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Background: Extracranial atherosclerosis is one of the major causes of stroke. Carotid computed 
tomography angiography (CTA) is a widely used imaging modality that allows detailed assessments of plaque 
characteristics. This study aimed to develop and test radiomics models of carotid plaques and perivascular 
adipose tissue (PVAT) to distinguish symptomatic from asymptomatic plaques and compare the diagnostic 
value between radiomics models and traditional CTA model.
Methods: A total of 144 patients with carotid plaques were divided into symptomatic and asymptomatic 
groups. The traditional CTA model was built by the traditional radiological features of carotid plaques 
measured on CTA images which were screened by univariate analysis and multivariable logistic regression. 
We extracted and screened radiomics features from carotid plaques and PVAT. Then, a support vector 
machine was used for building plaque and PVAT radiomics models, as well as a combined model using 
traditional CTA features and radiomics features. The diagnostic value between radiomics models and 
traditional CTA model was compared in identifying symptomatic carotid plaques by Delong method.
Results: The area under curve (AUC) values of traditional CTA model were 0.624 and 0.624 for the 
training and validation groups, respectively. The plaque radiomics model and PVAT radiomics model 
achieved AUC values of 0.766, 0.740 and 0.759, 0.618 in the two groups, respectively. Meanwhile, the 
combined model of plaque and PVAT radiomics features and traditional CTA features had AUC values of 
0.883 and 0.840 for the training and validation groups, respectively, and the receiver operating characteristic 
curves of combined model were significantly better than those of traditional CTA model in the training 
group (P<0.001) and validation group (P=0.029).
Conclusions: The combined model of the radiomics features of carotid plaques and PVAT and the 
traditional CTA features significantly contributes to identifying high-risk carotid plaques compared with 
traditional CTA model.
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Introduction

Stroke is the third leading cause of death and disability 
worldwide (1), and extracranial atherosclerosis is one of 
the major causes of stroke, contributing to 15–20% of 
ischemic stroke events (2,3). Traditionally, the assessment 
of the severity of carotid plaques (atherosclerosis) has been 
determined by the quantification of the degree of vascular 
stenosis, however, a growing number of studies have shown 
that ischemic stroke caused by high-risk plaques is not only 
related to the degree of vascular stenosis but also closely 
related to plaque components (4-7). Meanwhile, vascular 
inflammation plays a major role in the development of 
atherosclerosis (8,9), and the relationship between the vessel 
wall and perivascular adipose tissue (PVAT) is complex. A 
previous study reported that inflammation associated with 
high-risk carotid plaques can be identified by changes in 
PVAT density on computed tomographic (CT) images (10).

Carotid computed tomography angiography (CTA) 
is a widely used imaging modality that allows detailed 
assessments of plaque characteristics closely associated 
with ischemic stroke, such as plaque ulceration (11), plaque 
thickness (12), and remodeling index (13). Compared with 
the traditional manual measurement of plaque features 
on CT images, radiomics is a process that rapidly extracts 
massive quantifiable features from medical images, 
transforming digital medical images into extractable, 
high-dimensional data that can provide information 
indistinguishable to the naked eye (14,15). Radiomics model 
based on magnetic resonance imaging (MRI) has yielded 
good results in identifying high-risk carotid plaques (16).  
Meanwhile, Huang et al. achieved a high accuracy in 
identifying symptomatic carotid plaques by using clinical 
features and ultrasound radiomic features to construct a 
nomogram (17). Although carotid CTA exposes patients to 
ionizing radiation, it has advantages of rapidity, simplicity 
and low cost compared with MRI, and less dependence of 
operator and variability of inter-observer than ultrasound (5).  
Recently, Dong et al. (18) showed that CTA-based radiomics 
model can accurately identify symptomatic carotid plaques, 
but their study only included carotid plaques with >50% 
stenosis, whereas carotid plaques with 30–50% stenosis can 
be a cause of ischemic strokes of unknown origin (19).

This study aimed to develop and test radiomics models of 
carotid plaques with >30% stenosis and PVAT to improve 
the accuracy of identifying high-risk carotid plaques and 
compare the diagnostic value between radiomics models and 
traditional CTA model built by plaque features, which would 
result in distinguishing symptomatic from asymptomatic 
plaques. We present this article in accordance with the 
TRIPOD reporting checklist (available at https://qims.
amegroups.com/article/view/10.21037/qims-23-158/rc).

Methods

Study patients

We consecutively screened neck CTA examinations at 
Affiliated Hospital of North Sichuan Medical College, 
China, from May 2016 to December 2021, to identify 
patients with extracranial carotid plaques. Atherosclerotic 
plaques are defined as thickening of the vessel wall or 
calcification of the vessel wall (11).

Inclusion criteria were as follows: (I) a diagnosis of 
extracranial carotid stenosis between 30% and 99% on 
CTA images based on North American Symptomatic 
Carotid Endarterectomy Trial (NASCET) criteria (20); 
(II) sufficient information of ascertaining cerebral ischemia 
symptoms in the clinical medical record; (III) adequate 
information regarding vascular risk factors in the clinical 
medical record.

Exclusion criteria were as follows (16): (I) cardiogenic 
stroke; (II) simultaneous bilateral anterior circulation 
events; (III) carotid dissection, aneurysm, primary 
intracranial disease, carotid stenosis caused by radiation 
therapy and vasculitis; (IV) stroke involving only the 
posterior circulation; and (V) poor image quality.

We eventually included 144 patients and randomly 
divided them into a training group (n=100) and a validation 
group (n=44) at a ratio of 7:3. This retrospective cohort 
study was conducted in accordance with the Declaration 
of Helsinki (as revised in 2013). The study was approved 
by the Institutional Review Board of Affiliated Hospital of 
North Sichuan Medical College (file number 2022ER377-
1), and individual consent for this retrospective analysis was 
waived.
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Classification of cerebral ischemia symptoms

In our study, patients were classified into symptomatic and 
asymptomatic groups according to whether they had acute 
ischemic stroke or transient ischemic attack (TIA) in the 
cerebral anterior circulation region within two weeks before 
CTA examination, which was diagnosed by the doctor (WT) 
who had no knowledge of carotid plaque features (16). 
Meanwhile, symptomatic patients with >50% carotid stenosis 
were considered as large-artery atherosclerosis type (21)  
and symptomatic patients with 30–50% carotid stenosis 
were considered as stroke of undetermined source (19) by 
combining clinical and relevant examination. Only one 
atherosclerotic carotid artery was included in each patient 
for the study. For the patients in the symptomatic group, 
we included the atherosclerotic carotid artery ipsilateral to 
the symptom (if the patient had an acute ischemic stroke in 
the anterior circulation of the right cerebral hemisphere, 
the right atherosclerotic carotid artery was included), and 
for the patients in the asymptomatic group, if the bilateral 
atherosclerotic carotid artery fulfilled the inclusion and 
exclusion criteria, only the side of the atherosclerotic 
carotid artery with more severe stenosis was included (22). 
Acute ischemic stroke is defined as neurological deficits 
lasting for more than 24 hours or neurological deficits with 
acute cerebral infarct manifestations on imaging (23). TIA 
is defined as focal arterial ischemia lasting for less than  
24 hours without pathological or imaging evidence of 
infarction (23), and it may manifest as transient visual field 
loss, unilateral sensory deficits, or mild hemiparesis. Images 

of a patient with acute ischemic stroke are shown in Figure 1.

CTA techniques

All examinations were conducted on a 64-row CT scanner 
(SOMATOM Definition AS+, Siemens, Germany) at our 
institution. The scanning range covered from the aortic 
arch to the skull apex. A 60–80 mL volume of iodine 
contrast media was injected at a speed of 4.0–5.0 mL/s. 
The acquisition was triggered by using embolic tracking  
2 seconds after an attenuation threshold of regions of 
interest (ROIs) of aortic arch at the level of the tracheal 
bifurcation reaching 100 Hounsfield unit (HU). The 
following were the scanning parameters: tube voltage,  
100 kV; tube current, 300 mA; matrix, 512×512; field of view, 
280 mm; slice thickness, 0.6 mm; slice interval, 0.5 mm.

Clinical information

Personal information and vascular risk factors of patients 
were collected from the clinical medical record, which 
included sex, age, diabetes (hemoglobin A1c >6.5% or 
taking glucose-lowering medication), hypertension (blood 
pressure >140/90 mmHg or taking antihypertensive 
medication), hyperlipidemia (low-density lipoprotein  
>100 mg/dL or taking lipid-lowering medication), smoking 
history [current smoking or stopped smoking within the last 
3 months (10)] and coronary artery disease (presence of old 
myocardial infarction or after coronary stenting or definite 

A B C

Figure 1 Images of a patient with acute ischemic stroke. CTA sagittal (A) and axial (B) show a plaque at the beginning of the right internal 
carotid artery (arrow), and MR DWI axial (C) shows acute cerebral infarction at the right frontal lobe. CTA, computed tomography 
angiography; MR, magnetic resonance; DWI, diffusion weighted imaging.
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diagnosis by coronary angiography).

Traditional CTA plaque analysis

Two radiologists with 4 years of experience in neuroradiology 
and no knowledge of patient information (WX and ZL) 
reconstructed the carotid artery on the picture archiving and 
communication system (PACS) (INFINITT Healthcare, 
Korea) by multi-planar reformation and measured the 
following radiological features of carotid plaques (traditional 
CTA features) in training and validation groups: (I) degree 
of stenosis (NASCET criteria) (20); (II) plaque type: if the 
mean attenuation of plaques is ≥130 HU and the volume 
is ≥50% of the total volume of plaques, it is considered 
calcified, otherwise, it is considered a noncalcified plaque (18);  
(III) total plaque thickness: the maximum plaque thickness on 
the CTA axis; (IV) calcified plaque thickness: the maximum 
thickness of calcified components of plaques on the CTA 
axis; (V) soft plaque thickness: the maximum thickness 
of noncalcified components of plaques on the CTA axis; 
(VI) total length of the plaque: the maximum longitudinal 
length of the plaque; (VII) plaque ulceration: Extension of 
the contrast media by >1.5 mm beyond the lumen of the 
vessel (24); (VIII) plaque enhancement: the threshold of 
plaque enhancement >10 HU after contrast injection (25). 
(IX) Remodeling index: (area of the vessel at the maximum 
stenosis of carotid plaques/area of the distal vessel unaffected 
by plaques) × 100% (26); (X) plaque burden: (1 − lumen 
area at the maximum stenosis/vessel area at the maximum 

stenosis) × 100% (16). Continuous variables were the 
average of the values measured by two radiologists (WX 
and ZL), including the degree of stenosis, plaque length, 
total plaque thickness, soft plaque thickness, calcified plaque 
thickness, plaque burden and remodeling index. Categorical 
variables, including plaque ulceration, plaque type and plaque 
enhancement, were agreed upon by the two radiologists 
(WX and ZL) when there was a disagreement. Radiological 
features of carotid plaques are shown in Figure S1.

Image segmentation, feature extraction, selection and 
model building

In this study, software dedicated to radiomics (3D Slicer) 
was used as the analysis platform, the 3D Slicer was a free 
and open source software package for image analysis. The 
ROIs, which included plaques and PVAT, were drawn at 
the level of the maximum plaque area in the arterial phase 
on CTA of which the two radiologists jointly determined 
before segmentation (16,18). PVAT was described as 
adipose tissue in the radial distance from the outer wall of 
vessel equal to the vessel diameter, and its Hounsfield unit 
(HU) value varied from −190 to −30 HU (27), so PVAT 
was drawn semiautomatically by setting an attenuation 
threshold. The ROIs of drawing are shown in Figure 2.

To reduce image heterogeneity, we resampled all CTA 
images to homogeneity (1 mm × 1 mm × 1 mm), used a 
fixed bin width of 25 HU, and added Laplacian of Gaussian 
(kernel sizes: 0.5, 1, 1.5, and 2) and Wavelet. Meanwhile, 
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Figure 2 The ROIs of drawing (green area). (A) Plaques were manually drawn at the maximum level of the plaque. (B) PVAT was drawn 
semiautomatically at the same level by setting the attenuation threshold range. PVAT was described as adipose tissue in the radial distance 
from the outer wall of the vessel equal to the vessel diameter, and its HU value varied from −190 to −30 HU. ROIs, regions of interest; 
PVAT, perivascular adipose tissue; HU, Hounsfield unit.
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seven types of radiomics features were extracted, including 
shape, first order, gray-level co-occurrence matrix (GLCM), 
gray-level dependence matrix (GLDM), gray-level size-
zone matrix (GLSZM), gray-level run-length matrix 
(GLRLM) and neighborhood gray-tone difference matrix 
(NGTDM), and we preprocessed the extracted data with z 
score normalization.

To avoid dimensional catastrophe and reduce bias 
of radiomic features, the best features were selected in 
the training group. First, we used independent samples 
t-test or Mann-Whitney U-test to filter out features with 
significant differences (P<0.05) according to whether the 
data met normal distribution. Then, we applied the least 
absolute shrinkage and selection operator (LASSO), in 
which the minimum variance was used to automatically 
regulate the regularization parameter (λ), and 10-fold cross-
validation was performed for feature selection to reduce the 
dimensionality and select the best features (28). Finally, the 
selected optimal radiomics features were applied to build 
models.

The best radiomics features selected from the training 
groups of plaques and PVAT were used to construct 
radiomics models by a support vector machine (SVM) (29).  
To select the best model, we optimized the kernel size 
parameter {γ, gamma, [0.001,1]} and the regularization 
parameter {C, cost, [1, 1000]} of the SVM kernel function 
by 10-fold cross validation to select the best performing 
parameter. Finally, the best radiomics features were tested 
by SVM in the validation group. The receiver operating 
characteristic (ROC) curve and area under the curve (AUC) 
were applied to assess the predictive value of radiomics 
models. The classification accuracy, sensitivity, specificity, 
positive predictive value (PPV) and negative predictive 
value (NPV) were also calculated. The study flow chart 
and radiomics workflow are illustrated in Figures 3,4, 
respectively.

Intraobserver and interobserver agreement of radiomics 
features

Two radiologists with no knowledge of patient information 
(NY and CL) randomly sampled 50 patients and drew 
ROIs, including carotid plaques and PVAT. To assess 
intraobserver agreement, Observer 1 used the same method 
to perform two repeated drawings of the ROIs and extract 
radiomic features for the same patient within one week. To 
assess the interobserver agreement, observer 2 performed 
one drawing of the ROIs and feature extraction and then 

compared the extracted features with the results obtained 
by observer 1 the first time. The reproducibility of intra- 
and interobserver was assessed by intraclass correlation 
coefficient (ICC). ICC greater than 0.75 represented good 
agreement.

Statistical analysis

All statistical analyses were conducted by Statistical Product 
Service Solutions (SPSS) (Version 23.0, IBM) and R 
software (version 4.2.1). Means and standard deviations (SD) 
were used to record continuous variables, and frequencies 
and percentages were used for categorical variables. Each 
continuous variable was tested for normality by Shapiro-
Wilk test, and the t-test was applied to the comparisons of 
continuous variables conforming to a normal distribution, 
otherwise, the Mann-Whitney u-test was used. The χ2 test 
was applied to the comparisons of categorical variables. 
We used multivariable logistic regression to analyze 
variables that were significantly different (P<0.05) in the 
univariate analysis of traditional CTA features and clinical 
information. LASSO regression was performed by using 
the “Glmnet” package, and “e1071” and “pROC” were 
applied to SVM modeling and ROC curves, respectively. 
The Delong method was applied to compare the AUC of 
each model. A P value <0.05 was considered significantly 
different.

Results

Clinical information

One hundred forty-four patients were enrolled in this 
study, including 60 symptomatic and 84 asymptomatic 
patients. Univariate analysis showed that only sex was 
associated with symptomatic plaques among personal 
information and vascular risk factors (P<0.05), but sex was 
not an independent predictor of symptomatic plaques in 
a multivariable logistic regression analysis (P>0.05). The 
clinical information is listed in Table 1. Meanwhile, the 
clinical information and traditional CTA features in training 
and validation groups show no statistical difference as 
displayed in Table 2.

Assessment of carotid plaques on CTA

Univariate analysis showed that the degree of stenosis, 
calcified plaque thickness, soft plaque thickness, plaque 
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Patient with extracranial carotid plaques From May 2016 to December 2021 (n=248)

Finally inclusion patients (n=144)

Training group 
(42 symptomatic + 58 asymptomatic)

Radomics features of plaques/PVAT Radiological features (CTA)

Radomics model of plaques/PVAT Traditional CTA model

Combined model

Validation group 
(18 symptomatic + 26 asymptomatic)

Exclusion criteria:
•	Cardiogenic stroke (n=11)
•	Bilateral anterior circulation events (n=23)
•	Carotid dissection, aneurysm, primary intracranial 

disease, and carotid stenosis caused by radiation 
therapy and vasculitis (n=19)

•	Patients with stroke involving only the posterior 
circulation (n=43)

•	Poor image quality of CTA (n=8)

LASSO

SVM SVM

Figure 3 Study flow chart. CTA, computed tomography angiography; LASSO, least absolute shrinkage and selection operator; SVM, 
support vector machine; PVAT, perivascular adipose tissue.
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Figure 4 Radiomics workflow. GLCM, gray-level co-occurrence matrix; GLDM, gray-level dependence matrix; GLRLM, gray-level run-
length matrix; GLSZM, gray-level size-zone matrix; NGTDM, neighborhood gray-tone difference matrix; AUC, area under curve.
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burden, remodeling index, plaque type (calcified plaque), 
and plaque ulceration were associated with symptomatic 
plaques (P<0.05, Table 1). Multivariable logistic regression 
analysis demonstrated that plaque ulceration (OR =4.867; 
95% CI: 1.718–13.791) and remodeling index (OR =2.143, 
95% CI: 1.175–3.910) were independent predictors of 
symptomatic plaques. A traditional CTA model combining 
plaque ulceration and remodeling index was built by an 
SVM, in which the AUC values of training and validation 
groups were 0.624 and 0.624 (with an optimal γ value of 0.1 
and C value of 10), respectively. Diagnostic value ability of 
traditional CTA model is listed in Table 3.

Reproducibility of radiomics features and traditional CTA 
features

For the plaque radiomics features, 383 features with 
ICCs less than 0.75 were excluded, of which there were  
335 features of intraobserver differences and 360 features of 

interobserver differences.
For the PVAT radiomics features, 519 features with 

ICCs less than 0.75 were excluded, of which 310 features 
showed intraobserver differences and 464 features showed 
interobserver differences.

The interclass correlation coefficients (ICCs) of the 
traditional CTA features for measuring the continuous 
variables, including degree of stenosis, plaque length, total 
plaque thickness, calcified plaque thickness, soft plaque 
thickness, plaque burden and remodeling index, were 0.842, 
0.805, 0.827, 0.845, 0.803, 0.785 and 0.810, respectively. 
The Cohen’s kappa values of determining categorical 
variables including plaque ulceration, plaque type and 
plaque enhancement were 0.855, 0.818, 0.772, respectively.

Selection of radiomics features

For the plaque radiomics features, we extracted 851 
radiomics features from ROI. There were 468 radiomics 

Table 1 Clinical information and traditional CTA features

Clinical information/CTA features Total (N=144)
Symptomatic 

(N=60)
Asymptomatic 

(N=84)
Univariate,  

P value

Multivariate

OR (95% CI) P value

Male 110 (76.4) 51 (85.0) 59 (70.2) 0.04* 0.716 (0.249–2.054) 0.534

Age (years) 70.93±9.10 70.22±11.04 71.44±7.45 0.886

Smoking 65 (45.1) 28 (46.7) 37 (44.0) 0.756

Hypertension 111 (77.1) 45 (75.0) 66 (78.6) 0.615

Diabetes mellitus 52 (36.1) 18 (30.0) 34 (40.5) 0.197

Hyperlipidemia 69 (47.9) 30 (50.0) 39 (46.4) 0.672

Coronary artery disease 40 (27.8) 13 (21.7) 27 (32.1) 0.166

Degree of stenosis (%) 63.69±18.75 68.29±20.19 60.39±17.02 0.017* 1.016 (0.986–1.047) 0.300

Calcified plaque 39 (27.1) 11 (18.3) 28 (33.3) 0.046* 0.749 (0.204–2.743) 0.662

Plaque ulceration 26 (18.1) 19 (31.7) 7 (8.3) <0.001* 4.867 (1.718–13.791) 0.003*

Plaque length (mm) 15.22±6.37 16.27±7.40 14.47±5.45 0.174

Total plaque thickness (mm) 4.48±1.19 4.64±1.24 4.37±1.15 0.182

Soft plaque thickness (mm) 3.74±1.71 4.10±1.61 3.48±1.74 0.032* 0.901 (0.650–1.250) 0.532

Calcified plaque thickness (mm) 1.80±1.25 1.48±1.08 2.03±1.32 0.016* 0.665 (0.427–1.036) 0.071

Plaque burden (%) 81.86±10.59 84.05±10.14 80.30±10.69 0.021* 0.527 (0.002–133.526) 0.821

Remodeling index 2.50±0.71 2.68±0.67 2.36±0.72 0.008* 2.143 (1.175–3.910) 0.013*

Plaque enhancement 55 (38.2) 27 (45.0) 28 (33.3) 0.155

Categorical variables shown with frequency and percentage; continuous variables shown with mean ± standard deviation (SD); *, P<0.05. 
CTA, computed tomography angiography; OR, odds ratio; CI, confidence interval.



Chen et al. Radiomics model to identify high-risk carotid plaques6096

© Quantitative Imaging in Medicine and Surgery. All rights reserved.   Quant Imaging Med Surg 2023;13(9):6089-6104 | https://dx.doi.org/10.21037/qims-23-158

features after excluding features of intraobserver and 
interobserver differences. The next step was to remove the 
non-significant values, 29 features conformed to normal 
distribution, in which 18 features (P<0.05) were significantly 
different by t-test. 439 features did not conform to 
normal distribution, in which 389 features (P<0.05) 
were significantly different by Mann-Whitney u-test, so  
407 features (P<0.05) were used to the LASSO algorithm. 
Finally, 3 radiomic features were retained (with the λ value 
of 0.103), and used to build plaque radiomics model in 
training group and test in validation group by SVM.

For the PVAT radiomics features, we extracted 851 
radiomics features from ROI. There were 332 radiomics 
features after excluding features of intraobserver and 
interobserver differences. The next step was to remove the 
non-significant values, 52 features conformed to normal 
distribution, in which 1 feature (P<0.05) were significantly 
different by t-test. 280 features did not conform to normal 
distribution, in which 3 features (P<0.05) were significantly 
different by Mann-Whitney u-test, so 4 features (P<0.05) 

were used to the LASSO algorithm. Finally, all 4 radiomics 
features were retained (with the λ value of 0.015), and used 
to build PVAT radiomics model in training group and test 
in validation group by SVM.

Building models

Three plaque radiomics features and four PVAT radiomics 
features (Table S1) were used to build carotid plaques and 
PVAT radiomics models, respectively.

In the training and validation groups, the AUC values 
of plaque radiomics features were 0.766 and 0.759 with an 
optimal γ value of 0.001and C value of 10 (Table 3), which 
were significantly different in the training group (P=0.046) 
but not in the validation group (P=0.297) when plaque 
radiomics model was compared with the traditional CTA 
model (Figure 5). The AUC values of PVAT radiomics 
features were 0.740 and 0.618 in the training and validation 
groups (with an optimal γ value of 0.001 and C value of 
1000), respectively, and there was no significant difference 

Table 2 Clinical information and traditional CTA features in training and validation groups

Clinical information/CTA features Training group (N=100) Validation group (N=44) Univariate, P value

Male 77 (77.0) 33 (75.0) 0.795

Age (years) 70.21±11.19 71.41±8.90 0.682

Smoking 44 (44.0) 21 (47.7) 0.679

Hypertension 76 (76.0) 35 (79.5) 0.641

Diabetes mellitus 38 (38.0) 14 (31.8) 0.477

Hyperlipidemia 47 (47.0) 22 (50.0) 0.740

Coronary artery disease 27 (27.0) 13 (29.5) 0.753

Degree of stenosis (%) 63.55±18.48 64.44±19.52 0.733

Calcified plaque 29 (29.0) 10 (22.7) 0.435

Plaque ulceration 16 (16.0) 10 (22.7) 0.334

Plaque length (mm) 14.94±5.60 16.13±7.73 0.615

Total plaque thickness (mm) 4.49±1.16 4.53±1.20 0.741

Soft plaque thickness (mm) 3.68±1.66 3.92±1.80 0.393

Calcified plaque thickness (mm) 1.84±1.29 1.71±1.17 0.638

Plaque burden (%) 81.76±10.66 82.55±10.10 0.709

Remodeling index 2.48±0.72 2.56±0.70 0.501

Plaque enhancement 37 (37.0) 18 (40.9) 0.657

Categorical variables shown with frequency and percentage; continuous variables shown with mean ± standard deviation. CTA, computed 
tomography angiography.

https://cdn.amegroups.cn/static/public/QIMS-23-158-Supplementary.pdf
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in the training (P=0.118) and validation groups (P=0.953) 
when PVAT radiomics model was compared with the 
traditional CTA model (Figure 6). When the model (Plaque 
+ PVAT radiomics model) was constructed by combining 
the radiomics features of plaques and PVAT, the AUC 
values were 0.863 and 0.784 in the training and validation 
groups (with an optimal γ value of 0.01 and C value of 
1), respectively, which were significantly different in the 
training group (P<0.001) but not in the validation group 
(P=0.182) when it was compared with the traditional CTA 
model (Figure 7).

Finally, we combined plaque radiomics features, PVAT 
radiomics features, and traditional CTA features to build 
a new combinational model (Plaque + PVAT + Traditional 
CTA model) in which the AUC values were 0.883 and 0.840 
in the training and validation groups (with an optimal γ 
value of 0.01 and C value of 10), respectively, and the ROC 
curves of the new combinational model were significantly 
better than those of the traditional CTA model in the 
training group (P<0.001) and validation group (P=0.029) 
(Figure 8). 

Discussion

In this study, we developed plaque radiomics features, PVAT 
radiomics features, and traditional CTA features to build 
models distinguishing symptomatic from asymptomatic 

carotid plaques. All models showed diagnostic values in the 
assessment of symptomatic carotid plaques, in which there 
were no significant differences when radiomics models were 
compared with traditional CTA model in the validation 
group. However, the combined model (Plaque + PVAT + 
Traditional CTA model) had a good diagnostic performance 
to identify symptomatic carotid plaques. Distinguishing 
between symptomatic and asymptomatic carotid plaques is 
important for the treatment of carotid plaques, and different 
management methods can be chosen for symptomatic 
and asymptomatic patients (30). Our finding contributes 
to setting up an effective treatment plan for patients with 
carotid plaques.

Carotid CTA can assess plaque features closely 
associated with cerebral ischemia symptoms by geometric 
parameters (25). Our study evaluated the correlation of 
CTA plaque features and clinical risk factors with cerebral 
ischemic symptoms and finally found that plaque ulceration 
and remodeling index were independent predictors of 
cerebral ischemic symptoms. Plaque ulceration, which 
CTA can accurately identify, is an important predictor of 
ischemic stroke (11,25). The sensitivity and specificity of 
CTA for examining plaque ulceration reached 94% and 
99%, respectively (31), and plaque ulceration increased the 
risk of ipsilateral cerebral ischemia events by 2.2 times (32).  
Arterial remodeling is known to be involved in the 
development of atherosclerosis. The degree of expansive 

Table 3 Diagnostic value ability of all models

Model AUC (95% CI) Accuracy, % Sensitivity, % Specificity, % PPV, % NPV, %

Training group

Traditional CTA model 0.624 (0.506–0.743) 67.0 28.6 94.8 80.0 64.7

Plaque radiomics model 0.766 (0.666–0.865) 72.0 45.2 91.4 79.2 69.7

PVAT radiomics model 0.740 (0.644–0.835) 66.0 47.6 79.3 62.5 67.6

Plaque + PVAT radiomics model 0.863 (0.792–0.934) 78.0 59.5 91.4 83.3 75.7

Plaque + PVAT + Traditional CTA model 0.883 (0.815–0.952) 82.0 69.0 91.4 85.3 80.3

Validation group

Traditional CTA model 0.624 (0.431–0.817) 70.5 38.9 92.3 77.8 68.6

Plaque radiomics model 0.759 (0.606–0.911) 75.0 55.6 88.5 76.9 74.2

PVAT radiomics model 0.618 (0.440–0.794) 61.3 22.2 88.5 57.1 62.2

Plaque + PVAT radiomics model 0.784 (0.632–0.936) 72.7 50.0 88.5 75.0 71.9

Plaque + PVAT + Traditional CTA model 0.840 (0.710–0.970) 79.5 66.7 88.5 80.0 79.3

AUC, area under curve; 95% CI, 95% confidence interval; PPV, positive predictive value; NPV, negative predictive value; CTA, computed 
tomography angiography; PVAT, perivascular adipose tissue.
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remodeling can indicate potential high-risk plaques, and 
symptomatic carotid plaques can show a greater degree 
of expansive remodeling (13,26), which is consistent with 
the results of this study. In our study, the percentage of 
plaque ulceration and the mean value of remodeling index 
in the symptomatic group were higher than those in the 
asymptomatic group, and the traditional CTA model 
consisting of plaque ulceration and remodeling index had 
a diagnostic value (AUC =0.624) for symptomatic carotid 
plaques.

Nowadays, the robustness of radiomics features is a major 
concern. In this study, we used the preprocessing method of 
resampling to maintain the stability of radiomics features, 
intra- and inter-observer reliability tests (ICC >0.75) to 
ensure the repeatability of features, and univariate analysis 

and LASSO to ensure the independence and importance 
of each feature, as well as 10-fold cross-validation to keep 
the robustness of features. Meanwhile, seven radiomics 
features were extracted from plaques and PVAT, which 
were Wavelet–LHL–GLCM–Joint Entropy, Wavelet–
HLL–GLCM–Joint Energy, Wavelet–LLL–GLCM–MCC, 
Original–GLSZM–Size Zone Non-Uniformity, Wavelet–
LHH–GLSZM–Small Area Emphasis, Wavelet–LHH–
GLDM–Dependence Variance and Wavelet–LLL–GLCM–
Sum Squares. Joint Entropy measures the randomness 
and variability of neighborhood intensity values. Energy 
measures homogeneous patterns of image. Size Zone Non-
Uniformity measures the variability of the volume of size 
area on image, with lower values indicating a more uniform 
size area volume. Small Area Emphasis measures the 

Figure 5 Plaque radiomics model. (A,B) ROC curves of the training and validation groups. (C,D) Comparison of the training and validation 
groups between the plaque radiomics model and the traditional CTA model. ROC, receiver operating characteristic; CTA, computed 
tomography angiography; AUC, area under curve. 
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distribution of small size areas, with larger values indicating 
smaller areas and finer textures. Dependence Variance 
measures the variance of dependence size of image. Sum 
Squares measures average intensity level in the distribution 
of adjacent intensity level pairs.

The combination of radiomics and machine learning 
has become a common approach. Zhang et al. (16) used 
radiomics and machine learning to identify symptomatic 
carotid plaque with the AUC values of 0.988 and 0.984 for 
training and validation group, the performance of their 
model is better than our plaque radiomics model, which 
may be caused by the difference between MRI and CTA. 
Meanwhile, Dong et al. (18) found that the CTA plaque 
radiomics model was better at differentiating symptomatic 

carotid plaques than the conventional CTA plaque model. 
In our study, there was no significant difference between 
the plaque radiomics model (AUC =0.759) and traditional 
CTA model (AUC =0.624) in validation groups; however, 
there was an upward trend in the diagnostic performance 
of the plaque radiomics model. Our results were different 
from those of Dong et al. (18), which may be caused by the 
inclusion of carotid plaques with 30–50% stenosis, which is 
gradually being recognized as an important factor in strokes 
of unknown etiology (33,34). The application of deep 
learning (DL) in carotid plaques is emerging (35). Saba  
et al. (36) used DL to classify and characterize carotid 
plaques based on ultrasound, showing the development 
potential of DL in carotid plaques. To our knowledge, 
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Figure 6 PVAT radiomics model. (A,B) ROC curves of the training and validation groups. (C,D) Comparison of the training and validation 
groups between the PVAT radiomics model and the traditional CTA model. PVAT, perivascular adipose tissue; ROC, receiver operating 
characteristic; CTA, computed tomography angiography; AUC, area under curve.
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Figure 7 Plaque + PVAT radiomics model. (A,B) ROC curves of the training and validation groups. (C,D) Comparison of the training and 
validation groups between the Plaque + PVAT radiomics model and the traditional CTA model. PVAT, perivascular adipose tissue; ROC, 
receiver operating characteristic; CTA, computed tomography angiography; AUC, area under curve.

there are no studies that have applied DL to identify high-
risk carotid plaque on CT images. Combining DL and 
radiomics to identify high-risk carotid plaques based on CT 
may be a worth explored direction. 

Vascular inflammation is a key component of the 
atherosclerotic process (8), and vascular inflammation 
induces transcriptional and structural changes to PVAT (37).  
These changes may be reflected by the increase in the 
HU values of PVAT on CT images, which is closely 
associated with intraplaque hemorrhage and cerebral 
ischemic symptoms (10,27). To our knowledge, there are 
no studies about the relationship between carotid PVAT 
radiomics and cerebral ischemic symptoms. In this study, 
the PVAT radiomics model showed diagnostic value but 
was not significantly different from the traditional CTA 

model. We think that this result can be brought about by 
the limited radiomics features that were extracted at a single 
level because the PVAT of carotid is relatively small and 
scattered. Currently, the application of artificial intelligence 
in pericardial adipose tissue has been shown to be a feasible 
approach (38), so it is necessary to combine radiomics and 
artificial intelligence to automatically evaluate PVAT as 
a marker of vascular and plaque inflammation in future 
studies.

Radiomics is not the only determinant of making clinical 
decisions, and radiomics data combined with other relevant 
data can produce reliable and accurate clinical decision 
support systems (39). Chen et al. (40) and Huang et al. (17) 
used radiomics and relevant clinical features to identify 
symptomatic carotid plaques by MRI and ultrasound, 
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Figure 8 Plaque + PVAT + Traditional CTA model. (A,B) ROC curves of the training and validation groups. (C,D) Comparison of the 
training and validation groups between the Plaque + PVAT + Traditional CTA model and the traditional CTA model. PVAT, perivascular 
adipose tissue; ROC, receiver operating characteristic; CTA, computed tomography angiography; AUC, area under curve.

respectively. Although the combined models of their 
studies performed better than our combined model, similar 
to their study, the combined model (Plaque + PVAT + 
Traditional CTA model) performed better than the single 
relevant model (traditional CTA model), and radiomics 
features contribute to differentiating symptomatic from 
asymptomatic carotid plaques in this study. In our study, the 
AUC of a single factor with 0.624 (traditional CTA model) 
was raised to that of the combined model with 0.840 (Plaque 
+ PVAT + Traditional CTA model). We think that the 
radiomics features of carotid plaques and PVAT together 
provide a good gaining effect in the combinational model. 
Furthermore, radiomics features of plaques and PVAT and 
traditional CTA features are complementary to each other 
in the identification of high-risk carotid plaques.

This study has some limitations. First, the study is a 
retrospective small sample study, so future prospective 

studies are needed to evaluate carotid plaques. Second, 
the ROIs in this study were manually segmented or 
semiautomatically segmented; full automatic segmentation 
can improve outline accuracy and reduce intraobserver 
and interobserver differences. Third, this is a single-centre 
study, and it is necessary to study the effects of different 
centres with different population and scanners on radiomics 
features of plaque and PVAT in the future. Finally, due to 
the large number of CTA images of carotid plaques and 
limited time, we performed radiomics analysis only at the 
level with the largest plaque area. The 3D segmentation 
method was not used, and some valid radiomics features 
may have been lost.

Conclusions

Radiomic features of plaques and PVAT and traditional 
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CTA features are useful for distinguishing symptomatic 
from asymptomatic plaques. Furthermore, the combined 
model with three types of features significantly contributes 
to identifying high-risk carotid plaques compared with 
traditional CTA model.
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Supplementary

Figure S1 Display and measurement of CTA plaque features. (A) Calcified plaque of the internal carotid artery and plaque length 
measurement. (B) Plaque ulceration (arrow). (C) Total plaque thickness and soft plaque thickness (on the same level, both values are equal). 
(D) Calcified plaque thickness at a different level from C. (E and F) Plaque enhancement (image before and after contrast injection). CTA, 
computed tomography angiography.
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Table S1 Radiomics features

Plaque radiomics features

Wavelet–LHL–GLCM–Joint Entropy

Wavelet–HLL–GLCM–Joint Energy

Wavelet–LLL–GLCM–MCC

PVAT radiomics features

Original–GLSZM–Size Zone Non-Uniformity

Wavelet–LHH–GLSZM–Small Area Emphasis

Wavelet–LHH–GLDM–Dependence Variance

Wavelet–LLL–GLCM–Sum Squares

GLCM, gray-level co-occurrence matrix; GLSZM, gray-level 
size-zone matrix; GLDM, gray-level dependence matrix; LHL, 
HLL, LHH, band-pass and sub-bands of the tumor region; LLL, 
low frequency sub-bands in the wavelet domain; MCC, Maximal 
Correlation Coefficient.


