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Background: The use of an artificial intelligence (AI)-based diagnostic system can significantly aid in 
analyzing the histogram of pulmonary nodules. The aim of our study was to evaluate the value of computed 
tomography (CT) histogram indicators analyzed by AI in predicting the tumor invasiveness of ground-
glass nodules (GGNs) and to determine the added value of contrast-enhanced CT (CECT) compared with 
nonenhanced CT (NECT) in this prediction.
Methods: This study enrolled patients with persistent GGNs who underwent preoperative NECT and 
CECT scanning. AI-based histogram analysis was performed for pathologically confirmed GGNs, which 
was followed by screening invasiveness-related factors via univariable analysis. Multivariable logistic models 
were developed based on candidate CT histogram indicators measured on either NECT or CECT. Receiver 
operating characteristic (ROC) curve and precision-recall (PR) curve were used to evaluate the models’ 
performance.
Results: A total of 116 patients comprising 121 GGNs were included and divided into the precancerous 
lesion and adenocarcinoma groups based on invasiveness. In the AI-based histogram analysis, the mean 
CT value [NECT: odds ratio (OR) =1.009; 95% confidence interval (CI): 1.004–1.013; P<0.001] and 
solid component volume (NECT: OR =1.005; 95% CI: 1.000–1.010; P=0.032) were associated with the 
adenocarcinoma and used for multivariable logistic modeling. The area under ROC curve (AUC) and PR 
curve (AUPR) were not significantly different between the NECT model (AUC =0.765, 95% CI: 0.679–0.837; 
AUPR =0.907, 95% CI: 0.825–0.953) and the optimal CECT model (delayed phase: AUC =0.772, 95% 
CI: 0.687–0.843; AUPR =0.895, 95% CI: 0.812–0.944). No significantly different metrics were observed 
between the NECT and CECT models (precision: 0.707 vs. 0.742; P=0.616).
Conclusions: The AI diagnostic system can help in the diagnosis of GGNs. The system displayed decent 
performance in GGN detection and alert to malignancy. Mean CT value and solid component volume were 
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Introduction

Ground-glass nodules (GGNs) are defined as dense and hazy 
lung lesions that do not obscure the bronchial structures or 
pulmonary vascular structures on computed tomography 
(CT) images (1). Lung adenocarcinoma (LUAD) is a 
common type of lung cancer, which could present as GGNs 
on CT scans (2). Preinvasive lesions, such as atypical 
adenomatous hyperplasia (AAH) and adenocarcinoma in 
situ (AIS), and invasive lesions, such as minimally invasive 
adenocarcinoma (MIA) and invasive adenocarcinoma (IAC), 
represent different stages of LUAD (3,4). Notably, AAH, 
AIS, MIA, and IAC can be detected as varying degrees of 
ground glass opacities on CT scans (5,6). Many studies 
indicate that the size and mass of the nodules are also 
significant factors in differentiating precancerous lesions 
(PLs) and those of IAC (7-9). Furthermore, the early 
detection and diagnosis of LUAD presenting as GGNs can 
improve the survival of patients.

With the widespread application of CT in lung disease 
screening, the detection rate of GGNs has gradually 
increased (10). Moreover, the identification of the 
qualitative and quantitative features of GGNs on chest 
CT has allowed for the evaluation of tumor invasiveness in 
clinical practice (11). Previous studies have suggested that 
different texture features from each CT image could predict 
whether lesions are preinvasive or invasive (7,12). However, 
the accuracy of diagnosis based on nonenhanced CT 
(NECT) images is limited. Recently, contrast-enhanced CT 
(CECT) has been reported to provide enhanced diagnosis 
of malignant tumors such as lung and brain tumors and 
liver cancer. Yang et al. showed that quantitative parameters 
on iodine-enhanced images of dual-source DECT could 
accurately and reliably differentiate adenocarcinoma lesions 
from PLs (13). However, the value of CECT images may 
vary due to the breath holding of patients and the local 
volume effects of image acquisition (14,15), and whether 
enhanced CT is sufficiently sensitive to distinguish PLs 
from adenocarcinoma lesions remains controversial.

For clinicians and radiologists, manually interpreting 
hundreds of CT images of GGNs constitutes highly 
burdensome workload.  In recent  years ,  art i f ic ia l 
intelligence (AI) systems have been applied in the medical 
imaging field for variety of purposes, such as in assisting 
in the detection of pulmonary nodules (16,17), in the 
preoperative planning of lung cancer resection (18),  
in the quantitative assessment of acute pulmonary 
thromboembolism (19), and in the triage of patients with 
coronavirus disease 2019 (COVID-19) (20,21). It has been 
reported that AI can automatically and quantitatively analyze 
the characteristics of pulmonary nodules on CT images, 
which may include maximum CT value, minimum CT 
value, mean CT value, and solid component volume (22).  
Nevertheless, only a few studies have scrutinized the 
applicability of AI-measured CT parameters in screening 
LUAD and differentiating the its pathological subtypes 
(23,24). A recently published article explored the role of 
AI-based histogram analyses on plain chest CT images in 
predicting the tumor invasiveness of lung adenocarcinoma 
manifesting as part-solid nodules (24). Yet, the validation of 
AI system performance and the benefit of CECT scans for 
the differentiation of invasiveness among LUAD presenting 
as GGNs is lacking. Therefore, this study aimed to evaluate 
the value of an AI diagnostic system in screening LUAD 
and the capacity of a multivariable logistic regression 
model based on automatically AI-measured histogram CT 
parameters to predict the tumor invasiveness of GGNs. 
The added value of CECT scans compared with NECT 
scans in the predicting the tumor invasiveness of GGNs was 
also examined. We present this article in accordance with 
the TRIPOD reporting checklist (available at https://qims.
amegroups.com/article/view/10.21037/qims-23-31/rc).

Methods

Study design and participants

This study employed a retrospective, cross-sectional design 

independent predictors of tumor invasiveness. CECT provided no additional improvement in diagnostic 
performance as compared with NECT.
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based on routine care data. In addition to paired NECT 
and CECT images, demographic and clinical characteristics 
of patients were collected, including gender, age, and 
pathological examination results. Given the requirement of 
data categories and the availability of existing data, patients 
with persistent GGNs (those that did not disappear after 
3 months of follow-up) who visited the Department of 
Radiology, General Hospital of Ningxia Medical University 
between January 2018 and December 2020 were enrolled 
based on following inclusion and exclusion criteria 
described below. This study was conducted in accordance 
with the Declaration of Helsinki (as revised in 2013) and 
was reviewed and approved by the Ethics Committee of 
General Hospital of Ningxia Medical University (No. 
KYLL-2021-535). Informed consent was waived due to the 
retrospective nature of the study. 

The inclusion criteria were the following: (I) patients 
with persistent GGNs confirmed by surgery and pathology; 
(II) nodules appearing as GGNs on the lung window setting 
(width 1,500 HU; level −700 HU) with an image thickness 
≤1.25 mm, and (III) GGNs not shrinking or disappearing 
during 3 months of follow-up. Meanwhile, the exclusion 
criteria were as follows: (I) incomplete pathological results, 
(II) patients without preoperative paired NECT and CECT 
scans, (III) patients with severe organ dysfunction, (IV) 

patients with radiotherapy or chemotherapy, (V) patients 
with lung metastases, (VI) poor quality images with 
respiratory motion artifacts, and (VII) patients with cavities 
in the nodules. The flowchart in Figure 1 displays the details 
of the patient enrollment.

Ultimately, a total of 116 patients with persistent GGNs 
who underwent thoracic surgeries were enrolled in this 
study, including 33 males and 83 females. The age range was 
31–78 years, and the mean age was 57.17±0.92 years. Since 
5 patients were diagnosed with 2 LUAD GGNs, 121 GGNs 
were analyzed in this study, including 32 pure GGNs and 
89 subsolid nodules. Postsurgery pathological examination 
results were collected from the electronic medical record of 
each enrolled patient. According to the 2021 World Health 
Organization (WHO) classification of thoracic tumors (25), 
34 lesions with a pathological diagnosis of AAH or AIS were 
categorized as precursor glandular lesions and placed into a 
PL group (noninvasive lesions), while 87 lesions diagnosed 
as MIA or IAC were placed into an adenocarcinoma group 
(invasive lesions). Detailed clinical characteristics of patients 
in the 2 groups are shown in Table 1.

 AI system-based analyses were performed on the 
collected NECT and CECT scans from the enrolled 
patients and was followed by target lesion identification. 
Upon validation of the AI system performance, histogram 

Patients with GGNs who underwent NECT and 
CECT from January 2018 and December 2020

Inclusion criteria
• Patients with persistent GGNs confirmed by surgery and pathology
• GGNs did not become small or disappear over 3 months follow-up

n=326

Exclusion criteria
• Incomplete pathological results (n=42)
• Patients without preoperative paired NECT and CECT scans (n=56)
• Patients with radiotherapy or chemotherapy (n=35)
• Patients with lung metastases (n=37)
• Poor quality image with respiratory motion artifacts (n=35)

n=121

AAH/AIS 
n=34

MIA/IAC 
n=87

Figure 1 Flowchart of patient enrollment. GGN, ground-glass nodule; NECT, nonenhanced computed tomography; CECT, contrast-
enhanced computed tomography; AAH, atypical adenomatous hyperplasia; AIS, adenocarcinoma in situ; MIA, minimally invasive 
adenocarcinoma; IAC, invasive adenocarcinoma.
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Table 1 Clinical characteristics and CT features in different pathological types

Characteristics PL (n=34) Adenocarcinoma lesion (n=87) P value

Gender 0.032

Male 10 (31.25) 23 (27.4)

Female 22 (68.75) 61 (72.6)

Age, years 56.56±12.16 57.40±9.34 0.994

Nonenhanced CT

Max CT value (HU) −175.82±170.64 −3.50 (−108, 61) <0.001

Min CT value (HU) −793.88±53.68 −752.50 (−792, −673) <0.001

Mean CT value (HU) −627.67±94.28 −529 (−613, −389) 0.001

SCV (mm3) 0 (0, 31.51) 33.55 (0.72, 303.52) 0.001

Arterial-phase enhanced CT

Max CT value (HU) −71.41±233.22 66.48±188.43 0.49

Min CT value (HU) −772.79±57.24 −730 (−783, −642) 0.001

Mean CT value (HU) −604.44±97.03 −505 (−598, −364) 0.001

SCV (mm3) 4.07 (0, 47.65) 65.60 (9.02, 323.64) 0.001

Venous-phase enhanced CT

Max CT value (HU) −90.76±213.01 84.50 (−24, 173) 0.001

Min CT value (HU) −790.50 (−810, −735) −715.50 (−775, −610) 0.001

Mean CT value (HU) −598.58±103.11 −511 (−587, −341) 0.001

SCV (mm3) 2.09 (0, 55.36) 64.18 (9.67, 376.92) 0.001

Delayed-phase enhanced CT

Max CT value (HU) −100.91±210.20 56 (−38, 135) 0.002

Min CT value (HU) −776.14±58.54 −733 (−788, −627) 0.001

Mean CT value (HU) −620.50 (−681, −542.25) −496.50 (−597, −344) 0.001

SCV (mm3) 1.25 (0, 42.86) 81.08 (6.79, 379.85) 0.001

Continuous data with a normal distribution are presented as mean ± SD; data with skewed distribution are presented as median (P25, 
P75). CT, computed tomography; GGN, ground-glass nodule; PL, precancerous lesion; SCV, solid component volume; HU, Hounsfield 
unit; SD, standard deviation. 

features were analyzed and used to construct a model for 
invasiveness differentiation among the LUAD GGNs. The 
details of this process are shown in Figure 2.

Chest CT acquisition

For chest CT acquisition, the patient was placed in a supine 
position with the head advanced, and a whole lung scan was 
completed after 1 inhalation and breath hold. The scanning 
range was from the thoracic entrance to the bottom of 
the lung. The protocol parameters were as follows: tube 

voltage, 120 kVp; tube current, 200 mA; thickness, 8 mm; 
pitch, 1.375; field of view, 387 mm; and acquisition matrix, 
512×512. After the nonenhanced scan, contrast media 
(300 mgI/mL) was injected through the cubital vein for an 
enhanced scan at a flow rate of 3.0 mL/s with a flow volume 
of 60–80 mL. After contrast agent injection, 100 mL of 
normal saline was injected. Three scanning phases were 
performed at 30 s (arterial phase), 60 s (venous phase), 
and 90 s (delayed phase), respectively. After the scans, the 
data were reconstructed by using the standard algorithm 
(B31) with a layer thickness of 1.0 mm. Image observation 
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conditions included a lung window (width 2,000 HU, 
window position −500 HU) and a mediastinal window (width 
400 HU, window level 45 HU), with appropriate window 
adjustments being performed as necessary.

Detection, auxiliary diagnosis, and histogram analysis of 
GGNs with the AI diagnostic system

A commercial AI system, InferRead CT Lung (Infervision 
Medical Technology Co., Ltd., Beijing, China), was used 
to automatically perform nodule detection (16), nodule 
malignancy prediction (17), nodule segmentation(17), 
and subsequent histogram analyses. In particular, all 
thin-layer original axial CT images were first sent to the 
server of the deep learning (DL)-based pulmonary nodule 
auxiliary detection system for automatic detection of all 
pulmonary nodules. Meanwhile, the detected nodules were 
automatically precisely segmented for measurement tasks. 
Subsequently, a DL algorithm trained on pathologically 
confirmed lesions predicted the malignancy probability 
of a single nodule based on the nodule’s features and its 
surrounding microenvironment (detection bounding 
box) and output the malignancy probability in terms 
of percentage. According to malignancy, GGNs were 
categorized into low-risk, intermediate-risk, and high-

risk groups based on the thresholds of 50% and 70% 
probabilities. To ensure an accurate selection of targeted 
GGNs with pathological results from all those detected 
by the AI system on CT images, a radiologist with 5 years 
of experience and a senior radiologist with 10 years of 
experience reviewed the detected pulmonary nodules 
independently; targeted GGNs were then manually selected 
according to ‘the construction of pulmonary nodules data 
set of chest CT and the consensus of experts on quality 
control’ (26), and the pathological examination results. 
Any disagreements between them, especially concerning 
the nodule’s attenuation, were settled through discussion. 
Of note, once the AI diagnostic system detected the 
pulmonary nodules, histogram analysis was automatically 
performed based on precise segmentation contours of 
the nodules being examined. In particular, the maximum 
CT value, minimum CT value, mean CT value, nonsolid 
component volume, solid component volume, kurtosis, and 
skewness of the interested GGNs in each scanning period 
were automatically calculated and recorded for analysis 
(Figure 3). For the solid component volume, the algorithm 
differentiated solid components and nonsolid components 
with a threshold of –145 HU, and voxels with a density 
over −145 HU were regarded as the solid components. The 
volume was calculated using the voxel-counting method, 

Figure 2 Diagram of the study design. AI, artificial intelligence; NECT, nonenhanced computed tomography; CECT, contrast-enhanced 
computed tomography; PL, precancerous lesion; ADC, adenocarcinoma; GGN, ground-glass nodule.

Patient’ enrollment 
• NECT and CECT scans 
• Clinical information
• Pathological results

AI-based analysis 
• NECT scans
• CECT scans

Radiologist 1 Radiologist 2

NECT CECT

1. Validation of the AI system

2. Histogram analysis 
on NECT

3. Histogram analysis 
on CECT

Target lesion identification
• GGN lesions
• With pathological results

Histogram feature selection and modeling
• Univariable analysis
• Multivariable analysis
• Performance evaluation and comparison

PL ADCvs.
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with the detailed formulae listed in Figure 3.

Statistical analysis

All data were analyzed with SPSS 23.0 software (IBM 
Corp.), and the chi-squared test was used to analyze 
categorical variables. The Kolmogorov-Smirnov normality 
test was used for the continuous data. Continuous data 
with a normal distribution were compared with a t test 
and are presented as the mean ± standard deviation 
(SD). Continuous data with a skewed distribution were 
compared with the Mann-Whitney test and are presented 
as the median (P25, P75). Of note, since each GGN 
was considered an independent lesion, within-patient 
correlations were not considered when a patient had 
multiple GGNs (27). CT parameters with P values of 
less than 0.05 on univariable analyses were considered as 
candidate input variables. After the examination of the 
collinearity of candidate CT parameters, multivariable 
logistic regression analyses were performed to identify the 
independent factors for the stratification of PLs and invasive 
adenocarcinoma. Sensitivity, specificity, receiver operating 
characteristic (ROC) curve, precision-recall (PR) curve, and 

confusion matrix were used to evaluate the performance. 
The cutoff value was determined by the geometric mean. 
Delong test was used to compare the area under the 
ROC curve (AUC) and PR curve (AUPR) of the NECT 
and CECT models. P<0.05 was considered statistically 
significant.

Results

Performance evaluation of the AI diagnostic system

Both NECT and CECT scans were collected from the 
enrolled 116 patients for pulmonary nodule detection via 
the AI diagnostic system. Two radiologists participated in 
identifying targeted GGNs from the AI-detected pulmonary 
nodules. The intraobserver intraclass correlation coefficient 
(ICC) ranged from 0.861 to 0.972 based on 2 rounds of 
results from radiologist A. The ICC ranged from 0.821 
to 0.921 for radiologist B. These results indicated that 
the interobserver reproducibility of GGN screening was 
good. Of note, DL-based AI diagnostic system achieved a 
sensitivity of 100%, as it detected all the targeted GGNs 
on both NECT and CECT images, as confirmed by the 2 

• Mean CT value: The average gray level intensity 
within the ROI.

( )
1

1 X
pN

ip

mean i
N =

= ∑
where X is a set of Np voxels included in the ROI

• Solid component volume was calculated using 
the total number of voxels (≥−145 HU) within the 
segmented region and the pixel spacings (Voxel-
counting method)
Vsolid = number of voxels (≥−145 HU) * pixel spacing

on the z-axis * (pixel spacing on the x-y plane)2

A B

Figure 3 Radiologic findings of GGNs from CT images. (A) Nonenhanced CT images. (B) Enhanced CT images. The relevant quantitative 
parameters were calculated based on automatic accurate segmentation of the detected nodules (displayed in the upper right corner), 
including maximum CT value, minimum CT value, mean CT value, nonsolid component volume, solid component volume, kurtosis, and 
skewness. The formulae for calculating the mean CT value and solid component volume are also provided. GGN, ground-glass nodule; CT, 
computed tomography; ROI, region of interest.
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radiologists.
In addition, the AI diagnostic system predicted the 

probability of malignancy for these targeted GGNs. 
Notably, the AI system alerted radiologists to at least an 
intermediate risk for all lesions (100%), either based on 
NECT or CECT (artery phase and delayed phase) images; 
meanwhile, this proportion was 99.2% (120/121) on 
venous-phase images of CECT. When assigning PLs and 
adenocarcinoma lesions intermediate- and high-risk grades, 
the AI auxiliary diagnosis system tended to predict both 
groups as high-risk (Figure 4), and the prediction accuracy 
of the adenocarcinoma group was significantly higher than 
that of the PL group (P<0.05).

Selection of CT parameters from AI-based histogram 
analysis

For screened GGNs, the DL-based AI diagnostic system 
automatically measured related CT parameters, including 
maximum CT value, minimum CT value, mean CT 
value, solid component volume, nonsolid component 
volume, kurtosis, and skewness. We noticed that most 
CT parameters varied on NECT and CECT images 
and were significantly different between the PL group 
and adenocarcinoma group (all P values <0.05) (Table 1). 
Univariable analysis revealed that maximum CT value, 
minimum CT value, mean CT value, and solid component 

volume were significantly related to GGN tumor 
invasiveness (P<0.05). The detailed results of the univariable 
analyses are summarized in Table 1.

Given the collinearity among CT value-related 
parameters, mean CT value combined with solid component 
volume was eventually selected and used for further analysis. 
The multivariable logistic regression analysis revealed that 
the mean CT value and solid component volume of NECT 
and CECT were independent factors for the differentiation 
of PLs and adenocarcinoma lesions [NECT: odds ratio (OR) 
1.009, 95% confidence interval (CI): 1.004–1.013, P<0.001; 
OR 1.005, 95% CI: 1.000–1.010, P=0.032; arterial-phase 
CECT: OR 1.008, 95% CI: 1.004–1.013, P<0.001; OR 
1.003, 95% CI: 1.000–1.006, P=0.038; venous-phase CECT: 
OR 1.008, 95% CI: 1.004–1.012, P<0.001; OR 1.003, 95% 
CI: 1.000–1.005, P=0.039; delayed-phase CECT: OR 1.008, 
95% CI: 1.004–1.012, P<0.001; OR 1.004, 95% CI: 1.002–
1.015, P=0.010) (Table 2).

Comparison of NECT and CECT parameters in predicting 
the invasiveness of GGNs tumors

To elucidate the potential value of CECT histogram 
characteristics in predicting GGN tumor invasiveness, we 
compared the performance of the NECT model and the 
CECT model. In particular, the AUC and AUPR of the 
NECT-based model were 0.765 (95% CI: 0.679–0.837) 

1.0

0.7

0.5

0.0

High risk

Intermediate risk

Low risk

Pathology group

Malignancy 
probability

AI-based malignancy prediction

PL ADC

101 105 109 113 117 1211 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93 97

Pathology group NECT CECT-A CECT-V CECT-D

Figure 4 AI-based malignancy prediction for GGNs. AI diagnostic system identified all included GGNs as at least intermediate risk on 
NECT and the artery phase/delayed phase of CECT. One lesion was predicted as low risk on venous CECT. In addition, the AI diagnostic 
system tended to predict PL lesions as high risk. PLs and adenocarcinoma lesions being assumed as intermediate and high risk, respectively, 
yielded an inferior prediction accuracy for PLs. The serial number of each pulmonary nodular lesion studied is shown on the horizontal axis. 
GGN, ground-glass nodule; NECT, nonenhanced computed tomography; CECT, contrast-enhanced computed tomography; AI, artificial 
intelligence; PL, precancerous lesions; ADC, adenocarcinoma. 
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and 0.898 (95% CI: 0.815–0.946), respectively (Figure 5), 
showing no significant difference with CECT models. The 
optimal performance was observed in the CECT delayed-
phase in which the AUC and AUPR reached 0.772 (95% CI: 
0.687–0.843) and 0.907 (95% CI: 0.825–0.953), respectively 
(Figure 5). The AUC of CECT artery phase and venous 
phase were 0.757 (95% CI: 0.670–0.830) and 0.894 (95% 
CI: 0.810–0.943), respectively. The AUPR of the CECT 
artery phase and venous phase were 0.764 (95% CI: 0.678–
0.836) and 0.895 (95% CI: 0.812–0.944), respectively. 
Additionally, other metrics, including sensitivity, specificity, 
accuracy, and precision, did not differ significantly between 
the NECT and CECT models. Details of these metrics 
are summarized in Table 3. The confusion matrices of the 
NECT model and CECT delayed-phase model are shown 
in Figure 5B,5D.

Discussion

In this study, the performance of the DL-based AI 
diagnostic system in detecting GGNs and identifying 
malignancies was validated in the enrolled cohort. 
Additionally, the mean CT value and solid component 
volume were identified as independent predictors of 
adenocarcinoma invasiveness. Furthermore, compared with 
NECT scans, CECT scans did not significantly improve 
the performance of the AI diagnostic system or the CT 

parameter-based multiple logistic regression models for 
differentiating the invasiveness of GGNs tumors. 

With the rapid development of AI technology, 
convolutional neural network models have been used to 
improve the accuracy of nodular detection and reduce 
false positives (28). DL algorithms can overcome the 
disadvantages of traditional machine learning algorithms, 
such as manual segmentation measurement error and 
doctors’ subjectivity (29,30). In this study, the end-to-
end DL-based AI diagnostic system displayed excellent 
performance in detecting pulmonary nodules and aiding in 
the diagnosis of its invasiveness as evidenced by the 100% 
detection sensitivity of targeted lesions and the 100% alert 
rate for the malignancy risk of targeted lesions on NECT 
and artery-phase and delayed-phase CECT images. In 
this case, the AI diagnostic system exhibited a slightly 
different performance between NECT and CECT images 
in distinguishing the malignancy of targeted lesions, which 
should be further validated in larger data sets.

CT scans are of great value in differentiating GGNs, 
and the CT-based identification of GGNs has gradually 
gained more attention in clinical practice (10,31). Recently, 
CT features of GGN growth, including mean CT value, 
kurtosis, skewness, and solid component volume, have 
been gradually revealed. A previous study reported solid 
component volume to be positively correlated with the 
invasiveness of GGNs, which may have a certain degree 
of predictive value for the invasiveness of GGNs (32). 
Chae et al. indicated that CT-based texture analysis has a 
certain predictive value in distinguishing IAC lesions from 
noninvasive lesions in patients with GGN tumors (7).  
Li et al. demonstrated that quantitative analysis of CT 
imaging, including the maximum nodule diameter and 
100th percentile on the CT number histogram, could 
predict IAC presenting as GGNs (33). In this study, we 
used automatically AI-measured CT parameters to perform 
multivariable regression analysis and found that the mean 
CT value and solid component volume of NECT images 
were significant predictors for differentiating PLs from 
invasive adenocarcinoma lesions, which can guide long-term 
follow-up and selective surgical management. Furthermore, 
the automatically calculated histogram features could 
help avoid subjectivity in doctors’ evaluation, reduce their 
workload, and increase the repeatability of measurements 
between medical centers, which might in turn enhance 
these features’ applicability in clinical practice. Of note, in 
addition to the automatic histogram analysis, the AI system 
could predict the malignancy probabilities of the detected 

Table 2 Multivariable logistic regression analyses

Quantitative parameter P value OR 95% CI

Nonenhanced CT

Mean CT value <0.001 1.009 1.004–1.013

SCV 0.032 1.005 1.000–1.010

Arterial-phase enhanced CT

Mean CT value <0.001 1.008 1.004–1.013

SCV 0.038 1.003 1.000–1.006

Venous-phase enhanced CT

Mean CT value <0.001 1.008 1.004–1.012

SCV 0.039 1.003 1.000–1.005

Delayed-phase enhanced CT

Mean CT value <0.001 1.008 1.004–1.012

SCV 0.010 1.004 1.002–1.015

CT, computed tomography; OR, odds ratio; SCV, solid 
component volume; CI, confidence interval.
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Figure 5 Performance comparison between NECT and CECT models. The delayed phase of CECT scans (CECT-D) was selected as 
the representative because of its optimal performance. ROC curve (A) and precision-recall curve (B) of the NECT and CECT-D models 
in distinguishing PLs and adenocarcinoma lesions were plotted and compared. Based on the classification threshold determined by the 
geometric mean, the confusion matrix of the NECT model (C) and CECT-D model (D) were displayed. NECT, nonenhanced computed 
tomography; CECT, contrast-enhanced computed tomography; ROC, receiver operating characteristic; AUC, area under the ROC curve; 
AUPR, area under the precision-recall curve; CI, confidence interval; PL, precancerous lesion.

Table 3 Performance metrics of the NECT model and the CECT-D model on differentiating tumor invasiveness

Group AUC Sensitivity Specificity Accuracy Precision F1-score G-Mean

NECT 0.765 0.667 0.706 0.562 0.707 0.687 0.686

CECT-D 0.772 0.759 0.676 0.636 0.742 0.750 0.716

P value 0.661 0.180 0.793 0.238 0.616 – –

CECT-D, delayed phase of contrast-enhanced computed tomography; NECT, nonenhanced computed tomography; AUC, area under the 
receiver operating characteristic curve; G-Mean, geometric mean.

lesions, which could be used to not only alert clinicians of 
suspicious lesions (100% in our study) but also potentially 
aid in the differentiation of lesion invasiveness. The 
commonly used risk stratification threshold of 50% and 
75% could ideally differentiate the PL and adenocarcinoma 
groups, but the optimal malignancy probability threshold 

for differentiating invasiveness needs to be further 
determined.

Notably, many previous studies have focused on the 
differentiation of invasive and noninvasive pulmonary 
lesions using radiomics analysis and have achieved decent 
performance, with AUCs ranging from 0.72 to 0.98. Some 
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studies utilized multiple features, such as ground-glass 
and solid features, as well as the SD of attenuation, mass, 
kurtosis, and entropy, yielding an AUC of 0.98 (7,34). 
Moreover, mixed density and fractal dimension, radiomics 
features, and mean CT values were all used for modeling, 
achieving an AUC of 0.76 and 0.716 for discriminating 
preinvasive and invasive pulmonary adenocarcinoma lesions, 
respectively (35,36), which is equivalent to the performance 
of our proposed models. Key feature abundance might 
greatly impact the model performance, as we noticed that 
the combination of 4 radiomics features with lesion shape 
enhanced the model performance in differentiating MIA 
and IAC as compared with models trained with either of 
them alone (37). In contrast to the studies mentioned above, 
we took advantage of automatically AI-calculated histogram 
features to develop models which, to some extent, appear 
suitable for clinical practice compared with the time-
consuming lesion delineation procedures described in other 
studies. Of note, given that the AI system could segment 
lesions accurately, radiomics feature extraction and selection 
modules might be incorporated into the clinically deployed 
AI auxiliary system, which would allow for the enrichment 
of features for modeling and the improvement of model 
performance. Moreover, the absence of solid components 
in some of the included lesions might also have impacted 
the model performance in our study since solid component 
volume is one of the features for modeling. The possible 
influence of pure GGNs needs to be validated on a larger 
sample size in the near future. 

Several studies have reported that energy spectrum CT 
iodide parameters compared to NECT provided more value 
for radiomic prediction in distinguishing adenocarcinoma 
from IAC and AIS/MIA (38,39). Dennie et al. showed that 
the sensitivity of the CECT in differentiating primary 
lung tumors from granulomatous pulmonary lesions was 
lower than that of NECT (40). This reduction may be 
attributable to the presence of a contrast agent masking the 
texture characteristics of the lesions (39). In our study, mean 
CT values were extracted from enhanced CT images, and 
solid component volume was significant in differentiating 
PLs from adenocarcinoma lesions. Notably, we found that 
there was no significant difference between the CECT 
and NECT diagnostic models in differentiating PLs 
from adenocarcinoma lesions, which is consistent with a 
previous report by Gao et al. (41). A possible explanation 
for this finding is the less vascular invasion of GGNs 
in histopathology (42). In addition, the gas content of 
GGNs can offset part of the increase in contrast agents. 

The finding further indicates that NECT scans might be 
sufficient to predict the invasiveness of GGNs tumors, and 
patients with GGN tumors might be able to avoid extra 
radiation exposure, allergic reaction to contrast agent, or 
side effects of enhanced CT scanning. Despite the slightly 
variable performance of the AI diagnostic system between 
NECT and CECT images in identifying malignancy risks, 
we can conclude that AI-measured CT indicators could 
help assess the invasiveness of GGN tumors and that 
NECT scans, to some extent, can facilitate an adequate 
performance as compared to CECT scans. 

It should be noted that a recently published study by 
Gao et al. also used AI-based histogram analyses to predict 
the invasiveness of part-solid nodules (PSNs) in LUAD (24). 
In comparison, we focused on the GGN tumors instead of 
PSN tumors, as PLs and adenocarcinoma lesions can be 
detected as various degrees of GGNs on CT scans (5,6). 
Furthermore, AIS and MIA were categorized into the same 
group while invasive IAC was placed in a separate group 
in their study design. In sharp contrast, we categorized the 
lesion invasiveness groups according to the recent (year 
2021) WHO classification of lung tumors (25), in which 
AAH and AIS are defined as precursor glandular lesions 
(PGLs; the PL group in our study), while MIA and IAC 
are categorized as adenocarcinoma (the invasive group). 
Obviously, direct comparisons of model performance were 
not appropriate at the time of the study. Additionally, the 
paired NECT and CECT scans were used in our study 
to investigate the additional benefit of CECT scans in 
the histogram feature-based prediction of GGN tumor 
invasiveness. Importantly, although our and Gao et al.’s 
studies have different designs and focuses, each uniquely 
contributes to realizing the potential practicability of AI-
based histogram analyses in clinical practice.

There are some limitations to this study. First, the 
sample size was small, and it could not completely reflect 
the full disease characteristics of AAH, AIS, MIA, or 
IAC. Second, all cases were scanned with the same CT 
instrument, and the images were constructed via the 
standard B31algorithm. The use of a single instrument 
type and set of reconstruction parameters might limit the 
generalizability of the proposed model. Hence, additional 
cases scanned with different CT instruments and the use of 
different reconstruction algorithms should be implemented 
in future studies. Moreover, our study employed a single-
center, retrospective design, and a multicenter study needs 
to be conducted to validate and optimize the prediction 
model performance.
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Conclusions

This study validated the performance of an AI diagnostic 
system in detecting GGNs, identifying malignancy risk, and 
predicting invasiveness based on automatically measured 
CT histogram features. Particularly, the mean CT value 
and solid component volume were identified as independent 
risk factors of adenocarcinoma. In addition, NECT images, 
when compared with enhanced CECT scans, were found 
to be sufficient for the AI diagnostic system in differentially 
diagnosing adenocarcinoma lesions and PLs presented as 
GGNs.
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