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Background: Surgical action recognition is an essential technology in context-aware-based autonomous 
surgery, whereas the accuracy is limited by clinical dataset scale. Leveraging surgical videos from virtual 
reality (VR) simulations to research algorithms for the clinical domain application, also known as domain 
adaptation, can effectively reduce the cost of data acquisition and annotation, and protect patient privacy.
Methods: We introduced a surgical domain adaptation method based on the contrastive language-image 
pretraining model (SDA-CLIP) to recognize cross-domain surgical action. Specifically, we utilized the Vision 
Transformer (ViT) and Transformer to extract video and text embeddings, respectively. Text embedding 
was developed as a bridge between VR and clinical domains. Inter- and intra-modality loss functions were 
employed to enhance the consistency of embeddings of the same class. Further, we evaluated our method on 
the MICCAI 2020 EndoVis Challenge SurgVisDom dataset.
Results: Our SDA-CLIP achieved a weighted F1-score of 65.9% (+18.9%) on the hard domain adaptation 
task (trained only with VR data) and 84.4% (+4.4%) on the soft domain adaptation task (trained with VR and 
clinical-like data), which outperformed the first place team of the challenge by a significant margin.
Conclusions: The proposed SDA-CLIP model can effectively extract video scene information and textual 
semantic information, which greatly improves the performance of cross-domain surgical action recognition. 
The code is available at https://github.com/Lycus99/SDA-CLIP.
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Introduction

Since the emergence of the information technology era, 
the integration of big data into clinical surgical practice 
has become a prevalent trend (1). The data-driven context-
aware-based autonomous surgical assistance system is the 
future development direction of the operating room (2), 
which will reduce the operating pressure of the surgeon 
and shorten the learning curve for newcomers. The system 
mentioned serves multiple purposes in the context of 
surgical procedures. It monitors surgical procedures (3), 
supports clinical decision-making (4), and provides early 
warnings during surgeries (2). Additionally, the system 
generates task-based performance reports, enabling the 
assessment of surgeons’ surgical skills after the completion 
of surgeries (5,6). Moreover, the analysis results of surgical 
videos can be synchronized across multiple devices through 
cloud-based storage, analysis, and retrieval mechanisms (7).

Context-aware tasks such as surgical action recognition 
can be effectively learned from a multitude of manually 
annotated surgical videos. However, due to worries about 
privacy invasions, many people are reluctant to disclose 
their own health data (8). In addition, clinical surgical video 
annotations are challenging and time-consuming (9) since 
they require prior medical knowledge.

A new trend is to use videos from virtual reality (VR) 
simulations of surgical actions to develop algorithms to 
recognize tasks in a clinical-like setting (10), a technique 
known as surgical domain adaption. The utilization of 
simulated, harmless, and well-labeled surgical action videos 
is the major advantage of this approach. Domain adaptation 
tasks can be divided into hard domain adaptation and soft 
domain adaptation according to whether the target domain 
data is included in the training set. Specifically, hard 
domain adaptation refers to using only VR domain data for 
model training, which is also called unsupervised domain 
adaptation, and soft domain adaptation employs VR domain 
and few clinical domain data for model training.

Traditional surgical action recognition methods only 
leverage data from the clinical domain. However, these 
models’ performance degrades a great deal in other data 
domains, which is called domain-shift (11). Many efforts 
have been made to address this issue by aligning the data 
distribution in the source and target domains through non-
linear transformations (Figure 1). A representation of the 
typical distribution of original data in the source and target 
domains is provided in Figure 1A, previous surgical domain 
transforms in novel spaces are displayed in Figure 1B,  

wherein the category distributions of the source and 
target domains are consistent and contiguous. Image-to-
image (I2I) (12) adopts a 2-step strategy, first using cycle-
generative adversarial network (CycleGAN) to transfer 
simulated images into clinical-style images, and then 
harnessing these transformed images for training. The 
models presented in (10) aim to extract instrument edges 
or segment masks in surgical images. However, when the 
manifold structures of data distribution are complex, such 
transformations in pursuit of domain consistency can lead 
to a loss of semantic information and a reduction in model 
accuracy (13). Consequently, we explored the introduction 
of novel components to establish the relationship between 
the 2 data domains without transforming the original space.

We aimed to clarify whether there any components that 
are innately consistent across both domains. We proposed 
to connect the source and target domains with the help of 
text labels corresponding to surgical action videos. As shown 
in Figure 1C, the surgical action videos for both domains 
are linked to text labels by image-text contrastive learning. 
Compared to single-modality models that are solely trained 
on images, multi-modality models have the theoretical 
potential to learn more effective and discriminative 
latent space representations (14). In addition, the multi-
modality features possess the capability to be transferred 
to other data domains, which is especially relevant in 
situations where data availability is scarce, such as in 
clinical surgical videos. With the blooming of contrastive 
learning, the contrastive language-image pretraining model 
(CLIP) (15) was proposed to learn multi-modality feature 
representations from image-text pairs. Additionally, it has 
been experimentally validated that the model is robust when 
processing images from various domains. The knowledge 
learned by the CLIP model can be successfully transferred 
to downstream tasks (16,17). Unlike mutually orthogonal 
one-hot labels, text labels encompass abundant semantic 
information. The similarity between text labels from various 
categories can be viewed as prior knowledge for assessing 
their relevance (18). Moreover, in the field of medical image 
analysis, although visual features of the same anatomical 
structure are domain-specific, its textual information can 
remain consistent. Consequently, Liu et al. (19) employed 
a text-based approach to construct uniform and robust 
models across datasets. Such findings have encouraged us 
to investigate the application of image-text models to the 
surgical domain adaptation task.

In this paper, we propose a novel framework for surgical 
domain adaptation (SDA; SDA-CLIP) to recognize cross-
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Figure 1 Different surgical domain adaptation methods. (A) The distribution of the original data in the source and target domains. 
The same shapes represent the same action categories. (B) The source and target domains are aligned to a new space by non-linear 
transformations to achieve domain-aligned data distributions. (C) The source and target domains are bridged by text labels. The original 
data distribution and semantic features are preserved.
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domain surgical actions. Specifically, we first extended the 
original one-hot labels to text prompt labels by templates. 
After that, we input the training videos into the video 
encoder and input the text prompts into the text encoder 
to obtain the visual embeddings and text embeddings, 
respectively, and then the visual embeddings were fused 
through the fusion model. Finally, the surgical action 
recognition task was implemented by calculating the 
similarity between visual embeddings and text embeddings. 
When evaluating the model, test videos from another 
domain can be directly fed into the model without changing 
the model parameters or framework.

Our key contributions are as follows:
(I) We propose a novel framework that applies a video-

text pair-based network to recognize cross-domain 
surgical actions, demonstrating the feasibility 
of using text information for surgical domain 
adaptation and video analysis.

(II) We introduce intra- and inter-modality loss 
functions to further constrain the learning of the 
network. The efficacy of different components is 
further analyzed.

(III) Our method achieves state-of-the-art performance 
on 2 tasks  on the MICCAI 2020 EndoVis 

Challenge SurgVisDom dataset, greatly surpassing 
the winner’s method in the challenge.

Methods

In this section, we illustrate different modules in the 
network, including video encoder, text encoder, loss 
functions, and other components. The overview of our 
proposed SDA-CLIP is shown in Figure 2.

Model architecture

For a mini-batch of size n, we use [ ]1 2, , , nV v v v=   to 
represent each video clip in it, and the corresponding labels 
are denoted by [ ]1 2, , , nC c c c=  . The video clip vi consists 
of Li frames. In the video pre-process, we divide one video 
clip into s segments, and then randomly select a frame from 
each segment to constitute an image sequence representing 

the video clip, denoted as 1 2ˆ , , ,i i i s C W H
i sv x x x R × × × = ∈  .

Video encoder
In order to extract the discriminative embedding of the 
pictures in the video, we exploit the CLIP pre-trained 
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Figure 2 Overview of our proposed SDA-CLIP. Labels or videos of the same color belong to the same class, so the corresponding similarity 
coefficient in the ground truth matrix is 1. The white blocks indicate that the coefficient is 0. V1-4, T1-4 denotes video embedding of videos 
1–4 and text embedding of labels 1-4, respectively. SDA-CLIP, surgical domain adaptation method based on the contrastive language-image 
pretraining model; ViT, Vision Transformer.
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ViT (20) model with patch size 16 and 12 layers as the 
video backbone network. Each image in the sequence 
is discretized with a non-overlapping size of 16×16 to 
obtain a series of 1-dimensional (1D) tokens. After that, 
the [class] token is concatenated at the first position of the 
sequence and the position embedding is added to each 
token. Finally, the token sequence is input into encoder 
blocks to extract video embedding. In order to calculate the 
similarity coefficient with the text embedding, the video 
backbone network ends with a linear projection head and 
the embedding is projected to the dimension d0 from dv by 
matrix 0vd dD R ×∈ . Let fv represent the video encoder, then 
the output segment-level features of the segment l̂v  can be 
formulated as follows:

( ) ( )transformer-encoderi i
v j vid jf x x D=  [1]

( ) ( ) ( ) ( ) 0
1 2ˆ , , , s di i i i

seg v i v v v sf f v f x f x f x R × = = ∈ 

 [2]

Finally, 1 2, , , n
seg seg seg segF f f f =    is utilized to represent 

the segment-level embedding of the mini-batch.

Fusion model
The segment-level features of a clip extracted by the 
video encoder are integrated into the video-level feature 
through the fusion model. A naïve thought is to average 
the segment-level features, which is also known as mean 

pooling:

( ) ( ) ( ) ( )( )1 2mean-pooling , , ,i i i i i
vid mean seg v v v sf f f f x f x f x = =    [3]

In addition, the Transformer proposed for modeling 
language sequence can be easily expanded to features fusion 
for image sequence, which can perform global modeling 
and fit more complex action changes.

( ) ( )( )mean-pooling transformer-encoderi i i
vid trans seg fus segf f f f= =  [4]

From another perspective, the naïve mean-pooling 
strategy is equal to a 0-layer transformer. Our experiments 
demonstrate that the Transformer fusion model performs 

better than mean pooling. Let 1 2, , , n
vid vid vid vidF f f f =  

 

represent the video-level embedding of a mini-batch, and 
the dimension is 0n dR × .

Text encoder
Prompt engineering is the process of expanding text labels 
for class names into prompts by templates in order to 
provide task information and prevent polysemy. We first 
expanded all category names into phrases with the same 
meaning, such as Needle-Driving → driving the needle tip. 
The expanded category names are easily embedded into 
the prompt templates. The design of the prompt templates 
has a significant impact on how well multi-modality models 
work (21). The prompt types we used are listed below:
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Table 1 Different kinds of prompt templates. The curly brackets are used to contain the category name phrase

Template type Template description

Caption template {}

General template a photo of {}, a picture of action {}, playing action of {}, doing a kind of action, {} playing a kind of action, {} can you 
recognize the action of {}, video classification of {}, a video of {}

Customized 
template

a photo of {}, a type of surgical action; surgical action of {}; {}, a surgical action; {}, this is a surgical action; {}, a video 
of surgical action; look, the surgeon is {}; the doctor is performing {}; the surgeon is performing {}

 Caption prompt: only contains the category name 
(e.g., {driving the needle tip});

 General prompt: does not contains task information 
(e.g., a photo of {driving the needle tip});

 Customized prompt: contains task information (e.g., 
a photo of {driving the needle tip}, a type of surgical 
action).

where the content in the curly brackets represents the 
category name phrase, and the other parts are the prompt 
templates.

In (15), it is mentioned that templates containing task 
information perform better than general templates. As a 
result, we utilized task-customized templates that included 
the words “surgeon” or “surgical action”, which can offer 
task hints to the model. To attenuate the effect of template 
wording, we used 8 templates in both general prompt and 
customized prompt. The templates were programmatically 
randomly combined with the category names in each 
training epoch. Finally, 17 prompt templates were all used 
in our model (1 caption template, 8 general templates, and 
8 customized templates). In the ablation study section, 
we compare the experimental results of different types of 
templates. A full list of prompt templates can be found in 
Table 1.

Let [ ]1 2
ˆ , , , nC y y y= 

 denote the prompt label expanded 
from the origin label C. After obtaining the prompt labels, 
the CLIP pre-trained Transformer (22) model with 12 
layers is leveraged to extract text embedding. The prompt 
labels are first encoded by the token embedding layer. 
Position embedding and attention blocks are also used in 
the text encoder. The disparity from the video encoder 
is that the text encoder outputs the [end of term] token 
instead of the [class] token. We set text encoder gt and keep 
consistent embedding dimension with video embedding. 
The text embedding is calculated as follows:

( ) ( )transformer-encodert i text ig y y=  [5]

( ) ( ) ( ) ( ) 0
1 2

ˆ , , , n d
text t t t t nF g C g y g y g y R × = = ∈ 

 [6]

Inter- and intra-modality loss functions

To ameliorate training efficiency, the CLIP model exploits 
the method of predicting image-text pair matching as the 
pretext task. Since the correct match between images and 
caption labels is unique, cross-entropy can be harnessed as 
the loss function. However, in our tasks, different videos 
of the same category are contained in the mini-batch, 
which results in the match between videos and texts being 
no longer one-to-one. Therefore, Kullback-Leibler (KL) 
divergence is employed to measure the similarity between 
the prediction and the ground truth. The cosine similarity 
calculation formula of f1, f2 is presented as Eq.7. Cosine 
similarity can be used to calculate inter-modal loss Linter and 
intra-modal loss Lintra.

( ) ( ) 1 2
1 2 1 2

1 2

sim , cosine-similarity ,
Tf ff f f f

f f
⋅

= =   [7]

Inter-modality loss function
Following the form of the symmetric loss in CLIP, we 
symmetrically calculated the similarity coefficient between 
video embedding Fvid and text embedding Ftext, and softmax 
was leveraged to convert it into the form of a probability 
distribution. Video-to-text and text-to-video similarity 
matrix can be denoted as SVT, STV, respectively. Taking video-

to-text as an example, let ,i j
vts  represent the similarity 

coefficient between i-th video embedding i
vidF  and j-th text 

embedding j
textF , the score can be formulated as follows:

( ) ( ) ( ),
1 , ,
2 Sinter VT TVV T DL E KL S Gt KL S Gt = + 

 [8]

Intra-modality loss function
In previous work in the field of contrastive learning, 
features of the same class were considered to be distributed 
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in similar positions in the embedding space (23). Inspired 
by this thought, we additionally calculated the intra-
modality loss to enhance the representation ability of the 
single-modality embedding. We used SVV and STT to denote 
the video similarity matrix and text similarity matrix, 
respectively. Taking video intra-modality loss as an example, 
video embeddings of the same category are encouraged to 
be more similar, which helps the encoder to mine potential 
class-level features rather than sample-level features. KL 
divergence is maintained for the loss computation.

( ) ( ) ( ),
1 , ,
2 Sintra VV TTV T DL E KL S Gt KL S Gt = + 

 [9]

It is worth noting that (24) and (25) use consistency loss 
to train the network. We hope to strengthen the models’ 
robustness through the loss function. The consistency loss 
is for the target domain image, and the model is expected 
to keep the output of the perturbed images consistent with 
the original images. Differently, for videos of the same class 
in the source domain, the intra-modality loss hopes that the 
embeddings of the same modality are consistent, so as to 
determine the class-level features.

In summary, the total loss function is composed of Linter 
and Lintra, which can be formulated as follows:

inter intraL L Lλ= + ×  [10]

where λ is hyperparameter.

Results

Dataset

We evaluated our proposed model on the MICCAI 2020 
EndoVis Challenge SurgVisDom dataset (10). The training 
set of the SurgVisDom dataset consists of 450 VR domain 
and 26 clinical-like domain surgical video clips from da 
Vinci simulator and da Vinci system (Xi or Si), respectively. 
VR domain clips are captured at 60 fps and 1280×720 
resolution, and clinical domain clips are captured at 20 fps 
and 960×540 resolution. Both VR and clinical clips contain 
3 categories: dissection (DS), knot-tying (KT), and needle-
driving (ND), and each clip includes only 1 category. The 
test set of the SurgVisDom dataset consists of 16 long 
videos of the clinical domain, which means that each video 
includes at least 1 action. Some inactive frames that do not 
match any action are not used for evaluation.

Evaluation metrics

We utilized the metrics and evaluation methods proposed 
in the Challenge to comprehensively compare different 
methods. The evaluation metrics are mean weighted F1-
score, mean unweighted F1-score, mean global F1-score, 
and mean balanced accuracy score. For prediction p and 
ground truth y, the following metrics were utilized to 
evaluate different models.

Balanced accuracy
Let C, ci represent the total number of classes in the dataset 
and the number of samples in i-th class, respectively. The 
balanced accuracy score can be formulated as follows:

( )
1 1

1, 1
icC

p y
i j

BalancedAccuracy p y
C =

= =

= ∑∑  [11]

F1 score
Firstly, precision (PR) and recall (RE) are computed by 

,
y p y p

PR RE
p y
∩ ∩

= = , respectively. Then, F1 score is 

calculated as follows:

PR REF1 2
PR RE

⋅
= ⋅

+
 [12]

The unweighted F1-score and global  F1-score 
correspond to macro-F1 and micro-F1, respectively.

Among the 4 metrics, the mean weighted F1-score and 
the mean balanced accuracy score are harnessed to handle 
the data imbalance problem. The evaluation method 
consists of 2 steps. First, the 4 metrics between the label and 
the prediction of each video in the test set are calculated, 
and then the average value of each metric is taken as the 
final result. The weighted F1-score is leveraged as the 
ranking foundation.

Implementation details

Considering the amount of data, the video clips of the 
training set and test set were sampled according to their 
respective frame rates. The black border and the simulation 
operation interface are cut off due to them not being related 
to the surgery. The model was implemented on PyTorch 
and trained on Titan RTX GPU.

Our model used the parameters of the CLIP model pre-
trained on the WIT-400M dataset as the initial weights.
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Figure 3 Using 5-fold cross-validation to select model parameters. The blue area represents the SD, and the dots represent the mean value. 
SD, standard deviation.
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The model was trained for 50 epochs by AdamW 
optimizer, and the first 10% epochs were set to warm-
up phase. We use multi-scale crop, random horizontal 
flip, random color jitter, and random gray scale for data 
augmentation. The Rand Augment strategy (26) with N=4, 
M=9 was also employed to alleviate the overfitting. Our 
ablation experiments found that the trainable text encoder 
could perform better, and therefore we did not freeze it.

On the basis of the ActionCLIP (16), the hyperparameters 
were chosen by 5-fold cross-validation on the training set 
including VR and clinical-like clips. We chose the balanced 
accuracy score as the metric for hyperparameters selection 
and the comparison of different configurations is shown in 
Figure 3. According to the experiments, the video clip was 
divided into s=16 segments. A 6 layers transformer fusion 
model and λ=0.2 were adopted. The learning rates of the 
visual and text encoders were set to 3×10−5 and 5×10−5 for 
soft and hard domain adaptation tasks, respectively. The 
learning rate of the fusion model is 10 times that of the 
encoder. During the training stage, a frame was randomly 
selected from each divided segment during each epoch. 

During the inference stage, we first cut the test video into 
clips with 128 frames, and then used the same method as in 
the training process to infer the category of each clip, which 
represents the category of all the included frames. Our 
ablation experiments found that the trainable text encoder 
could perform better. Therefore, we did not freeze it and 
set the learning rate the same as the visual encoder.

Comparison with state-of-the-art methods

For the hard domain adaptation task, a total of 2 teams 
participated. The results are presented in Table 2. Team 
Parakeet utilized the 2DVGG16 (27) network to extract 8 
frames of image features as input, then a 3-dimensional (3D) 
convolution kernel was harnessed to further fuse spatio-
temporal information. Finally, the fully connected layer 
was exploited to obtain action recognition results. Team SK 
employed 2 pre-processing methods to extract instrument 
segmentation masks and contours. After that, the masks, 
contours, and the original RGB images were input to the 
SlowFast (28) network pre-trained on the Kinetics400 
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dataset to obtain the prediction results.
It was evident that our SDA-CLIP substantially improved 

all metrics, surpassing the first-place team of the challenge 
by 18.9%, +28.0%, +17.2%, and +5.0% in each metric, 
respectively. The weighted F1-scores of other models were 
similar to random guessing, meaning that the model only 
learns limited knowledge. Although the balanced accuracy 
of the Parakeet was acceptable, the poverty in weighted F1-
score illustrated that the model tended to predict positive 
samples as negative.

For the soft domain adaptation task, a total of 3 teams 
participated. The results are presented in Table 3. Team 
Parakeet and Team SK utilized the same models as the 
hard task. Team ECBA tapped into an image segmentation 
network. They proposed RASNet to extract surgical 
instrument segmentation in VR and clinical domains, then 
3D ResNet-18 (29) was used to extract spatio-temporal 
fusion features. Finally, the stride convolution was leveraged 
to obtain the action prediction of the test video. Our SDA-
CLIP still achieved the best performance on all metrics, 
outperforming the first-place team of the challenge by 4.4%, 
6.3%, 1.9%, and 3.3%, respectively. Although team SK 
used multi-modal image information (segmentation mask, 
edge counter) and reached a fairly high 80% weighted F1-
score, our model was still able to improve the accuracy on 
multiple metrics, illustrating the effectiveness of using video 

text pairs.
In summary, our SDA-CLIP not only achieved 

superior performance on the SurgVisDom dataset but also 
outperformed the state-of-the-art methods by a significant 
margin. Furthermore, our model does not design additional 
unit modules for the domain adaptation task, which 
indicates that the method can be extended to other tasks, 
such as surgical action segmentation, phase recognition, and 
so on.

Ablation study

In order to illustrate the efficacy of our contributions, 
ablation models were constructed for evaluation.

(I) Pure ViT: the model only leverages the video 
encoder and ends with a linear projection head to 
classify videos. The cross-entropy loss is selected as 
the loss function between labels and predictions.

(II) ViT + Text-f: auxiliary text modality is utilized in 
the model, and the video-text matching loss based 
on KL divergence is employed as the loss function. 
However, the text encoder’s parameters are frozen, 
similar to many nature-scene CLIP-driven models.

(III) ViT + Text-t: given the domain gap between 
the surgical and general scenes, we made the 
parameters of the text encoder trainable. This 

Table 2 Action recognition results of different models on task 1: hard domain adaptation

Method Weighted F1-score Unweighted F1-score Global F1-score Balanced accuracy

Rand 0.450 0.207 0.327 0.327

SK 0.460 0.225 0.370 0.369

Parakeet 0.470 0.266 0.475 0.559

SDA-CLIP 0.659 (+18.9%) 0.546 (+28.0%) 0.647 (+17.2%) 0.609 (+5.0%)

SDA-CLIP, surgical domain adaptation method based on the contrastive language-image pretraining model.

Table 3 Action recognition results of different models on task 2: soft domain adaptation

Method Weighted F1-score Unweighted F1-score Global F1-score Balanced accuracy

Rand 0.450 0.207 0.327 0.327

SK 0.600 0.414 0.599 0.644

ECBA 0.790 0.488 0.742 0.776

Parakeet 0.800 0.604 0.774 0.778

SDA-CLIP 0.844 (+4.4%) 0.667 (+6.3%) 0.858 (+8.4%) 0.811 (+3.3%)

SDA-CLIP, surgical domain adaptation method based on the contrastive language-image pretraining model.
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setting is commonly employed in CLIP-driven 
medical image analysis methods (30-32).

(IV) SDA-CLIP-f: the text encoder’s parameters are 
frozen, and the intro-modality loss function is 
employed.

(V) SDA-CLIP: we employed trainable text encoder 
and intra-modality loss to constrain the learning of 
the network (i.e., our complete proposed model).

The results of different models are presented in  
Table 4. We can see that the Pure ViT model obtained 
averaged recognition results on the soft domain adaptation 
task, and the capability of the transformer backbone is 
verified on the hard domain adaptation task. On top of that, 
adding the text modality steadily boosted the performance 
on both tasks. As shown in Table 4, the improvement is 
statistically significant. Comparing the results of ViT + Text 
and SDA-CLIP, we observed that the Lintra can improve the 
model property in almost all evaluation metrics. Although 
the balanced accuracy score of the SDA-CLIP model had 
decreased, the increase in the weighted F1-score indicated 
that the ability to recognize false negative samples had 
improved, which is meaningful to clinical application. 

Additionally, we found that the trainable text encoder can 
slightly improve the weighted F1-score in both tasks. This 
is due to the domain gap between surgical and general text 
descriptions. In summary, both elements contribute to the 
eventual progress.

In prompt engineering, the category names are expanded 
by the caption, general, and customized templates. Here, we 
compare the recognition results of various kinds of prompt 
templates. None of the models in the following utilize intra-
modality losses for either visual or text modalities.

(I) Caption template: the text label for each sample 
in the training batch is generated using the unique 
caption prompt template provided in Table 1.

(II) General template: the prompt template for each 
sample in every training batch is randomly selected 
from the 8 candidate general templates in Table 1.

(III) Customized template: the prompt template is 
randomly selected from the 8 candidate customized 
templates in Table 1.

The hyperparameters are consistent with previous 
experiments. From Table 5, we can see that the task-
customized templates performed better than other template 

Table 4 Ablation settings on key components for surgical domain adaptation

Method
Component Metrics (hard/soft)

Text Lintra Weighted F1 Unweighted F1 Global F1 Balanced accuracy

Pure ViT × × 0.531**/0.630** 0.390*/0.489** 0.536*/0.684** 0.585/0.756

ViT + Text-f Freeze × 0.569*/0.791** 0.438*/0.659** 0.621/0.796** 0.696/0.822

ViT + Text-t Train × 0.579*/0.798 0.428*/0.636 0.610/0.797* 0.677/0.769

SDA-CLIP-f Freeze √ 0.655/0.829 0.520/0.653 0.630/0.857 0.603/0.784

SDA-CLIP Train √ 0.659/0.844 0.546/0.667 0.647/0.858 0.609/0.811

* and ** denote that the P values of the paired t-test are less than 0.05 and 0.01, respectively. Text, text encoder; Lintra, intra-modality 
loss function; hard, hard domain adaptation task; soft, soft domain adaptation task; ViT, Vision Transformer; SDA-CLIP, surgical domain 
adaptation method based on the contrastive language-image pretraining model.

Table 5 Recognition results with 3 kinds of prompt templates for surgical domain adaptation

Template type
Metrics (hard/soft)

Weighted F1 Unweighted F1 Global F1 Balanced accuracy

Caption template 0.565**/0.776 0.446/0.541* 0.600*/0.788 0.654*/0.734

General template 0.596/0.782 0.367*/0.531 0.602**/0.782 0.628**/0.750

Customized template 0.631/0.796 0.474/0.583 0.677/0.796 0.702/0.754

We conducted the paired t-test for caption template vs. customized template and general template vs. customized template. * and ** 
denote the P values less than 0.05 and 0.01, respectively. hard, hard domain adaptation task; soft, soft domain adaptation task.
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Figure 4 Weighted F1-score for each ablation model for each test video in hard and soft domain adaptation tasks. ViT, Vision Transformer; 
SDA-CLIP, surgical domain adaptation method based on the contrastive language-image pretraining model.
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types. Compared to the caption template, the customized 
templates improved the weighted F1 score by 6.6% and 
2.0% on the 2 tasks respectively. This conclusion is identical 
with that of another study (10). Additionally, we calculated 
the P-values using the t-test to conduct statistical analysis. 
When comparing customized templates and other options, 
it can be observed that we obtained P<0.05 in practically 
all metrics in the hard domain adaption task. There was no 
statistical significant difference between general templates 
and caption templates in the paired t-test. This indicates 
that using the task description terms “surgical action” 
and “surgeon” in prompt engineering can provide useful 
information and improve the model’s performance. The 
benefit provided by the customized templates in the soft 
domain adaptation task is less pronounced than in the 
earlier task. In our opinion, this is due to knowledge about 
the target domain being leaked from some of the clinical 
videos that were already included in the training set. The 
information offered by task-customized templates becomes 
somewhat redundant as a result of this leakage.

The performance of the ablation models on each test 
video is visualized in Figure 4, where the metric chosen 
is the weighted F1-score. Darker colors indicate higher 
weighted F1-scores, signifying better model performance. 
Our model’s superior performance on the majority of 
test videos visually demonstrates the effectiveness of 
the proposed method. Figure 5 illustrates the results of 
recognizing various video clips by the 3 ablation models in 
2 domain adaptation tasks. In the Pure ViT model, where 
the last layer is linear, the output consists of probability 
distributions. For the models utilizing a text encoder, the 
final output is the text that exhibits the highest similarity to 

the visual features. The pure ViT model demonstrates an 
inability to correctly identify results solely with the visual 
encoder. Leveraging text features and intra-modal loss 
functions, our SDA-CLIP model can boost the prediction 
results with higher probabilities towards ground truth 
surgical actions.

Discussion

Surgical domain adaptation assumes a pivotal role in 
establishment of a robust data-driven model, which not only 
safeguards patient privacy but also alleviates the burden on 
clinicians in terms of data annotation. By introducing the 
text modality, we proposed a novel multi-modality surgical 
domain adaptation model grounded in contrastive learning. 
Our model significantly outperforms the existing surgical 
domain adaptation methods, showcasing a substantial 
margin of improvement.

In the pursuit of improving the generalization capability 
in new data domains, domain adaptation models usually 
leverage consistent information across different domains. 
Previous methods (10) focused on extracting the edge or 
segment mask of the surgical instruments in the image 
and thus nonlinearly projected the source image data 
into a novel space. However, this approach may sacrifice 
information. Empirically, we found that the performance 
in some metrics is close to that of random guessing  
(Table 2), indicating that the models did not learn effective 
discriminative features. To address this, we took advantage 
of text labels as consistent information across domains, 
enabling the connection of data domains without changing 
the original data space. Moreover, the choice of the 



Quantitative Imaging in Medicine and Surgery, Vol 13, No 10 October 2023 6999

© Quantitative Imaging in Medicine and Surgery. All rights reserved.   Quant Imaging Med Surg 2023;13(10):6989-7001 | https://dx.doi.org/10.21037/qims-23-376

Figure 5 Comparison of the predictions made by our method under different ablation settings. ViT, Vision Transformer; SDA-CLIP, 
surgical domain adaptation method based on the contrastive language-image pretraining model; hard, hard domain adaptation task; soft, soft 
domain adaptation task; Conf., the confidence level of the output.
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backbone network is crucial to the final experimental results. 
Compared to previous studies that utilized ResNet (29)  
as the backbone encoder, we opted for the more advanced 
ViT (20). From the ablation studies displayed in Table 4, we 
found that the performance of the Pure ViT model, which 
only contains a video encoder, exceeds that of previous 
models in the challenging domain adaptation task.

In general scenes, numerous studies utilizing CLIP (15) 
have often chosen to keep the text encoder fixed during 
model training (18,33). Indeed, text in medical settings may 
differ from that present in general scenes, and many medical 
vision-language models set the text encoder as trainable  
(30-32). Consequently, we have made the text encoder 
trainable to enhance its adaptability to the surgical domain. 
As shown in Table 4, a trainable text encoder can slightly 
improve the performance in both tasks. In the future, we 
plan to utilize the encoder trained on biomedical text (31) 
to extract features.

However, our model does have a few limitations. We 
observed a drop in the balanced accuracy of our SDA-

CLIP. This can be attributed to the class imbalance in the 
dataset, which would have caused the model to overfit to 
the dominant class, and the excessive similarity between 
categories may have also affected model learning. Future 
research can explore methods such as data resampling and 
different loss weights to address the class imbalance issue 
and improve model performance. Furthermore, ensuring 
real-time recognition is essential for practical clinical 
applicability. Although we adopted a larger backbone 
network to enhance model accuracy, this led to decreased 
inference speed and increased clinical deployment expenses. 
To address this, we will focus on optimizing the model’s 
efficiency and computational complexity. Techniques such as 
weight sharing, pruning, and separable convolutions can be 
applied to reduce the model’s parameters and computational 
demands, making it more lightweight and suitable for 
deployment in real-world clinical settings. In conclusion, we 
believe that our approach can serve as a catalyst for inspiring 
further investigations into effectively analyzing surgical 
domain adaptation using vision-language models.
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Conclusions

We have proposed a novel framework SDA-CLIP for 
surgical domain adaptation and action recognition. Since 
our model more effectively utilizes the rich semantic 
information in video and text labels, it has good transfer 
and generalization ability. Our SDA-CLIP outperforms 
the SOTA model by a large margin on multiple tasks in the 
SurgVisDom dataset. We hope that future work will focus 
on surgical video analysis using video-text pairs. We will 
validate the capabilities of the model on a larger dataset 
with richer textual descriptions, and extend this visual-
textual model to other tasks.
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