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A deep learning-based model for automatic segmentation and 
evaluation of corneal neovascularization using slit-lamp anterior 
segment images
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Background: Corneal neovascularization (CoNV) is a common sign in anterior segment eye diseases, 
the level of which can indicate condition changes. Current CoNV evaluation methods are time-consuming 
and some of them rely on equipment which is not widely available in hospitals. Thus, a fast and efficient 
evaluation method is now urgently required. In this study, a deep learning (DL)-based model was developed 
to automatically segment and evaluate CoNV using anterior segment images from a slit-lamp microscope.
Methods: A total of 80 cornea slit-lamp photographs (from 80 patients) with clinically manifested CoNV 
were collected from December 2021 to July 2022 at Tianjin Medical University Eye Hospital. Of these,  
60 images were manually labelled by ophthalmologists using ImageJ software to train the vessel segmentation 
network IterNet. To evaluate the performance of this automated model, evaluation metrics including 
accuracy, precision, area under the receiver operating characteristic (ROC) curve (AUC), and F1 score were 
calculated between the manually labelled ground truth and the automatic segmentations of CoNV of 20 
anterior segment images. Furthermore, the vessels pixel count was automatically calculated and compared 
with the manually labelled results to evaluate clinical usability of the automated segmentation network. 
Results: The IterNet model achieved an AUC of 0.989, accuracy of 0.988, sensitivity of 0.879, specificity of 
0.993, area under precision-recall of 0.921, and F1 score of 0.879. The Bland-Altman plot between manually 
labelled ground truth and automated segmentation results produced a concordance correlation coefficient of 
0.989, 95% limits of agreement between 865.4 and −562.4, and the vessels pixel count’s Pearson coefficient 
of correlation was 0.981 (P<0.01). 
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Introduction

The cornea is a transparent, avascular tissue located in 
the anterior of iris and pupil. Defects in any corneal layer 
(consisting of corneal epithelium, Bowman’s layer, the 
corneal stroma, Descemet’s membrane, and the corneal 
endothelium) will interrupt light entering the eye. Corneal 
neovascularization (CoNV), a clinical sign of abnormal 
vessels invading into the cornea and tipping the balance of 
angiogenic and antiangiogenic factors, is often accompanied 
with corneal opacity and contributes to varying degrees of 
visual decline (1).

CoNV resulting from limbal stem cell barrier damage 
occurs due to a wide variety of etiologies, including 
ocular inflammation, infection, trauma, chemical injury 
(e.g., alkali), ischemia, corneal graft rejection, congenital 
abnormalities, or systemic disorders such as Stevens-
Johnson syndrome (2,3). It also can be categorized into 
superficial neovascularization, vascular pannus, and deep 
stromal vascularization according to the location of  
vessels (4). The existence of CoNV disrupts corneal 
relative immune privilege, and causes a positive feedback 
cycle of inflammation and increased vascularization (2). 
Thus, proliferation or regression of corneal neovessels is 
one of the most crucial aspects of disorder assessment and 
monitoring. 

Clinical observation methods on CoNV range from 
slit-lamp bio-microscope photography, in vivo confocal 
microscopy (IVCM), and anterior segment optical 
coherence tomographic angiography (AS-OCTA) to 
corneal fluorescein angiography (FA) and indocyanine 
green angiography (ICGA). Manually circumscribing the 
blood vessel network with the cursor based on anterior 
segment slit-lamp photographs and then calculating the 
percentage of neovascularization area in the total corneal 
area can enable an initial quantitative evaluation of CoNV 
in a straightforward way (5,6), which is non-invasive and 

relatively simple to operate, but tracing vessels manually is 
laborious and easily affected by operator-subjective effects. 
IVCM is mainly used for describing the characteristics of 
CoNV such as red blood cell traffic and lymphatic vessels; 
the need for direct surface contact between the cornea and 
the microscope objective lens, limited view field, and long 
acquisition time are the limitations of its clinical use (7). 
FA and ICGA, the “gold standard” for detecting CoNV 
currently, can quantify vessels in a semiautomatic way and 
clearly distinguish afferent or efferent vessels (8,9), but rely 
relatively heavily on equipment and technicians. Moreover, 
dye intravenous injections can introduce certain serious 
adverse reactions such as potential anaphylaxis, meaning 
that patients with contraindications are unable to undergo 
these examinations (10,11). AS-OCTA is a good non-
invasive, quantitative tool for objective CoNV assessment. 
The combination of en-face OCTA scan and cross-sectional 
plane provides multi-dimensional mapping and depth of 
corneal vessels; however, due to a limited image resolution 
with a small field of view, it may be inapplicable to evaluate 
the neovascularization of large areas (12-15). 

In general, although there are various methods of CoNV 
detection, they are limited by hospital level and clinical 
technicians, besides, many patients are not willing to 
undergo invasive examinations such as angiography. Slit-
lamps are commonly available in ophthalmology clinics, but 
although previous studies have shown that manually tracing 
vessels based on anterior slit-lamp images is an effective 
method to evaluate CoNV, it is time-consuming and 
volitional. Aiming to establish a non-invasive quantitative 
method and inspired by the application of highly accurate 
deep learning (DL) algorithms in ocular conditions 
[e.g., keratoconus (16), glaucoma diagnosis (17), dry eye  
disease (18), diabetic retinopathy (19), or corneal nerve 
evaluation (20,21)], we developed IterNet, a DL-based 
model that is trained on automatic segmentation and 

Conclusions: The fully automated network model IterNet provides a time-saving and efficient method to 
make a quantitative evaluation of CoNV using slit-lamp anterior segment images. This method demonstrates 
great value and clinical application potential for patient care and future research.
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evaluates different individuals’ CoNV using slit-lamp 
anterior segment photographs, to extract and quantify 
corneal neovessels rapidly so as to assist ophthalmologists in 
disease condition assessment.

Methods

Data collection

To our knowledge, this is the first study to use a DL model 
to segment corneal vessels, and public datasets for this 
subject are absent, therefore, a private dataset was used in 
this study.

A total of 80 slit-lamp anterior segment images with 
CoNV were collected at Tianjin Medical University Eye 
Hospital from December 2021 to July 2022. The study 
was conducted in accordance with the Declaration of 
Helsinki (as revised in 2013). The study was approved by 
the Institutional Review Board of the Tianjin Medical 
University Eye Hospital [No. 2021KY(L)-53] and the 
requirement for individual consent for this retrospective 
analysis was waived. The images were taken with the 
digital camera (Topcon SL-D701; Topcon, Tokyo, Japan) 
attached to the slit-lamp, the illumination was set at a 45° 
angle from the display system during acquisition of all 
images, and magnification was set at 10 times to clarify 
the entire cornea. A clear picture captured from each eye 
was presented as 1 sample, pictures with obvious blur were 
excluded (see in the supplementary appendix online), and all 
pictures were saved in JPG format with 3,264×2,448 pixels 
without compression before being processed. 

Image processing

All images were cropped first along the cornea limbus, 

and were then resized into a valid area of 576×576 pixels. 
For algorithm development, the 80 images were randomly 
divided into a training set and a testing set containing 60 
and 20 images, respectively. Visible corneal neovessels 
excluding blurred images of the training set images 
were labelled manually with a cursor by 2 independent 
ophthalmologists using Java-based ImageJ software 
(National Institutes of Health, Bethesda, MD, USA), and 
any discrepancy in the image labeling results was resolved 
by a simple majority vote with senior physicians. Based on 
the corresponding binary ground truth results, a calculation 
of CoNV area could be obtained by ImageJ software. Each 
sample in the training set included an original cornea 
image, manually labelled image, mask image, and ground 
truth result, as shown in Figure 1.

Architecture of DL-based model

In our experiment, we applied IterNet, which is based on 
U-Net with the additional ability to find obscured details of 
the vessel from actual segmented vessel images rather than 
raw input images. A previous reference noted that U-Net 
could extract the feature of vessels efficiently and has good 
performance in ocular fundus vessel segmentation (22,23). 
In order to make better use of well-extracted features from 
the U-Net model to infer the missing pieces in them, mini-
U-Nets were added to the model architecture. In brief, 
mini-U-Nets were added after the base module U-Net 
for initial segmentation, where the input of each refinery 
module is the output of the second last layer of its preceding 
module, thus, the false vessel patterns exposed and the 
loss function of each vessel segmentation output can be 
fixed according to the correct labels during the process of 
training. Afterwards, the base module can consistently adjust 

A B C D

Figure 1 CoNV image annotation example. (A) Cropped original cornea image; (B) manually labeled annotated image; (C) mask image; (D) 
ground truth image without background. CoNV, corneal neovascularization.
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parameters to improve output, and the vessels segmentation 
task can realize deeper than U-Net. Meanwhile, due to the 
skip-connection features of the architecture, IterNet can 
learn from 10–20 labelled images without prior training. 

The structure of IterNet consists of 2 main architectures, 
as shown in Figure 2. One architecture is U-Net, a module 
based on the encoder-decoder idea, which has a total of 
19 convolutional layers. The learning of the base module 
plays an important role in mapping from the original 
corneal images to the CoNV images. This helps to obtain 
a sketchy neovascularization segmentation map. The other 
architecture is mini-U-Net, which is a simplified version 
of U-Net consisting of 12 convolutional layers, the main 
responsibility of which is to process details such as micro-
vessels, branches, or terminal backbones of vessels. Mini 
U-Net is applied iteratively in this network, the number of 

iterations is set to 3, and it contributes a better completion 
of the false vessels correction. The output of the third mini-
U-Net is recognized as the final output of this network.

As the model deepens in this process, the problem 
of gradient disappearance is unavoidable. To address 
this problem, a path from the upper layer to the lower 
layer is added in the network to obtain an efficient back-
propagation. Thus, IterNet has three kinds of skip 
connections. The first is an intra-module connection, which 
serves to connect the encoding and decoding layers of each 
module. This connection introduces the feature information 
of the coding layer on the corresponding scale into the 
upsampling process, which has a higher feature resolution, 
thus, more accurate segmentation results can be obtained. 
The second is the connection from the base module to 
the refinery modules, it is an access of feature acquisition 

IterNet architecture overview

Conv 3×3, ReLU, dropout

Conv 1×1
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Figure 2 IterNet architecture overview: consists of 1 basic U-Net and 3 refinery modules (mini-U-Net). The size of final output is 
consistent with input in 576×576 pixels. ReLU, rectified linear unit; Conv, convolution.
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from the first layer of the base U-Net, which is very closely 
approximating the original corneal image. The feature is 
linked with the feature from each refinery module’s first 
layer. The third is the connection among refinery modules, 
which concatenates the features of the lower modules to the 
upper modules.

Owing to 1 anterior segment photograph representing 
each sample, the total number of images we collected 
was limited. Meanwhile, IterNet can be seen as the same 
module running in a single forward path multiple times. In 
order to meet demand with possible variations such as color, 
shape, and position of vessels, data augmentation is essential 
to adapt the model to different environments, color ranges, 
and so on. Thus, we used extracted image patches with the 
size of 128 pixels to train the network to avoid overfitting 
during the training process.

The experimental platform is Tesla P100-PCIE-
16GB graphics processing unit (GPU), and relies on 
the Tensorflow framework and Keras implementation. 
The training process is based on Python 3.7.6 (Python 
Software Foundation, Wilmington, DE, USA) and uses 
Adam optimizer; the batch size is set to 32, learning rate 
is 0.001, and the epoch is 300. The detailed configuration 
environment is listed in Table 1.

Evaluation metrics

To objectively and quantitatively evaluate the performance 
of IterNet, we conducted comparison on the network 
segmentation results and the manually labelled ground truth 
images by ophthalmologists from the aspects of accuracy, 
sensitivity, and specificity. The metrics were calculated 
as follows. First, we used 4 cases to evaluate the IterNet 

segmentation results of each pixel: (I) true positive (TP) 
indicates that a real vessel point is predicted as a vessel point 
in the network system; (II) true negative (TN) indicates 
that a background point is predicted belong to background; 
(III) false positive (FP) indicates a real background point is 
mistakenly predicted as a vessel point; (IV) false negative 
(FN) indicates that the vessel point is predicted as a 
background point. Then, based on above pixel-level results, 
the system calculated accuracy, sensitivity, specificity, and 
precision metrics. In our study, accuracy was defined as the 
percentage of pixel points the network correctly predicted in 
overall image pixel points, and precision was the percentage 
of true vessel pixel points in proportion to the whole 
vessel pixel points; sensitivity and specificity indicated the 
result of true vessel or background pixel points that were 
precisely predicted by IterNet, respectively. The F score is a 
comprehensive evaluation value equivalent to the harmonic 
mean function of precision and recall (sensitivity is generally 
represented as “recall” during F score calculation), it will be 
close to 1 (the maximum value, F∈[0, 1]) only when these 
2 are both high. The definitions of the above evaluation 
indicators are as follows (β value is set to 1): 
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TP FP TN FN

+
=

+ + +
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Dice coefficient was used to measure the similarity 
between the network segmentation result and the ground 
truth, according to the following definition:

( ) ( )
2*TPDice

TP FN TP FP
=

+ + +  [6]

During model training, loss functions of each output (Out 
n) were defined as follows:

( ) ( ) ( )log 1 log 1n n n n nL y p y p= − − − −  [7]

where yn (yn∈[0, 1]) represents whether the ground truth 
for the label is correct for the pixel n, and pn is the predicted 

Table 1 Experimental software and hardware environment 
configuration

Hardware environment

CPU: Intel(R) Xeon(R)Gold 5118

GPU: Tesla P100-PCIE-16GB

Software environment

Operating system: Ubuntu 20.04.4 LTS 

Deep learning framework: Tensorflow 1.15.0

Development language: Python

Dependencies: Opencv, Numpy, etc.

CPU, central processing unit; GPU, graphics processing unit.
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probability that the pixel n is a vessel pixel. The total loss 
functions value is the sum of each output. 

We logged the total pixels count of vessels from 
manually-labelled ground truth images and automatically 
segmented images, regarded as the morphometric parameter 
and used for further comparison analysis and calculation.

Statistical analysis

The software packages SPSS version 22.0 (IBM Corp., 
Armonk, NY, USA) and MedCalc version 19.0.4 (MedCalc 
Software, Ostend, Belgium) were used for statistical analysis. 
The agreement between the automated segmentation results 

and the manually labelled work was evaluated using Bland-
Altman plot. The correlation between the manually labelled 
vessels pixel count and the IterNet segmented vessels pixel 
count was assessed by Pearson’s test. The receiver operating 
characteristic (ROC) curve and the precision-recall curve 
were performed with Python version 3.7.6. A 2-tailed P 
value <0.05 was considered statistically significant.

Results

As illustrated in Figure 3, the automated segmentation 
network extracted visible corneal vessels to a relatively 
large degree, and showed morphological variation of 

A B C

Figure 3 Examples of CoNV segmentation by IterNet. The images in the first column are input images (A); the second column shows 
images with manually traced corneal vessels (B); and the final column are images from the output of the segmentation network (C). CoNV, 
corneal neovascularization.
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vessels which are consistent with the original morphology 
compared with manually labelled vessels.

To specifically evaluate IterNet performance, the ROC 
curve of the CoNV segmentation network result on the 
testing set was illustrated (Figure 4A), and as can be seen 
from the curves, the area under the IterNet ROC is larger 
than U-Net ROC. The other evaluation metrics of IterNet 
including sensitivity, specificity, accuracy, precision, and 
Dice coefficient were higher than those of U-Net, as shown 
in Table 2. Besides, the areas under precision-recall curves of 
IterNet and U-Net were 0.921 and 0.889, respectively.

The Bland-Altman plot for evaluating the consistency 
between IterNet segmentation results and the ground truth 
is presented in Figure 4B, and the 95% agreement limits 
between them are between 865.4 and −562.4 [concordance 
correlation coefficient (CCC) =0.989]. The Pearson’s 
correlation coefficient of pixel count between manually 
labelled vessels and IterNet segmented vessels was 0.981 
[95% confidence interval (CI): 0.976–0.996, P<0.01].

Based on the above analysis results, after all the images 
has been processed in a normalization method (cropped 
images were resized into a valid size pixels), the percentage 
of automated segmentation vessels pixel count in proportion 

to the whole mask image can be used for condition 
assessment and therapy monitoring, resembling an “area” 
ratio. For example, as shown in Figure 5, the images of 
a patient with CoNV were analyzed via IterNet: the 
percentage of vessels that had invaded into the cornea had 
fallen from 4.766% (12,206 pixels) to 0.801% (2,052 pixels)  
a f ter  treatment ,  denot ing the therapeut ic  e f fect 
quantitatively, accordingly, 5.012% (12,837 pixels) reduced 
to 0.768% (1,967 pixels) in manually labelled images, which 
indicates a minor difference of value difference between 
automatic segmentation and manual work.

Discussion

In this study, we described a fully automated method for 
the objective segmentation of corneal neovessels using slit-
lamp anterior segment images. The automatic segmentation 
results showed a high agreement with the manually labelled 
ground truth performed by ophthalmologists, and the 
morphometric parameter calculation of segmented vessels 
pixels count realized a quantitative description of CoNV, 
which could be used for comparative studies in the future.

A literature review of previous studies revealed that the 
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Figure 4 Performance evaluation of IterNet. (A) The ROC curve of IterNet and U-Net models. The AUC of IterNet and U-Net is 0.989 
and 0.987, respectively. (B) Bland-Altman plots for comparing the pixels counts of manually labeled vessels and IterNet segmented vessels 
for the testing set, showing a good coherence between manual work and automated segmentation result. SD, standard deviation; ROC, 
receiver operating characteristic; AUC, area under the ROC curve.

Table 2 The comparison of segmentation results between IterNet and U-Net

Model AUC Accuracy Sensitivity Specificity Dice coefficient Precision F1 score

IterNet 0.989 0.988 0.879 0.993 0.879 0.878 0.879

U-Net 0.987 0.981 0.859 0.987 0.815 0.775 0.815

AUC, area under the receiver operator characteristic curve.
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quantitative analysis of CoNV included a semiquantitative 
method and a semiautomatic method. Lai et al. classified 
corneal angiogenesis into 4 grade scales dependent on the 
numbers of vessels of the entire cornea (0, no vertical vessel; 
I, 1–6 vessels; II, 7–15 vessels; III, more than 15 vessels), 
which was regarded as an indicator of therapeutic effect in 
the study (24). Obviously, it was not sufficient enough when 
the area or length of vessels changed rather than numbers. 
Other semiquantitative methods such as dividing cornea 
into several quadrants and assessing vessels with scores 
according to the density or extent beyond the limbus face 
the same problem (25-27). Some researchers tend to apply 
the method of staining corneas with anti-CD31/PECAM-1 
(the typical blood vessel molecular marker) antibody and 
fluorescein-conjugated secondary antibody, then observe 
and evaluate corneal vessels by the image analysis program 
Cell^F (Olympus Soft Imaging Solutions GmbH, Münster, 
Germany) (28-30), which is a comprehensive semiautomatic 
method but only available in animal experiments. In clinical 
practice, the combined use of imaging systems (FA, ICGA, 
or AS-OCTA) and image editing software such as ImageJ 
or Enhance is appealing; however, it is worth noting that 

the fluorescein sodium leakage may affect vessel observation 
and assessment, and AS-OCTA may produce artifacts which 
are recognized as abnormal vessels (15,31,32). Compared 
with the aforementioned approaches, the automated 
segmentation model IterNet using slit-lamp images can 
avoid invasive operation and obtain a relatively thorough 
evaluation of vessels in the whole cornea.

Manual vessel tracing based on color images is not 
unusual in studies (5,6,33). Dastjerdi et al. proposed a 
computer-assisted method using Photoshop (Adobe, San 
Jose, CA, USA) to trace vessels and a written MATLAB 
program (MathWorks, Natick, MA, USA) to calculate 
corneal neovessel parameters (34), but the tracing work 
is time-consuming and low in repeatability due to the 
fact that manual operation by ophthalmologists may 
produce different performances in different situations. In 
comparison, the IterNet model performed vessel extraction 
repeatedly and achieved stable and consistent results. It 
was estimated that the developed network system takes 
less than 2 minutes to accomplish vessel segmentation and 
morphometric parameter quantification with the process 
on a GPU, which reduces time sharply and shows great 

A B C

D E F

Figure 5 An example of CoNV regression after treatment. The images in the upper (A-C) and lower (D-F) rows illustrate conditions pre- 
and post-treatment, respectively (B,E: manually labelled annotation; C,F: IterNet segmentation). Circles in dotted lines represent the range 
of the whole cornea. CoNV, corneal neovascularization.
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potential value of application in assisting clinical practice. 
There were several limitations to our study. First, the 

results of IterNet performance evaluation indicate that 
the algorithm produced a relatively low sensitivity and 
precision for corneal neovessel segmentation compared 
with manually labelled results. In similarity with AS-
OCTA, of which the results may not include the vessels 
with minimal flow or blocked signal from corneal opacities 
(13,35), vessels located in the deep stromal layer or covered 
by opacities were indistinguishable in slit-lamp images 
and hard to be outlined accurately. Although we manually 
labelled as many vessels as possible, the results were still less 
exhaustive than those of FA or ICGA, and the algorithm 
was prone to mistake vague vessels for false patterns and fix 
them. Second, because the cornea is not a horizontal plane, 
any anterior segment photographs taken may be influenced 
by illumination position or low contrast, which means 
that not all the vessels are captured clearly and increases 
difficulty in segmentation, especially in serious cases with 
CoNV. Therefore, the quality of images acquired for 
model processing needs to be guaranteed, and those with 
poor quality may produce a decrease in performance of the 
model in real-world practice. In a recent research on retinal 
vessel segmentation, a method was proposed based on the 
multi-scale retinex algorithm and multi-scale Gaussian-
matched filtering method, showing more small blood 
vessels and better integrity of vascular structure, which may 
help to improve image processing to compensate for image  
quality (36). This might be a possible solution to improve 
slit-lamp images.

We recognize the limitations of our preliminary study. 
It would have been more comprehensive to be evaluated 
by a prospective study of CoNV with comparisons with 
angiography techniques or AS-OCTA. Nevertheless, this 
is still an innovative attempt to apply a DL-based model in 
corneal vessel segmentation and evaluation, demonstrating 
a great performance and the potential to aid in further 
making a quantitative estimation of abnormal neovessels in 
various corneal diseases. 

What is more interesting is that corneal neovessels 
evaluation may be actualized at local clinics or even at home. 
Previous studies have shown that smartphones with camera 
attachments can capture ocular fundus images for screening 
and monitoring fundus lesions such as diabetic retinopathy 
(37,38). Inspired by which, patients with corneal disorders 
may undergo an initial assessment by means of IterNet, 
dependent only on the requirement of a clear and complete 
corneal picture. The combination of artificial intelligence 

(AI) and modern technologies will greatly improve health 
self-management, and we believe this advancement will be 
necessary for the large aging population in the near future.

Conclusions

Based on slit-lamp anterior segment images, we presented 
a fully automatic method for segmenting corneal neovessels 
and evaluating their quantitative parameters, which shows 
good performance. Compared to existing CoNV assessment 
methods, IterNet realized a combination of accuracy 
and efficiency, and is a novel application of computer-
aided diagnosis. In addition, the equipment required is 
commonly available, and the entire process is noninvasive; 
it is also a breakthrough in the management of corneal 
diseases. Further validation of the IterNet model in a 
larger population in a clinical setting is required, and it is 
necessary to compare it with other imaging techniques. 
Further research is required to validate the potential of the 
model to improve the management of patients with CoNV.
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