological images 
into normal and tumor class. The feature maps from 
the final convolutional layer of the model were used in 
Grad-CAM to create an activated heatmap, which then 
superimposed on the histopathological image patches to 
highlight the visual patterns for the class prediction. This 
facilitated the understanding of the predictions from the 
‘black-box’ of the deep learning models. Since the CNN 
models from the same architecture tend to have a similar 
visual pattern, a single CNN model would be selected 
from each of the three top-performing architectures for 
prediction visualization, to study the heatmap diversity 
from different architectures.

Experimental setup

Python (version 3.8.8) and TensorFlow (version 2.3.0) 
framework were used in Jupyter Notebook to run all the 
experiments in this study. The image pre-processing and 
models training were done on a Windows 10 workstation 
which equipped with dual Intel XEON E5-2630cv3 
processors, NVIDIA Quadro P6000 GPU, 120 GB of 
RAM, and CUDA version of 11.4.

Results

In this work, CNN models from five architectures (VGG, 
ResNet, DenseNet, MobileNet, and EfficientNet) and 
four ensemble techniques were used to classify the renal 
histopathological images. The results for 1.25× (Table 2), 
2.5× (Table 3), 5× (Table 4), and 10× (Table 5) magnification 
factors on testing set are shown below. The ensembled 
model names are abbreviated in the tables as “MV”, 
“UA”, “WA”, and “ST” for majority voting, unweighted 
averaging, weighted averaging, and stacking, respectively. 
Meanwhile, the annotation behind the abbreviated 
ensembled models stand for the number of individual 
CNN models involved for ensemble learning. For 
instance, “Ensemble-MV3” means the model ensembles 
the top three highest-Acc CNN models with majority 
voting technique. The performances of the investigated 
individual CNN models and ensembled models are 
evaluated based on the evaluation metrics mentioned in 
section “Evaluation metrics”. The detailed results are 
discussed in the following subsections.
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Performance analysis of CNNs

For the VGG architecture, VGG16 variant acquired a 
higher Acc by at least 0.3% compared to VGG19 in most 
of the settings, except for 1.25× magnification factor case 
where VGG19 yielded an Acc 0.2% higher than VGG16. 
In term of Sp, VGG16 had superior performance than 
VGG19, meaning that VGG16 can raise less FPs than 
VGG19. Since a reliable diagnosis system should have equal 
or more than 95% of Sp, VGG19 was not a good candidate 
as it only fulfilled the requirement at 2.5× magnification 

factor. Besides, both VGG variants had different behavior 
in Pr and Re, where VGG16 tends to have better Pr while 
VGG19 is better in achieving high Re in most of the 
magnification factors. Even though VGG16 has shallower 
layers than VGG19, it managed to perform better than 
VGG19 in various evaluated metrics except Re.

In the ResNet architecture, both ResNet101 and 
ResNet152 had great performance in classifying the 
histopathological images with different magnification 
factors. However, these two models exhibited different 
strengths, such that ResNet101 had higher Acc and F1, 

Table 2 Classification results of fine-tuned and ensembled models for 1.25× magnification factor

Architecture Acc Sp Pr Re F1 AUC MCC DOR

VGG16 0.9685 0.9692 0.9854 0.9682 0.9767 0.9687 0.9284 956

VGG19 0.9706 0.9286 0.9674 0.9902 0.9787 0.9594 0.9319 1,307

ResNet50 0.9659 0.9383 0.9714 0.9788 0.9751 0.9585 0.9212 702

ResNet101 0.9742 0.9351 0.9704 0.9924 0.9813 0.9637 0.9403 1,886

ResNet152 0.9669 0.9724 0.9868 0.9644 0.9755 0.9684 0.9254 954

DenseNet121 0.9478 0.8620 0.9388 0.9879 0.9627 0.9249 0.8792 509

DenseNet169 0.9711 0.9643 0.9832 0.9742 0.9787 0.9693 0.9338 1,021

DenseNet201 0.9504 0.8864 0.9487 0.9803 0.9642 0.9333 0.8848 388

MobileNet 0.8760 0.7565 0.8913 0.9318 0.9111 0.8442 0.7086 42

MobileNetV2 0.7025 0.6964 0.8327 0.7053 0.7637 0.7009 0.3788 5

EfficientNetB0 0.9742 0.9513 0.9774 0.9848 0.9811 0.9681 0.9403 1,270

EfficientNetB1 0.9726 0.9756 0.9884 0.9712 0.9797 0.9734 0.9379 1,352

EfficientNetB2 0.9762 0.9708 0.9863 0.9788 0.9825 0.9748 0.9455 1,533

EfficientNetB3 0.9659 0.9594 0.9808 0.9689 0.9748 0.9642 0.9221 737

EfficientNetB4 0.9602 0.9383 0.9712 0.9705 0.9708 0.9544 0.9084 500

Ensemble-MV3 0.9819 0.9610 0.9820 0.9917 0.9868 0.9764 0.9582 2,935

Ensemble-UA3 0.9809 0.9594 0.9812 0.9909 0.9861 0.9752 0.9558 2,577

Ensemble-WA3 0.9809 0.9497 0.9770 0.9955 0.9861 0.9726 0.9559 4,133

Ensemble-ST3 0.9809 0.9675 0.9849 0.9871 0.9860 0.9773 0.9559 2,284

Ensemble-MV5 0.9861 0.9756 0.9887 0.9909 0.9898 0.9833 0.9678 4,367

Ensemble-UA5 0.9788 0.9545 0.9790 0.9902 0.9846 0.9723 0.9510 2,111

Ensemble-WA5 0.9845 0.9659 0.9842 0.9932 0.9887 0.9795 0.9642 4,127

Ensemble-ST5 0.9824 0.9724 0.9871 0.9871 0.9871 0.9798 0.9595 2,701

The best results of the metrics are bolded; and 3 or 5 after the ensemble model abbreviation indicates top 3 or top 5 CNN models. Acc, 
accuracy; Sp, specificity; Pr, precision; Re, recall; F1, F1-score; AUC, area under the curve; MCC, Matthews correlation coefficient; DOR, 
diagnostic odds ratio; MV, majority voting; UA, unweighted averaging; WA, weighted averaging; ST, stacking; CNN, convolutional neural 
network.



Quantitative Imaging in Medicine and Surgery, Vol 13, No 9 September 2023 5911

© Quantitative Imaging in Medicine and Surgery. All rights reserved.   Quant Imaging Med Surg 2023;13(9):5902-5920 | https://dx.doi.org/10.21037/qims-23-46

Table 3 Classification results of fine-tuned and ensembled models for 2.5× magnification factor 

Architecture Acc Sp Pr Re F1 AUC MCC DOR

VGG16 0.9790 0.9759 0.9889 0.9804 0.9846 0.9782 0.9515 2,026

VGG19 0.9753 0.9603 0.9818 0.9822 0.9820 0.9712 0.9427 1,335

ResNet50 0.9727 0.9671 0.9848 0.9752 0.9800 0.9712 0.9371 1,158

ResNet101 0.9763 0.9663 0.9845 0.9809 0.9827 0.9736 0.9452 1,475

ResNet152 0.9773 0.9687 0.9856 0.9813 0.9835 0.9750 0.9476 1,624

DenseNet121 0.9524 0.9274 0.9667 0.9639 0.9653 0.9456 0.8897 341

DenseNet169 0.9572 0.9310 0.9685 0.9692 0.9688 0.9501 0.9006 424

DenseNet201 0.9590 0.9402 0.9725 0.9675 0.9700 0.9539 0.9050 469

MobileNet 0.9091 0.8404 0.9280 0.9406 0.9342 0.8905 0.7875 83

MobileNetV2 0.8682 0.9021 0.9501 0.8527 0.8988 0.8774 0.7201 53

EfficientNetB0 0.9787 0.9655 0.9842 0.9848 0.9845 0.9751 0.9506 1,810

EfficientNetB1 0.9806 0.9811 0.9913 0.9804 0.9858 0.9808 0.9554 2,600

EfficientNetB2 0.9767 0.9775 0.9896 0.9763 0.9829 0.9769 0.9466 1,796

EfficientNetB3 0.9806 0.9739 0.9880 0.9837 0.9858 0.9788 0.9551 2,251

EfficientNetB4 0.9766 0.9691 0.9858 0.9800 0.9829 0.9746 0.9459 1,538

Ensemble-MV3 0.9851 0.9824 0.9919 0.9864 0.9891 0.9844 0.9657 4,045

Ensemble-UA3 0.9850 0.9828 0.9921 0.9861 0.9891 0.9844 0.9654 4,030

Ensemble-WA3 0.9850 0.9795 0.9906 0.9875 0.9891 0.9835 0.9653 3,791

Ensemble-ST3 0.9845 0.9819 0.9917 0.9857 0.9887 0.9838 0.9642 3,748

Ensemble-MV5 0.9846 0.9811 0.9913 0.9862 0.9888 0.9837 0.9645 3,731

Ensemble-UA5 0.9814 0.9795 0.9906 0.9822 0.9864 0.9809 0.9570 2,643

Ensemble-WA5 0.9855 0.9819 0.9917 0.9872 0.9894 0.9846 0.9665 4,183

Ensemble-ST5 0.9850 0.9832 0.9922 0.9859 0.9891 0.9845 0.9654 4,074

The best results of the metrics are bolded; and 3 or 5 after the ensemble model abbreviation indicates top 3 or top 5 CNN models. Acc, 
accuracy; Sp, specificity; Pr, precision; Re, recall; F1, F1-score; AUC, area under the curve; MCC, Matthews correlation coefficient; DOR, 
diagnostic odds ratio; MV, majority voting; UA, unweighted averaging; WA, weighted averaging; ST, stacking; CNN, convolutional neural 
network.

which means it has better balance between Pr and Re than 
ResNet152. In contrast, ResNet152 had better Sp, Pr, and 
AUC, giving a better capability in distinguishing between 
normal and tumor classes. Meanwhile, ResNet50 with lesser 
layers did not surpass both ResNet101 and ResNet152 in 
any of the evaluated components, and its Sp did not meet 
the requirement as a reliable diagnosis system when the 
magnification factor was set to be very high (10×) or low 
(1.25×).

The DenseNet architecture had less satisfactory results 
compared to VGG and ResNet, where the accuracies were 

mostly below 96%. Overall, DenseNet201 was the best 
variant as it achieved the highest results in most of the 
evaluated criteria. But when it comes to images with lower 
magnification factor (1.25×), DenseNet169 had better 
performance than DenseNet201. Similar to the ResNet 
architecture, DenseNet variants with deeper layers achieved 
better classification performance in renal histopathological 
images. However, all of the variants, except DenseNet169 
for 1.25× magnification factor, yielded Sp less than 95%, 
which means DenseNet can hardly be a reliable diagnosis 
system with the setting in this study. This could be due 
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Table 4 Classification results of fine-tuned and ensembled models for 5× magnification factor 

Architecture Acc Sp Pr Re F1 AUC MCC DOR

VGG16 0.9723 0.9605 0.9818 0.9777 0.9798 0.9691 0.9360 1,068

VGG19 0.9673 0.9358 0.9709 0.9818 0.9763 0.9588 0.9238 784

ResNet50 0.9682 0.9610 0.9819 0.9715 0.9767 0.9662 0.9268 839

ResNet101 0.9726 0.9585 0.9809 0.9790 0.9800 0.9688 0.9365 1,078

ResNet152 0.9717 0.9654 0.9840 0.9746 0.9793 0.9700 0.9348 1,070

DenseNet121 0.9521 0.9119 0.9600 0.9706 0.9653 0.9412 0.8883 341

DenseNet169 0.9587 0.9366 0.9709 0.9689 0.9699 0.9527 0.9044 460

DenseNet201 0.9603 0.9402 0.9725 0.9696 0.9710 0.9549 0.9082 501

MobileNet 0.9352 0.8846 0.9477 0.9584 0.9530 0.9215 0.8487 176

MobileNetV2 0.8844 0.6827 0.8704 0.9769 0.9206 0.8298 0.7272 91

EfficientNetB0 0.9783 0.9732 0.9876 0.9806 0.9841 0.9769 0.9499 1,837

EfficientNetB1 0.9802 0.9774 0.9895 0.9816 0.9855 0.9795 0.9545 2,300

EfficientNetB2 0.9757 0.9661 0.9844 0.9801 0.9822 0.9731 0.9437 1,400

EfficientNetB3 0.9752 0.9649 0.9838 0.9800 0.9819 0.9724 0.9427 1,344

EfficientNetB4 0.9756 0.9614 0.9823 0.9821 0.9822 0.9718 0.9434 1,368

Ensemble-MV3 0.9820 0.9781 0.9899 0.9838 0.9869 0.9810 0.9585 2,716

Ensemble-UA3 0.9821 0.9779 0.9898 0.9840 0.9869 0.9809 0.9586 2,722

Ensemble-WA3 0.9825 0.9766 0.9892 0.9852 0.9872 0.9809 0.9595 2,778

Ensemble-ST3 0.9820 0.9780 0.9898 0.9839 0.9869 0.9809 0.9585 2,711

Ensemble-MV5 0.9826 0.9769 0.9894 0.9852 0.9873 0.9810 0.9597 2,814

Ensemble-UA5 0.9799 0.9734 0.9877 0.9828 0.9853 0.9781 0.9535 2,097

Ensemble-WA5 0.9827 0.9775 0.9896 0.9851 0.9873 0.9813 0.9600 2,863

Ensemble-ST5 0.9823 0.9768 0.9893 0.9848 0.9871 0.9808 0.9591 2,734

The best results of the metrics are bolded; and 3 or 5 after the ensemble model abbreviation indicates top 3 or top 5 CNN models. Acc, 
accuracy; Sp, specificity; Pr, precision; Re, recall; F1, F1-score; AUC, area under the curve; MCC, Matthews correlation coefficient; DOR, 
diagnostic odds ratio; MV, majority voting; UA, unweighted averaging; WA, weighted averaging; ST, stacking; CNN, convolutional neural 
network.

to the easily-overfitting characteristic of the DenseNet, 
leading a high FP rate in the imbalanced dataset.

The MobileNet architecture had the least favorable 
results among the selected CNN architectures, where both 
of the MobileNet variants had most of the performance 
metrics scored below the average. Moreover, none of the 
variants fulfilled the requirements as a reliable diagnosis 
system in any of the magnification factors. Since there 
is an incremental trend in performances when the 
magnification factor increases, and number of images 
generated are dependent on the magnification factor, the 

poor performances could be due to the insufficient trainable 
images for MobileNets, which limited the training quality 
of MobileNet models with the settings in this study. It was 
notable that MobileNet outperformed MobileNetV2 in 
every component of the performance metrics, which could 
be due to its parameter count greater than MobileNetV2. 
Considering the consequences of false classification in renal 
histopathology images, which could reduce cancer patient 
survival rate, MobileNet models with poor performances in 
the setting are less desirable.

The EfficientNet architecture was the best out of the five 



Quantitative Imaging in Medicine and Surgery, Vol 13, No 9 September 2023 5913

© Quantitative Imaging in Medicine and Surgery. All rights reserved.   Quant Imaging Med Surg 2023;13(9):5902-5920 | https://dx.doi.org/10.21037/qims-23-46

selected architectures as it yielded the most models with 
the highest Acc in all magnification factors. EfficientNetB1 
and B2 showed most outstanding performances in various 
evaluated metrics; hence, small to moderate compound 
scaling of parameters in EfficientNet was more suitable for 
this study setting. Interestingly, none one of the selected 
EfficientNet models scored below 90% for any of the 
performance metrics, and only one model (EfficientNetB4) 
from 1.25× magnification factor failed to fulfil the Sp criteria 
as a reliable diagnosis system. Therefore, EfficientNet was 
considered the best candidate for renal histopathological 

image classification.

Diversity analysis of CNN architectures

The diversity of the CNN architectures is evaluated by 
analyzing the variations of their detection responses. 
Three CNN models from different architectures: VGG16, 
ResNet101, and EfficientNetB0, were selected as the 
candidates for Grad-CAM heatmap generation on normal 
and tumor classes with four magnification factors. Figure 5 
shows the original image patches and the correctly classified 

Table 5 Classification results of fine-tuned and ensembled models for 10× magnification factor

Architecture Acc Sp Pr Re F1 AUC MCC DOR

VGG16 0.9671 0.9428 0.9737 0.9783 0.9760 0.9605 0.9236 742

VGG19 0.9637 0.9342 0.9699 0.9773 0.9735 0.9558 0.9157 611

ResNet50 0.9690 0.9485 0.9763 0.9785 0.9774 0.9635 0.9282 837

ResNet101 0.9701 0.9534 0.9785 0.9779 0.9782 0.9657 0.9310 905

ResNet152 0.9684 0.9400 0.9725 0.9816 0.9770 0.9608 0.9267 834

DenseNet121 0.9526 0.9122 0.9599 0.9712 0.9656 0.9417 0.8897 351

DenseNet169 0.9522 0.9189 0.9627 0.9676 0.9652 0.9432 0.8891 338

DenseNet201 0.9590 0.9192 0.9632 0.9774 0.9702 0.9483 0.9046 491

MobileNet 0.9215 0.8501 0.9323 0.9544 0.9433 0.9022 0.8164 119

MobileNetV2 0.8717 0.7628 0.8937 0.9220 0.9077 0.8424 0.6985 38

EfficientNetB0 0.9699 0.9571 0.9801 0.9759 0.9780 0.9665 0.9307 902

EfficientNetB1 0.9688 0.9483 0.9762 0.9783 0.9772 0.9633 0.9278 827

EfficientNetB2 0.9736 0.9590 0.9810 0.9804 0.9807 0.9697 0.9390 1,170

EfficientNetB3 0.9677 0.9518 0.9777 0.9750 0.9763 0.9634 0.9253 770

EfficientNetB4 0.9713 0.9528 0.9782 0.9798 0.9790 0.9663 0.9335 980

Ensemble-MV3 0.9764 0.9618 0.9824 0.9831 0.9827 0.9724 0.9453 1,464

Ensemble-UA3 0.9767 0.9625 0.9827 0.9833 0.9830 0.9729 0.9461 1,506

Ensemble-WA3 0.9769 0.9608 0.9819 0.9844 0.9831 0.9726 0.9465 1,540

Ensemble-ST3 0.9765 0.9621 0.9825 0.9832 0.9828 0.9726 0.9456 1,483

Ensemble-MV5 0.9769 0.9631 0.9830 0.9833 0.9831 0.9732 0.9466 1,540

Ensemble-UA5 0.9727 0.9566 0.9800 0.9801 0.9800 0.9683 0.9368 1,085

Ensemble-WA5 0.9777 0.9649 0.9838 0.9836 0.9837 0.9742 0.9483 1,645

Ensemble-ST5 0.9773 0.9643 0.9835 0.9833 0.9834 0.9738 0.9476 1,596

The best results of the metrics are bolded; and 3 or 5 after the ensemble model abbreviation indicates top 3 or top 5 CNN models. Acc, 
accuracy; Sp, specificity; Pr, precision; Re, recall; F1, F1-score; AUC, area under the curve; MCC, Matthews correlation coefficient; DOR, 
diagnostic odds ratio; MV, majority voting; UA, unweighted averaging; WA, weighted averaging; ST, stacking; CNN, convolutional neural 
network.
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Figure 5 Three sample individual CNNs from different architectures response towards H&E stained normal and tumor histopathological 
image patches with different magnification factors. CNN, convolutional neural network; H&E, hematoxylin and eosin.

activated heatmaps produced by the three CNN models. 
The fluctuation in the heatmap intensity value correlates 
to the degree of attention given by the model on the 
highlighted locations for making decision. For instance, 
the region with warmer color (either red or near-red color) 
contributes the most attention by the model for the class 
prediction.

The activated areas of VGG16 and EfficientNetB0 are 
highly similar for normal tissues in various magnification 
factors, except that EfficientNetB0 tends to localize 
relatively smaller regions for decision making. Meanwhile, 
the heatmaps of ResNet101 are highly activated over 
the entire normal tissue image compared to VGG16 
and EfficientNetB0, and this could be difficult for the 
pathologists to interpret the images as normal tissues due 
to the great coverage of high activated areas. For tumor 
tissues, there are no significant similarity in activated 
regions for three of the models. For instance, for tumor 
tissue with 1.25× magnification factor in Figure 5, VGG16 
only highlighted the upper right region of the image while 
ResNet101 and EfficientNetB0 have additional highlighted 

areas at bottom and upper left, respectively. However, these 
three of the models still managed to recognize these regions 
as tumor tissues, which demonstrated the models’ logic and 
capability in distinguishing normal and tumor tissues. The 
high variation in detection response between architectures 
is favorable especially in ensemble learning, where different 
areas will be considered for more robust and accurate 
predictions.

Performance analysis of ensembled models

Several CNNs based heterogeneous ensemble techniques 
had been deployed to classify the renal histopathological 
images effectively. Majority voting was the first ensemble 
technique tested in this study, and it shows a relatively 
promising results especially with low magnification factor 
(1.25×) or small amount of image patches. Increasing the 
number of individual CNN models to five is possible to 
improve the Acc at most up to 0.41% (1.25× magnification 
factor case) compared to majority voting with three CNN 
models. Surprisingly, there was no significant robustness 
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reduction observed when all base learners were coming 
from the same CNN architecture. For instance, when 
EfficientNetB0 to B4 with similar preferences were selected 
for 5× magnification factor case, the majority voting 
approach still managed to yield the second highest Acc, 
followed by the weighted averaging approach. However, the 
majority voting approach did not perform as good as the 
other ensemble approaches when the magnification factors 
increased.

For unweighted averaging ensemble method, the 
performance was stable along the changes of magnification 
factors, and it was highly dependent on the number 
of base CNN models involved. Ensemble-UA3 model 
acquired the second highest Acc among the three-CNNs 
ensemble techniques in all magnification factors. But when 
the number of base CNN models increased to five, its 
performance dropped drastically for any of the scenario, 
and even yielded a lower Acc than the Ensemble-UA3 
model. This is because the first-best and the fifth-best 
selected CNN models tend to have a great difference in 
performance. With that, the favorable performance from 
the first-best CNN model would be compromised, resulting 
in a poorer result in overall.

Meanwhile, weighted averaging approach can overcome 
the limitations for both majority voting and unweighted 
averaging approaches. Unlike majority voting, weighted 
averaging was more robust, and it could maintain its good 
performances as the magnification factor or number of 
images increased. Apart from the 1.25× magnification factor 
setting, in which the Ensemble-WA5 acquired the second-
best results, the Ensemble-WA5 model outperformed the 
other ensembled models in the other three magnification 
factor settings. The customizable weights enable the 
weighted averaging approach to adjust the weight 

coefficients for a particular CNN model, depending to its 
performance, until the best result can be obtained. The 
weightage used by the weighted averaging ensemble method 
for each magnification factor is tabulated in Table 6. The only 
drawback of weighted averaging ensemble approach is it 
requires supervision and manual adjustment on the weights 
for better results. Considering its reliability as a diagnosis 
system, three-CNN based weighted averaging ensembled 
model in 1.25× magnification factor was the only ensembled 
model which slightly failed the test as a reliable diagnosis 
system, with a 0.03% Sp scored below the requirements.

Stacking ensemble technique is the only non-statistical 
based ensemble approach tested in this study, and it resulted 
a moderate performance among the selected ensemble 
approaches. Although its improvement in Acc when 
increased the base CNN models from three to five was not 
always the greatest, its improvement was consistent with the 
changes of magnification factors. Still, it did not outperform 
either majority voting or weighted averaging methods, 
probably because it involved two levels of learning process, 
and the second learning process with validation set was only 
20% of the entire dataset, making the meta-learner did not 
have sufficient training in performing ensemble learning 
with the selected CNN models. K-fold cross validation 
approach may be more favorable for stacking technique 
than the hold-out validation approach used in this study as 
it can train the meta-classifier with more different images.

Comparative analysis of ensembled models with the best 
CNN models

The comparison of the proposed ensembled models with 
individual CNN models in various magnification factors 
shows that the ensembled models mostly outperformed the 

Table 6 Top-5 best performing models with their weightage used in weighted averaging ensemble learning method

Ranking
Magnification factor

1.25× 2.5× 5× 10×

1st EfficientNetB2 (1.4) EfficientNetB1 (1.4) EfficientNetB1 (1.4) EfficientNetB2 (1.4)

2nd ResNet101 (1.2) EfficientNetB3 (1.1) EfficientNetB0 (0.9) EfficientNetB4 (0.9)

3rd EfficientNetB0 (1.2) VGG16 (1.1) EfficientNetB2 (0.9) ResNet101 (0.9)

4th EfficientNetB1 (1.05) EfficientNetB0 (0.85) EfficientNetB4 (0.85) EfficientNetB0 (0.85)

5th DenseNet169 (1.05) ResNet152 (0.85) EfficientNetB5 (0.85) ResNet50 (0.85)

Three-model based weighted averaging method used rank 1 to 3 models while five-model based weighted averaging method used rank 1 
to 5 models, with their corresponding weightages in the parenthesis.
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individual CNN models. Except for Ensemble-UA5 model, 
all ensemble methods acquired a better Acc than the best 
performing individual CNN model in every magnification 
factors as shown in Figure 6. Therefore, the Ensemble-UA5 
model would not be included for the following discussions. 
By comparing with the best individual CNN model, the 
Ensemble-WA5 model shows the best Acc improvement 
in overall magnification factor settings by at most 0.83%. 
On average, ensembled models with three-CNN models 
resulted in a 0.35% improvement in Acc, while models with 
five-CNN models resulted in a 0.46% Acc improvement.

However, ensembled models did not always yield better 
results than the best individual CNN model in all metrics. 
Instead, a lower Sp and Pr were possible to happen as a 
trade-off for the high Re in the ensembled models. For 
instance, even though the Ensemble-WA3 model at 1.25× 
magnification factor resulted a high improvement of 1.67% 
in Re, it had a drop of 2.11% and 0.93% in Sp and Pr, 
respectively. In other words, the ensembled model would 
rather have more FPs than having the occurrence of FNs. 
As the magnification factors increases, the relationship 
between these three evaluation metrics (Re, Sp, and Pr) is 
more stable.

For an imbalanced dataset, the F1 of an automated 
diagnosis system is considerably important to emphasis 
the harmonic mean of Pr and Re without any biases. The 
investigated ensembled models show a 0.13% to 0.73% 
improvement in F1 as compared to the maximum F1 
reported by the individual CNN models. In other words, 
Pr and Re are balanced to each other instead of improved at 
the expense of the other. Likewise, the ensembled models 
significantly improved another measure for imbalanced 

dataset, MCC, as compared to the CNN models. The 
improvement of 0.40% to 2.23% in MCC shows that the 
ensembled models are able to predict for better results in all 
the entries of the confusion matrix categories.

Performance comparison with the state-of-the-art results

Table 7 compares the best proposed ensembled model 
from different magnification factor settings with the 
techniques reported in the literature. The results suggest 
that the proposed Ensemble-WA5 model shows significant 
improvement in almost all evaluation metrics compared 
to the existing literature. Comparing to the work by 
Azuaje et al. (44), the Acc, Sp, F1, and AUC of the best 
proposed ensembled model are higher by 4%, 5%, 7%, 
and 6% for the best case, respectively. The Re of our 
ensembled model, on the other hand, is slightly inferior 
by 1% to 2%. Meanwhile, the best proposed ensembled 
model outperformed the EfficientNetB0 from Koo et al. (45)  
in every evaluated metric, especially in Sp, where the 
improvement is 4% when compared with the same 
magnification factor of 5×. Overall, our suggested technique 
outperformed the state-of-the-art results and had superior 
classification results in four out of the five evaluated metrics.

Discussion

The existence of renal cancer has a detrimental impact on 
patients’ quality of life. Additionally, renal cancer patients 
diagnosed at late stages also have to endure a substantial 
economic burden for a very low survival rate. Early 
detection of renal cancer could aid in the development 
of an appropriate treatment plan, which leads to a higher 
survival rate. The emergence of deep machine learning can 
assist and facilitate the pathologists in effectively analyzing 
and classifying the cancer biopsies. In this work, we have 
demonstrated multiple deep machine learning models 
and ensemble learning techniques can discriminate the 
renal tissues into normal and tumor classes effectively and 
efficiently.

The proposed pipeline for renal cancer classification first 
applied segmentation and image patching with different 
downsampling factors to generate histopathological images 
with a smaller dimension. Five different pre-trained CNN 
architectures with ImageNet pre-trained weights are fine-
tuned, and the diversity between architectures has been 
demonstrated with Grad-CAM. EfficientNet has resulted 
the best overall performance in all the evaluated metrics out 

Figure 6 Comparison in accuracy between ensembled models 
and the best CNN model for each tested magnification factor. 
CNN, convolutional neural network; MV, majority voting; UA, 
unweighted averaging; WA, weighted averaging; ST, stacking.

99.00% 

98.50% 

98.00% 

97.50% 

97.00%
1.25× 2.5× 5× 10×

A
cc

ur
ac

y

Ensemble-MV3 

Ensemble-UA3 

Ensemble-WA3 

Ensemble-ST3 

Ensemble-MV5 

Ensemble-UA5 

Ensemble-WA5

Ensemble-ST5 

Best CNN model

Magnification factor



Quantitative Imaging in Medicine and Surgery, Vol 13, No 9 September 2023 5917

© Quantitative Imaging in Medicine and Surgery. All rights reserved.   Quant Imaging Med Surg 2023;13(9):5902-5920 | https://dx.doi.org/10.21037/qims-23-46

of the five architectures. Although EfficientNet managed 
to obtain a relatively high score in most of the evaluated 
metrics, the Sp score is consistently the lowest. This might 
be owing to the dataset’s imbalanced distribution, since the 
tumor class consists of roughly 67% of the dataset, resulting 
in an overfitting classification to the majority class. In other 
words, because of the imbalanced nature of the dataset, 
every CNN model, including the best performing model 
from EfficientNet, may tend to predict a non-tumor renal 
image as tumorous.

Instead of just having a single CNN model for classifying 
renal cancer as in the literature, we have employed four 
different ensembled models approaches with different 
number of base learners. Weighted averaging with five-
CNN model (Ensemble-WA5) is the best performing 
ensemble approach in general. It shows more improvement 
towards the best performing individual CNN models 
in most of the evaluated metrics, and it is more robust 
towards the changes in magnification factors. Moreover, 
the improvement in Acc, Sp, F1, and AUC compared to 
the state-of-the-art results suggests that our best-proposed 
ensemble technique performs better on the same renal 
histopathological dataset. Although we have inferior Re 
than the benchmark, the best proposed ensembled model 
managed to substantially increase the score in other four 
compared metrics and meet the requirement as a reliable 
diagnosis system with just 1% sacrificial in Re.

The feasibility and efficiency of utilizing deep machine 
learning and ensemble learning to classify the non-
annotated renal histopathological images have been 
demonstrated. The use of slide-level label is suitable 
for classification of histopathological images in various 

magnification factors. Moreover, the developed models 
are robust against the changes in magnification factors. 
With this implemented in the actual clinical site, the 
pathologists can get the clinical diagnoses for different 
magnification factors effectively without performing 
annotation on the histopathological images; thus, they can 
spend more time on treatment planning and making better 
decisions. However, the designed pipeline in this study 
still requires minimal supervision and manual adjustments, 
such as removing undesirable generated image patches 
and adjusting weight coefficients for weighted averaging 
ensemble model. Furthermore, the computational costs 
are higher due to multiple CNN models are required to 
perform the ensemble learning to achieve the reported 
state-of-the-art performance. In the future, we intend 
to develop a fully automated histopathological image 
classification pipeline which is more feasible and suitable 
for real-life clinical practice. This can be done by having 
artifacts detection algorithms for masking or auto-removal 
of the artefacts before converting the WSI into patches and 
implement feedforward neural network to learn to assign 
the most suitable weight coefficient to each model’s output 
based on how well that model’s output matches the true 
label. Parallel computing will be considered in the future 
instead of sequential computing approach as has been done 
in this work, to accelerate the training, validating, and 
testing process. This is especially important when more 
base models are required to perform the proposed ensemble 
learning model. With the success in this study, we will also 
test the proposed work in other renal histopathological 
image datasets in the future to assess the robustness, Acc, 
and reliability of our proposed method.

Table 7 Model comparison on the CPTAC-CCRCC dataset with the best result proposed ensemble model in this study and the literature

Model Magnification factor Acc Sp Re F1 AUC

VGG16 (44) – 0.95 0.93 1.00 0.92 0.92

EfficientNetB0 (45) 5× 0.97 0.94 0.98 0.98 0.96

Proposed Ensemble-WA5 1.25× 0.98 0.97 0.99 0.99 0.98

2.5× 0.99 0.98 0.99 0.99 0.98

5× 0.98 0.98 0.99 0.99 0.98

10× 0.98 0.96 0.98 0.98 0.97

Since the magnification factor of the literature was not reported, four magnification factors from this study are compared. The results are 
reported in two decimal places for fair comparison and best results of the metrics are bolded. CPTAC-CCRCC, Clinical Proteomic Tumor 
Analysis Consortium Clear Cell Renal Cell Carcinoma; WA, weighted averaging; Acc, accuracy; Sp, specificity; Re, recall; F1, F1-score; 
AUC, area under the curve.
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Conclusions

In the present study, we have developed deep CNN based 
heterogeneous ensemble models to classify the renal 
histopathology images into normal and tumor classes 
effectively. In this regard, multiple CNN models from five 
selected architectures were fine-tuned and trained with 
several magnification factors. The selected architectures 
showed sufficient diversity and Acc in discriminating tumor 
tissues. EfficientNet was found to be the best architecture 
as most of its variants were able to achieve an outstanding 
classification performance. The classification performance 
of the best-proposed ensembled model: Ensemble-WA5, 
had the state-of-the-art results in Acc (99%), Sp (98%), 
F1 (99%) and AUC (98%) but slightly inferior Re (99%) 
when compared to the published literature. It fulfilled 
the requirement of a reliable diagnosis system and the 
results showed that it was feasible to use deep machine 
learning algorithms to classify non-ROI-annotated renal 
histopathological images with different magnification 
factors to assist pathologists in manual inspection and 
make pathology diagnosis more effective and efficient. 
In the future, this work can be extended to automate the 
histopathology analysis workflow in clinical sites to assist 
pathologists in the manual inspection and making the 
diagnosis process more efficient, and less misdetection, 
misdiagnosis and inter-pathologist variation.
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