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Background: Radiomics models could help assess the benign and malignant invasiveness and prognosis of 
pulmonary nodules. However, the lack of interpretability limits application of these models. We thus aimed 
to construct and validate an interpretable and generalized computed tomography (CT) radiomics model to 
evaluate the pathological invasiveness in patients with a solitary pulmonary nodule in order to improve the 
management of these patients.
Methods: We retrospectively enrolled 248 patients with CT-diagnosed solitary pulmonary nodules. 
Radiomic features were extracted from nodular region and perinodular regions of 3 and 5 mm. After coarse-
to-fine feature selection, the radiomics score (radscore) was calculated using the least absolute shrinkage and 
selection operator logistic method. Univariate and multivariate logistic regression analyses were performed 
to determine the invasiveness-related clinicoradiological factors. The clinical-radiomics model was then 
constructed using the logistic and extreme gradient boosting (XGBoost) algorithms. The Shapley additive 
explanations (SHAP) method was then used to explain the contributions of the features. After removing 
batch effects with the ComBat algorithm, we assessed the generalization of the explainable clinical-radiomics 
model in two independent external validation cohorts (n=147 and n=149).
Results: The clinical-radiomic XGBoost model integrating the radscore, CT value, nodule length, and 
crescent sign demonstrated better predictive performance than did the clinical-radiomics logistic model in 
assessing pulmonary nodule invasiveness, with an area under the receiver operating characteristic (ROC) 
curve (AUC) of 0.889 [95% confidence interval (CI), 0.848–0.927] in the training cohort. The SHAP 
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Introduction

Lung cancer is the second most commonly diagnosed 
cancer and the leading cause of cancer death worldwide 
(1,2). According to the 2021 World Health Organization 
(WHO) classification of lung cancer (3), both atypical 
adenomatous hyperplasia (AAH) and adenocarcinoma in 
situ (AIS) were redefined as precursor glandular lesions, 
with a 5-year survival rate of 100% (4). Minimally invasive 
adenocarcinoma (MIA) and invasive adenocarcinoma 
(IAC) are adenocarcinomas of lung, with a 5-year survival 
rate of 95–100% and 38–86%, respectively (5). Therefore, 
active follow-up is essential for preglandular lesions; 
however, timely surgical intervention is recommended for 
IACs.

Computed tomography (CT) is a common imaging 
method that plays an important role in the assessment of 
the invasiveness of pulmonary nodules (6). However, the 
radiological signs of invasive and noninvasive pulmonary 
nodules overlap (5,7,8). Radiomics can help assess the 
benign and malignant invasiveness and prognosis of 
pulmonary nodules (5,9,10). However, owing to the lack 
of interpretability and “black box” nature, the specific 
decision-making mechanism and deduction process of 
machine learning-based radiomics models are not clear, 
which might limit the application of the model (11-13).

By virtue of its ability to illustrate how each feature’s 
value affects the impact of the feature attributed to the 
model and by visualizing the integration of the features’ 
impact attributed to individual response, the Shapley 
additive explanations (SHAP) algorithm is currently the 
most recommended for model explanation (14-16). The 
tree-based extreme gradient boosting (XGBoost) machine 

learning model can visualize the deduction process of the 
prediction model using a tree-based decision diagram, 
which simulates the clinical diagnostic process of clinicians 
(15,17,18). To the best of our knowledge, no studies have 
reported the integration of SHAP and tree-based decision 
techniques for explaining and visualizing the pathological 
invasiveness of pulmonary nodules.

This  study aimed to construct  and val idate an 
interpretable and generalized clinical-radiomics model 
to precisely distinguish precursor glandular lesions from 
IACs and thus provide a noninvasive tool for the accurate 
evaluation of the pathological invasiveness of pulmonary 
nodules. We present this article in accordance with the 
TRIPOD reporting checklist (available at https://qims.
amegroups.com/article/view/10.21037/qims-23-615/rc).

Methods

Patients and data collection

The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013). Ethical 
approval was obtained from the Ethics Committee of 
Shunde Hospital, Southern Medical University (The First 
People’s Hospital of Shunde) (No. KYLS20220701), and 
the institutional review board waived the requirement 
for informed consent due to the retrospective nature of 
the study. Patients with a solitary pulmonary nodule were 
recruited from three independent hospitals, including 
Shunde Hospital, Southern Medical University (The First 
People’s Hospital of Shunde) from February 2020 to May 
2022 (Hospital I), Jiaxing TCM Hospital Affiliated to 
Zhejiang Chinese Medical University from March 2020 

algorithm illustrates the contribution of each feature in the final model. The specific model decision process 
was visualized using a tree-based decision heatmap. Satisfactory generalization performance was shown 
with AUCs of 0.889 (95% CI, 0.823–0.942) and 0.915 (95% CI, 0.851–0.963) in the two external validation 
cohorts.
Conclusions: An interpretable and generalized clinical-radiomics model for predicting pulmonary nodule 
invasibility was constructed to help clinicians determine the invasiveness of pulmonary nodules and devise 
assessment strategies in an easily understandable manner.
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to September 2022 (Hospital II), and Lecong Hospital 
of Shunde from May 2020 to August 2022 (Hospital III). 
All participating hospitals/institutions were informed and 
agreed with the study.

The inclusion and exclusion criteria are illustrated in 
Figure 1. Ultimately, 248 patients were enrolled from 
Hospital I and included in the training cohort, and 296 
patients were enrolled at Hospitals II (n=147) and III 
(n=149) and included in the external validation cohorts 
I and II, respectively. The following were the criteria 
for inclusion: (I) solitary pulmonary nodules ≤30 mm 
as confirmed by pathology; (II) complete imaging, 
pathological, and clinical data; (III) no previous cancer-
related treatment for pulmonary nodules; and (IV) 
no history of other malignant tumors. The exclusion 
criteria were as follows: (I) multiple pulmonary nodules; 
(II) incomplete imaging, pathological, or clinical data; 
(III) images with artifacts; and (IV) other pathological 
components confirmed by pathology (e.g., squamous cell 
carcinoma or small cell lung cancer).

Baseline clinicoradiological factors of pulmonary 
nodules were recorded, including age, sex, nodular 
length, density, location, CT value, pleural stretch sign, 

tumor vessel sign, tumor-lung boundary, crescent sign, 
air bronchogram sign, and vacuolar sign. All images were 
reviewed on the Picture Archiving and Communication 
System in a blinded manner by three radiologists (Zhang 
R, Hong M, and Liu Z), and potential discrepancies were 
resolved by consultation.

Pathological invasiveness evaluation of pulmonary nodules

According to the 2021 WHO classification, all pathological 
histologies were evaluated and diagnosed by two senior 
pathologists with 15 years of experience in pulmonary 
pathology. All pulmonary nodules were reclassified as AAH, 
AIS, MIA, or IAC.

CT image acquisition

CT images were obtained using five CT scanners from 
three hospitals. For Hospital I, patients were examined 
using 80-slice (Aquilion Prime, Toshiba, Tokyo, Japan), 
64-slice (Somatom Definition AS, Siemens Healthineers, 
Erlangen, Germany), or 64-slice (Somatom Definition 
Flash, Siemens Healthineers) multidetector CT scanners. 

Shunde Hospital, Southern 
Medical University (Hospital I) 

Patients with a solitary pulmonary 
nodule from 2020.2–2022.5 

(n=304)

Jiaxing TCM Hospital Affiliated 
to Zhejiang Chinese Medical 

University (Hospital II)

Patients with a solitary pulmonary 
nodule from 2020.3–2022.9 

(n=188)

Lecong Hospital of Shunde 
(Hospital III) 

Patients with a solitary pulmonary 
nodule from 2020.5–2022.8 

(n=196)

Patients excluded (n=144)
(I) Multiple pulmonary nodules (n=84)
(II) Incomplete imaging, pathological and clinical data (n=29)
(III) Images with artifacts (n=21)
(IV) Other pathological components confirmed by pathology (e.g., squamous cell carcinoma or small cell lung cancer) (n=10)

Training cohort  
(n=248) 

External validation cohort I 
(n=147)

External validation cohort II 
(n=149)

Construction of a CT radiomics model for precisely distinguishing AAH/AIS from MIA/IAC

Training Validation Validation

Figure 1 Flowchart of the inclusion and exclusion criteria. TCM, traditional Chinese medicine; CT, computed tomography; AAH, atypical 
adenomatous hyperplasia; AIS, adenocarcinoma in situ; MIA, minimally invasive adenocarcinoma; IAC, invasive adenocarcinoma.
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For Hospital II, a 16-slice CT scanner (LightSpeed, GE 
HealthCare, Chicago, IL, USA) was used to perform the 
chest CT. For Hospital III, a 64-slice multidetector CT 
scanner (Ingenuity Core 128, Philips, Amsterdam, The 
Netherlands) was used. The acquisition parameters of the 
three hospitals were as follows: tube voltage, 120 kV; tube 
current, 250–300 mAs; field of view (FOV), 350–400 mm; 
slice thickness, 1–5 mm; reconstruction image thickness, 
0.6–0.8 mm; and pitch, 0.8–1.0.

Image segmentation and feature extraction

Preoperative CT images were retrieved from the Picture 
Archiving and Communication System of the three 
hospitals. The CT images were imported into Deepwise 
software (https://keyan.deepwise.com/login). Based on 
the information of each patient, two radiologists with 
10 years of experience (Zhang R and Hong M) used 

a semiautomatic segmentation method to delineate 
the nodular volume of interest (VOInodule). Another 
radiologist with 15 years of experience (Liu Z) revised 
and confirmed the final segmentation results. Based 
on the average tumoral length (approximately 10 mm), 
the perinodular diameter was determined to be one-
third and half of the length after group discussion; that 
is, 3 mm VOI (VOI3 mm) and 5 mm VOI (VOI5 mm). Two 
perinodular regions were then automatically generated 
using Deepwise software. Large vessels, pleural tissue, 
surrounding organs, and ribs were manually excluded for 
each perinodular VOI. A total of 3,045 radiomic features 
were extracted from three VOIs using the Pyradiomics 
package in Python and included first-order, shape, gray-
level features, square root, and wavelet filtering features. 
The radiomics analysis process is illustrated in Figure 2. 
The intragroup correlation coefficient (ICC) was used to 
evaluate the stability of the features. Features with ICC 

I. Image segmentation II. Feature extraction III. Multiple-region radiomic model construction
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Figure 2 Overall radiomics workflow in this study. (I) Tumor segmentation on CT images. (II) Radiomics features extraction from CT 
images. (III) Radiomic features selection and model construction. (IV) Interpretable clinical-radiomics combined model construction. (V) 
Model visualization and case application analysis. (VI) Information calibration and model generalization analysis. AUC, area under the 
receiver operating characteristic curve; Radnodule, nodular radiomics; Rad3 mm, 3 mm radiomics; Rad5 mm, 5 mm radiomics; radscore, radiomics 
score; CT, computed tomography; SHAP, Shapley additive explanations; AAH, atypical adenomatous hyperplasia; AIS, adenocarcinoma in 
situ; MIA, minimally invasive adenocarcinoma; IAC, invasive adenocarcinoma; XGBoost; extreme gradient boosting; CI, confidence interval; 
logistic-C, logistic combined; XGBoost-C, XGBoost combined.
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>0.75 were considered sufficiently enough to be retained 
for subsequent analysis.

Construction of single-region radiomic models

To avoid overfitting and improve the generalization of 
the model, data up-sampling and a series of coarse-to-fine 
feature selection strategies were performed. Initially, feature 
stability was assessed using the ICC method. Subsequently, 
an independent samples t-test or rank-sum test was 
performed to select significant features between the AAH/
AIS and MIA/IAC groups. Pearson or Spearman correlation 
analysis was used to reduce the redundancy among the 
feature sets. When the correlation between feature pairs 
was greater than 0.6, the feature with a higher average 
correlation was removed. Additionally, the least absolute 
shrinkage and selection operator logistic regression method 
was used to choose the optimized subset of radiomic 
features and construct a single-region radiomics model 
[nodular radiomics (Radnodule) for VOInodule, 3 mm radiomics 
(Rad3 mm) for VOI3 mm, and 5 mm radiomics (Rad5 mm) for 
VOI5 mm].

Construction of a multiple-region radiomics model

To further remove the redundancy of radiomic features 
from different regions, the variance inflation factor method 
was applied to quantify the collinearity between radiomic 
feature pairs. Furthermore, a multiple-region radiomics 
model was constructed using a logistic model. According to 
the predictive performance of the four radiomics models, 
the radiomics score (radscore) was determined by weighting 
the feature coefficients in the best model.

Construction of clinical-radiomics combined model

Univariate logistic regression analysis was performed on the 
clinical and radiological factors to screen for pathological 
invasiveness-related factors (P<0.05). A clinical model was 
constructed using a multivariate logistic regression analysis. 
Important clinicoradiological factors and radscore were 
integrated to construct the clinical-radiomics combined 
model using logistic regression and the XGBoost algorithm. 
Shapley additive analysis was used to quantitatively explain 
the performance of the combined model and visualize the 
effect of each feature for each patient (19,20).

Generalized validation of models

To verify the generalizability of the predictive models, 
pat ients  wi th  a  so l i tary  pulmonary  nodule  were 
retrospectively recruited from Hospitals II and III. With the 
differences in CT scans and centers being accounted for, 
CT image preprocessing and the ComBat harmonization 
technique were conducted to standardize image information 
and pool the radiomic features together, respectively. 
Radscore and prediction models were constructed using the 
same method, and the area under the receiver operating 
characteristic (ROC) curve (AUC) was used to evaluate the 
model performance.

Statistical analysis

Differences in variables between the AAH/AIS and MIA/
IAC groups were assessed using the independent samples 
t-test or rank-sum test for continuous variables and the chi-
squared test for categorical variables. The SHAP algorithm 
was run using the “XGBoost” and “SHAP” Python 
packages. The Combat algorithm was run using the “SVA” 
R package, and the performance of the model was evaluated 
using AUC. All statistical analyses were performed using 
Python (v.3.7.3) and R (v.4.1.3) software. A two-sided P 
value <0.05 was considered statistically significant.

Results

Clinical characteristics

The baseline clinical and radiological information 
of patients are shown in Table 1. Imaging data of 544 
preoperative patients with a solitary pulmonary nodule were 
collected from three hospitals. The training cohort included 
248 patients from Hospital I. The two external validation 
cohorts from Hospitals II and III included 147 and 149 
patients, respectively. In this study, 25.8% (64/248), 15.0% 
(22/147), and 7.4% (11/149) of the patients were diagnosed 
with AAH/AIS in the training cohort and external validation 
cohorts II and III, respectively.

Construction and validation of the radiomics model

After coarse-to-fine feature selection, nonzero coefficient 
features were obtained for each region (including “original_
glcm_MaximumProbability_0mm”, “wavelet.HHH_
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Table 1 Baseline characteristics of patients from the three hospitals

Items
Hospital I Hospital II Hospital III

AAH/AIS (n=64) MIA/IAC (n=184) P value AAH/AIS (n=22) MIA/IAC (n=125) P value AAH/AIS (n=11) MIA/IAC (n=138) P value

Age (years) 55.0 (47.0, 60.0) 56.5 (47.0, 65.3) 0.310 54.5 (47.3, 59.8) 56.0 (48.0, 65.0) 0.281 57.0 (42.0, 61.5) 58.5 (49.3, 66.8) 0.297

Sex 0.723 0.347 0.543

Female 43 (67.2) 128 (69.6) 17 (77.3) 84 (67.2) 9 (81.8) 94 (68.1)

Male 21 (32.8) 56 (30.4) 5 (22.7) 41 (32.8) 2 (18.2) 44 (31.9)

Vacuolar sign 0.024 0.425 0.658

No 60 (93.8) 151 (82.1) 19 (86.4) 95 (76.0) 7 (63.6) 103 (74.6)

Yes 4 (6.2) 33 (17.9) 3 (13.6) 30 (24.0) 4 (36.4) 35 (25.4)

Air bronchogram 0.013 0.507 0.456

No 62 (96.9) 157 (85.3) 21 (95.5) 110 (88.0) 9 (81.8) 91 (65.9)

Yes 2 (3.1) 27 (14.7) 1 (4.5) 15 (12.0) 2 (18.2) 47 (34.1)

Crescent sign <0.001 0.122 >0.999

No 57 (89.1) 120 (65.2) 22 (100.0) 107 (85.6) 8 (72.7) 107 (77.5)

Yes 7 (10.9) 64 (34.8) 0 (0.0) 18 (14.4) 3 (27.3) 31 (22.5)

Tumor-lung boundary 0.299 0.998 0.908

No 18 (28.1) 40 (21.7) 2 (9.1) 8 (6.4) 2 (18.2) 34 (24.6)

Yes 46 (71.9) 144 (78.3) 20 (90.9) 117 (93.6) 9 (81.8) 104 (75.4)

Tumor vessel sign <0.001 >0.999 >0.999

No 18 (28.1) 17 (9.2) 1 (4.5) 5 (4.0) 7 (63.6) 82 (59.4)

Yes 46 (71.9) 167 (90.8) 21 (95.5) 12 (96.0) 4 (36.4) 56 (40.6)

Pleural stretch sign <0.001 0.470 0.010

No 60 (93.8) 111 (60.3) 19 (86.4) 96 (76.8) 10 (90.9) 70 (50.7)

Yes 4 (6.2) 73 (39.7) 3 (13.6) 29 (23.2) 1 (9.1) 68 (49.3)

Component <0.001 0.055 0.105

SN 0 (0.0) 41 (22.3) 0 (0.0) 10 (8.0) 1 (9.1) 15 (10.9)

mGGN 14 (21.9) 76 (41.3) 6 (27.3) 57 (45.6) 2 (18.2) 67 (48.6)

pGGN 50 (78.1) 67 (36.4) 16 (72.7) 58 (46.4) 8 (72.7) 56 (40.6)

Location 0.289 0.533 0.327

LLL 3 (4.7) 23 (12.5) 4 (18.2) 13 (10.4) 1 (9.1) 19 (13.8)

LUL 17 (26.6) 42 (22.8) 9 (40.9) 39 (31.2) 2 (18.2) 37 (26.8)

RLL 12 (18.8) 41 (22.3) 2 (9.1) 19 (15.2) 1 (9.1) 27 (19.6)

RML 3 (4.7) 13 (7.1) 1 (4.5) 5 (4.0) 3 (27.3) 12 (8.7)

RUL 29 (45.3) 65 (35.3) 6 (27.3) 49 (39.2) 4 (36.4) 43 (31.2)

CT value −589.8  

(−644.2, −478.6)

−370.6  

(−539.2, −144.4)

<0.001 −594.4  

(−665.7, −508.5)

−486.4  

(−595.5, −365.4)

0.001 −483.5  

(−614.5, −259.6)

−353.7  

(−538.0, −131.0)

0.191

Length (mm) 6.00 (5.0, 7.0) 10.0 (7.0, 15.0) <0.001 8.50 (7.3, 10.0) 10.0 (8.0, 13.0) 0.021 8.00 (6.0, 8.5) 12.0 (9.0, 17.0) <0.001

Data are presented as median (IQR) or n (%). AAH, atypical adenomatous hyperplasia; AIS, adenocarcinoma in situ; MIA, minimally invasive adenocarcinoma; 

IAC, invasive adenocarcinoma; SN, solid nodule; mGGN, mixed ground-glass nodule; pGGN, pure ground-glass nodule; LLL, left lower lobe; LUL, left upper 

lobe; RLL, right lower lobe; RML, right middle lobe; RUL, right upper lobe; CT, computed tomography; IQR, interquartile range.
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ngtdm_Coarseness_3mm”, and “wavelet.HHH_ngtdm_
Coarseness_5mm”). Two radiomic features with a coarseness 
of 3 and 5 mm showed high collinearity (variance inflation 
factor >10), and the latter was eliminated, which resulted 
in a larger average variance inflation factor value. Finally, 
“MaximumProbability_0mm” and “coarseness_3mm” were 
used to construct the multiple-region radiomics model 
(Radnodule + 3 mm) using logistic regression. It had superior 
prediction performance, with an AUC of 0.791 [95% 
confidence interval (CI), 0.718–0.852], as compared to the 
Radnodule, Rad3 mm, and Rad5 mm region radiomics models, 
with AUCs of 0.741 (95% CI, 0.664–0.810), 0.747 (95% CI, 
0.672–0.815), and 0.776 (95% CI, 0.708–0.835) (Figure 3A), 
respectively, in the training cohort. Therefore, the radscore 
was determined using the prediction results of the multiple-
region radiomics model.

Construction of the clinical model

Clinical and radiological factors, including CT value, tumor 
length, vacuolar, crescent, tumor vessel sign, and pleural 
traction sign, were significantly associated with pathological 
invasiveness in the univariate logistic analysis (P<0.05). 
Subsequently, three important factors (CT value, tumor 
length, and crescent sign) were selected using stepwise 
logistic regression to construct the clinical model (Table 2). 
The AUC of the clinical model in the training cohort was 
0.851 (95% CI, 0.801–0.899) (Figure 3A).

Construction of clinical-radiomics combined model

Integration of the important factors and radscore, logistics, 
and the XGBoost algorithms was performed to construct 
the clinical-radiomics combined model. In the training 
cohort, the AUCs (Figure 3A) of the logistic combined 
(logistic-C) model and XGBoost combined (XGBoost-C) 
model were 0.853 (95% CI, 0.804–0.898) and 0.889 (95% 
CI, 0.848–0.927), respectively (Table 3). This indicated that 
the XGBoost-C model achieved a better discriminatory 
performance than did the clinical model, single-region and 
multiple-region radiomics models, and logistic-C model. 
Subgroup analysis of the models’ predictive performance 
based on nodule length was performed, the details of which 
are provided in Table S1.

Interpretation analysis and application of the XGBoost 
model

The Shapley summary diagram in Figure 3B shows the 
contribution of four factors (CT value, radscore, tumor 
length, and crescent sign) in predicting the invasiveness of 
pulmonary nodules in each patient. The larger the absolute 
distribution range of the Shapley value is, the greater the 
importance of features in the evaluation of pulmonary 
nodule invasiveness. The first XGBoost regression tree-
based decision heatmap in Figure 3C illustrates the features 
utilized by the tree and the means by which these samples 
are split in making final predictions.

The SHAP force plot can explain the evaluation of 
individual patients and be used to visualize the Shapley value 
for each feature as a force, which either increases (positive 
value) or decreases (negative value) the prediction from its 
baseline. The baseline is the average Shapley value for all 
the prediction features. The size of the arrow in Figure 3D 
indicates the contribution of a feature to the Shapley value, 
while the red and blue arrows indicate positive and negative, 
respectively.

Case application analysis of the XGBoost model

Two typical patients (Figure 3D), a 53-year-old man with 
AAH/AIS and a 42-year-old woman with MIA/IAC, were 
selected to analyze the XGBoost model. The pulmonary 
nodule of patient 1 had a high CT value [−328.5 Hounsfield 
units (HU)], high radscore (radscore =2.623), long length 
(12 mm), and a positive crescent sign, thus indicating a 
high SHAP value (2.41), which strongly suggested MIA/
IAC and was consistent with the final pathological results. 
The pulmonary nodule of patient 2 had a low CT value  
(−583.8 HU), low radscore (radscore =0.058), short length 
(3 mm), and a negative crescent sign, indicating probable 
AAH/AIS with a low SHAP value (−1.40), which was also in 
line with the final pathological results.

Generalized validation of the predictive model

Two independent hospitals were retrospectively recruited, 
and the batch effect was eliminated. The data distributions 
of the three hospitals were relatively scattered before 

https://cdn.amegroups.cn/static/public/QIMS-23-615-Supplementary.pdf
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Figure 3 Performance of the models, XGBoost model visualization, and case application analysis. (A) ROC curves of the radiomics model 
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tendency to MIA/IAC; conversely, a lower Shapley value (blue) suggests a greater tendency to AAH/AIS. (C) The first classification tree-
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Table 2 Univariate and multivariate logistic regression analyses for clinicoradiological factors

Factors
Univariate logistic analysis Multivariate logistic analysis

OR 95% CI P OR 95% CI P

Sex (male) 1.291 0.685–2.545 0.443 – – –

Vacuolar sign (yes) 3.379 1.294–11.600 0.026 3.208 1.040–12.423 0.060

Air bronchogram (yes) 2.264 0.753–9.787 0.196 – – –

Crescent sign (yes) 7.477 2.631–31.450 0.001 4.408 1.381–19.907 0.025

Tumor-lung boundary (yes) 1.296 0.621–2.578 0.473 – – –

Tumor vessel sign (yes) 3.153 1.388–7.050 0.005 1.415 0.492–4.159 0.520

Pleural stretch sign (yes) 3.041 1.449–7.210 0.006 0.709 0.273–1.966 0.489

CT value 1.005 1.004–1.008 <0.001 1.005 1.002–1.008 <0.001

Age 1.021 0.996–1.047 0.100 – – –

Length 1.435 1.272–1.651 <0.001 1.214 1.048–1.440 0.017

Radscore 2.718 2.038–3.761 <0.001 1.524 1.071–2.262 0.026

OR, odds ratio; CI, confidence interval; CT, computed tomography; radscore, radiomics score.

Table 3 Predictive performance of the pulmonary nodule invasion models

Cohort Model AUC (95% CI) Accuracy Sensitivity Specificity

Training Clinical model 0.851 (0.801–0.899) 0.746 0.718 0.850

Radscore model 0.791 (0.718–0.852) 0.757 0.778 0.683

Logistic-C model 0.853 (0.804–0.898) 0.768 0.759 0.800

XGBoost-C model 0.889 (0.848–0.927) 0.772 0.741 0.883

External validation I Clinical model 0.875 (0.808–0.936) 0.756 0.720 0.885

Radscore model 0.773 (0.678–0.862) 0.689 0.699 0.654

Logistic-C model 0.876 (0.802–0.937) 0.756 0.731 0.846

XGBoost-C model 0.889 (0.823–0.942) 0.773 0.742 0.885

External validation II Clinical model 0.810 (0.700–0.910) 0.826 0.855 0.455

Radscore model 0.859 (0.687–0.977) 0.711 0.703 0.818

Logistic-C model 0.867 (0.792–0.937) 0.826 0.855 0.455

XGBoost-C model 0.915 (0.851–0.963) 0.839 0.841 0.818

AUC, area under the receiver operating characteristic curve; CI, confidence interval; radscore, radiomics score; logistic-C, logistic 
combined; XGBoost combined; XGBoost, extreme gradient boosting.

elimination of the center effects (Figure 4A), whereas 
these were pooled together following normalization using 
ComBat harmonization (Figure 4B). The AUCs of the 
XGBoost-C model were 0.889 (95% CI, 0.823–0.942) and 
0.915 (95% CI, 0.851–0.963) in external validation cohorts 
I and II, respectively (Table 3, Figure 4C), indicating a 

satisfactory generalization performance.

Discussion

In this multicenter study, we constructed an interpretable 
XGBoost clinical-radiomics combined model incorporating 
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Figure 4 Batch harmonization and model generalization analysis. (A) The principal component scatter plot of radiomics features were 
visualized in a two-dimensional scatter plot before ComBat harmonization was applied. (B) The principal component scatter plot of 
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important clinicoradiological factors and radscore to 
distinguish AAH/AIS from MIA/IAC. Specifically, the 
radscore was calculated by combining VOInodule and  
VOI3 mm information. The individualized contribution of 
each feature was visualized for each patient with the Shapley 
algorithm, which helped to explain the predictive power 
of the features in this model. Furthermore, the complex 
XGBoost combined model was visualized into a reliable 
clinical treatment decision support tool using the tree-
based decision heatmap method that clinicians can easily 
apply. Finally, the predictive performances were successfully 
validated in two external validation cohorts via ComBat 
harmonization.

The invasiveness of tumors can cause changes in the 
morphology and microenvironment of the nodules (21), 
including in tumor length, CT value, crescent sign, 
convergence sign of pulmonary vessels, and pleural traction, 
and further lead to poor prognosis (8,22-24). In this study, 
tumor length, CT value, and crescent sign were considered 
useful features for predicting the invasiveness of pulmonary 
nodules, which was consistent with the findings of previous 
studies (3,25-27). In recent years, perinodular radiomics 
has been demonstrated capable of capturing microscopic 
information around pulmonary nodules. In line with the 
relevant literature (8,11,28,29), our results showed that 
perinodular radiomics also had a good predictive value for 
pulmonary nodular invasiveness, with Rad3 mm performing 
better than Rad5 mm. This might be because our nodules were 
relatively smaller and thus contained limited information for 
invasiveness, which was partly in agreement with the findings 
of Wu et al. (30). Interestingly, coarseness was selected as the 
optimal perinodular feature in both VOI3 mm and VOI5 mm. 
Coarseness captures texture information in the perinodular 
region, is positively correlated with lung cancer invasiveness 
and recurrence rate (31), and reflects the heterogeneity of 
the tumor. In our study, the performance of the multiple-
region radiomics model had a higher AUC, which supports 
the feasibility of perinodular radiomics techniques for the 
prediction of pulmonary nodule invasiveness and proves 
the complementarity of tumor and perinodular tumor 
information.

The clinical-radiomics combined model was constructed 
using logistic regression and the XGBoost algorithm. In 
external validation I and II, the specificity of logistic-C 
model was significantly lower than that of the XGBoost-C 
model. The reason for this may be that first, we first ensured 
the generalization of the models and used the same cutoff 

value in training cohort and external validation cohorts; 
second, the sample size of the precursor glandular lesions in 
external validation II was too small, and there was a certain 
bias in the prediction performance of the model. However, 
the XGBoost-C model showed superior predictive 
performance and generalization, which could improve the 
accuracy of prediction. Additionally, the SHAP method was 
used to comprehensively analyze the complex relationship 
between features and nodule invasiveness. The detailed 
contribution of each feature was visualized for each patient 
with a pulmonary nodule. The CT value and radscore were 
found to be the two most important factors for predicting 
the invasiveness of the pulmonary nodule according to 
the maximum width Shapley distribution interval. All 
features were positively correlated with pulmonary nodule 
invasiveness, which was consistent with a previous study (32).  
After clinicians understand how features impact the 
XGBoost model, they might use the model to assess 
individual outcomes. Thus, for the first time, we plotted 
a classification tree-based decision heatmap to solve the 
“black-box” problem for the complex machining learning 
model and to intuitively illustrate the decision process of the 
XGBoost model and the interaction relationship between 
features. The tree-based decision heatmap will be more 
amenable to clinicians, as it can simulate routine decision 
making in the clinician’s practice. Two patients were included 
in the case analysis. The decision-making process was highly 
consistent with the diagnostic thinking of the radiologist, 
proving the feasibility and convenience of the model.

Our study has several limitations. First, it involved 
a retrospective design and thus potentially introduced 
bias. Second, for small pulmonary nodules, some tumor 
vessels, vacuoles, and bronchi might have been unavoidably 
included, which might have affected the results of some 
radiomic features. Third, considering that the average 
length of the nodules was only 10.4 mm, we focused only 
on perinodular regions of 3 mm (one-third) and 5 mm 
(half), and the larger regions were not included in our 
study. Potential future research directions may involve 
collecting more samples for hyperparameter optimization 
and iterative training and conducting prospective analyses 
to verify the accuracy of predictions and the generalizability 
of the models. Future research direction should focus on 
developing methods for visually displaying the prediction 
information of radiomics in images and highlighting 
the areas requiring attention so as to assist clinicians in 
decision-making.
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Conclusions

We constructed an interpretable radiomics model for the 
preoperative assessment of pulmonary nodule invasion 
using the XGBoost algorithm. The contribution of each 
feature was quantified using the SHAP method and the 
model was visualized using a tree-based decision heatmap. 
The satisfactory generalization performance of the model 
was successfully verified in two independent external 
validation cohorts. Therefore, our radiomics model may 
help clinicians improve the assessment and management of 
patients with pulmonary nodules.
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Supplementary

Table S1 Subgroup performance analysis of pulmonary nodules

Cohort Subgroup Logistic-C model XGBoost-C model

External validation I 0–10 mm 0.783 (0.664–0.878) 0.805 (0.704–0.898)

0–15 mm 0.837 (0.750–0.912) 0.854 (0.767–0.921)

0–20 mm 0.867 (0.792–0.931) 0.881 (0.813–0.941)

0–25 mm 0.873 (0.805–0.933) 0.886 (0.828–0.941)

0–30 mm 0.876 (0.802–0.937) 0.889 (0.823–0.942)

External validation II 0–10 mm 0.710 (0.542–0.856) 0.782 (0.657–0.897)

0–15 mm 0.803 (0.694–0.905) 0.876 (0.796–0.942)

0–20 mm 0.839 (0.753–0.920) 0.897 (0.830–0.955)

0–25 mm 0.858 (0.780–0.925) 0.909 (0.850–0.955)

0–30 mm 0.867 (0.792–0.937) 0.915 (0.851–0.963)

Logistic-C, logistic combined; XGBoost combined; XGBoost, extreme gradient boosting.


