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Background and Objective: Transformers, which have been widely recognized as state-of-the-art tools 
in natural language processing (NLP), have also come to be recognized for their value in computer vision 
tasks. With this increasing popularity, they have also been extensively researched in the more complex 
medical imaging domain. The associated developments have resulted in transformers being on par with 
sought-after convolution neural networks, particularly for medical image segmentation. Methods combining 
both types of networks have proven to be especially successful in capturing local and global contexts, thereby 
significantly boosting their performances in various segmentation problems. Motivated by this success, we 
have attempted to survey the consequential research focused on innovative transformer networks, specifically 
those designed to cater to medical image segmentation in an efficient manner.
Methods: Databases like Google Scholar, arxiv, ResearchGate, Microsoft Academic, and Semantic Scholar 
have been utilized to find recent developments in this field. Specifically, research in the English language 
from 2021 to 2023 was considered.
Key Content and Findings: In this survey, we look into the different types of architectures and attention 
mechanisms that uniquely improve performance and the structures that are in place to handle complex 
medical data. Through this survey, we summarize the popular and unconventional transformer-based 
research as seen through different key angles and analyze quantitatively the strategies that have proven more 
advanced.
Conclusions: We have also attempted to discern existing gaps and challenges within current research, 
notably highlighting the deficiency of annotated medical data for precise deep learning model training. 
Furthermore, potential future directions for enhancing transformers’ utility in healthcare are outlined, 
encompassing strategies such as transfer learning and exploiting foundation models for specialized medical 
image segmentation.
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Introduction

One of the critical aspects of medical image analysis wherein 
artificial intelligence (AI) is used to boost performance is 
image segmentation, which is designed to segment out 
important organs and abnormal objects of the human body 
such as lungs, nodules, tumors, etc. A good segmentation 
result is highly useful when performing medical operations 
such as surgical planning, as well as in the diagnosis and 
prognosis of diseases, since it can help with outlining and 
pinpointing the exact location of the object, along with the 
determination of other properties such as size, volume, etc. 
The use of these AI-based solutions can significantly and 
efficiently reduce the time taken for these procedures (1).

Traditional handcrafted approaches based on image 
processing techniques such as simple thresholding of 
Hounsfield unit (HU) values and template matching 
have exhibited poor results due to a lack of robustness 
to perpetually varying medical images (2). The main 
performance boost arrived in the form of deep learning, 
such as convolutional neural networks (CNNs), which 
have achieved considerably improved results and such 
deep learning methods have led to a whole new domain 
of approaches for the segmentation problem. The ability 
of deep learning algorithms to learn and overcome data 
variations in medical data by generalizing has increased the 
quality of modern AI-based medical imaging systems (3). 
However, CNN-based approaches generally have certain 
limitations when modeling of long-range dependencies that 
are present in an image (4).

Recently, the transformer technique (5) has emerged as 
a prominent approach in sequence modeling. Originally 
introduced in natural language processing (NLP), 
transformers employ self-attention to overcome memory 
constraints and capture long-range dependencies. Unlike 
previous methods like gated neural networks (6), recurrent 
neural networks (RNNs), and long-short term memory (7),  
which faced limitations in memory and long-range 
dependencies, transformers revolutionized sequence 
modeling. By utilizing self-attention and discarding 
RNNs, transformers enable global dependency modeling 
and parallelization. This not only eliminates the impact 
of distance between input and output sequences but also 
significantly enhances computational efficiency.

After the transformer approach gained popularity in 
language processing, it quickly extended its reach to other 
AI domains such as audio (8) and vision (9). In the medical 
domain, transformers have been employed for various tasks 

including classification and detection (10,11), extracting 
information from clinical notes (12), and segmentation (13).  
This has posed a significant challenge to existing CNN-
based solutions (14), which are currently the state-of-
the-art in this field. Extensive research has focused on 
improving the precision and reliability of transformer-
based solutions, leading to several surveys that summarize 
the current research and future directions of these networks 
(9,15). However, there is a lack of surveys specifically 
tailored to the medical imaging domain, despite its unique 
complexities and differences from other vision transformer 
networks. This significant difference arises from the many 
complexities that come with medical data.

Medical data is distinct in several aspects, including its 
high level of pixelation resulting from advanced imaging 
techniques like computed tomography (CT) (16), magnetic 
resonance imaging (MRI) (17), or X-ray (18). However, 
acquiring medical data poses challenges, particularly related 
to patient privacy regulations and the need for extensive 
and accurate annotation (19,20). Furthermore, the three-
dimensional (3D) nature of medical imaging requires 
specialized expertise to extract cross-plane contextual 
information efficiently. In addition to the scarcity of data, 
computational efficiency is crucial in medical imaging 
to achieve real-time segmentation for prompt diagnosis. 
Moreover, medical images contain valuable metadata 
beyond pixel values, such as contrast and manufacturing 
information. Consequently, models and networks developed 
for medical imaging differ significantly from generalized 
camera imaging models (21).

Furthermore, transparency and reliability are crucial in 
medical applications. Transparency ensures the interpretability 
of computational models, enabling healthcare professionals 
to understand their reasoning and make informed decisions. 
Reliability involves rigorous validation procedures, adherence 
to standards, and transparent documentation, fostering 
confidence in the technology’s dependability, safety, and 
ethical implications. Therefore, medical applications require 
heightened accountability, regulatory compliance, and ethical 
considerations to prioritize patient safety.

The unique set of challenges present in medical imaging 
has necessitated distinct approaches and solutions, setting 
it apart from other vision applications. Transformer-based 
networks have emerged as formidable competitors to CNNs 
as the state-of-the-art in the medical domain, primarily 
driven by some limitations inherent in CNNs. CNNs 
struggle with capturing long-range dependencies due to 
their reliance on local receptive fields and hierarchical 
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feature extraction. In contrast, transformers excel in 
modeling global interactions between image regions by 
utilizing self-attention mechanisms. They leverage attention 
mechanisms to simultaneously process all positions in the 
input, facilitating a holistic understanding of image context 
and comprehending contextual relationships. Transformers 
also incorporate positional encoding, which provides 
explicit spatial information to the model, enabling it to 
better handle spatial relationships between image elements. 
This positional encoding is lacking in CNNs, where spatial 
information is implicitly encoded through convolutional 
operations. Additionally, transformers exhibit adaptability 
in adjusting receptive fields, allowing them to selectively 
attend to relevant regions and incorporate contextual 
information adaptively (22).

Despite the advantages offered by transformers in certain 
aspects, they also exhibit some limitations. Particularly, 
transformers tend to face challenges when dealing with 
small datasets, where CNNs currently maintain their 
status as the state-of-the-art approach. Consequently, it 
becomes essential to investigate network architectures that 
incorporate both convolutional layers and transformers, 
combining the strengths of both paradigms to potentially 
achieve improved performance and address the limitations 
of each individual model (23).

In response to the abundance of research in the field 
of medical image segmentation, it becomes imperative to 
comprehensively examine the various transformer-based 
models and strategies. Prior research in the domain of 
medical imaging has explored transformers, as evident in 
references (24,25). However, these studies have taken a 
broad approach, encompassing various aspects of medical 
imaging such as classification, detection, and segmentation. 
In contrast, our current paper uniquely concentrates 

exclusively on the topic of segmentation. This specialization 
enables us to conduct a comprehensive investigation into 
the application of transformers specifically for medical 
image segmentation, delving deeply into this area. It 
investigates diverse medical data types, architectural 
designs, smart self-attention strategies employed as well 
as multi-scale connections. Additionally, a quantitative 
assessment of selected networks is conducted to facilitate 
a precise analysis of their techniques. The findings of this 
study contribute to a deeper understanding of transformer-
based methodologies and offer insights for further 
enhancing performance in medical image segmentation. We 
present this article in accordance with the Narrative Review 
reporting checklist (available at https://qims.amegroups.
com/article/view/10.21037/qims-23-542/rc).

Methods

ViT (26) is the first vision transformer and has been the 
basis for further research in transformers in vision since 
2021. Many vision transformers have been designed to 
explore their potential in medical image segmentation, 
and a survey of research papers from 2021 to 2023 was 
conducted to investigate the use of transformers in this 
area. The survey used various search engines such as 
Google Scholar, arxiv, ResearchGate, Microsoft Academic, 
and Semantic Scholar along with the following keywords: 
medical, transformers, segmentation, imaging and vision to 
find relevant papers. The relevant details related to paper 
acquisition and research are mentioned in Table 1.

Workings of a transformer

In this part of the section, we describe in detail the 

Table 1 Methods of research

Items Specification

Date of search 23rd March 2023

Databases and other sources searched Google Scholar, arXiv, ResearchGate, Microsoft Academic, and Semantic Scholar

Search terms used “Medical” and “transformers” and “segmentation” and “imaging” or “vision”

Timeframe 2021 to 2023

Inclusion criteria Medical image segmentation networks that include transformers, published manuscripts, pre-
print articles, English language

Exclusion criteria Classification networks, non-medical image segmentation networks, networks where 
transformers are not a prominent part of the model architecture, unpublished manuscripts, 
conference abstracts only

Selection process Authors Khan RF and Lee BD performed joint selection

https://qims.amegroups.com/article/view/10.21037/qims-23-542/rc
https://qims.amegroups.com/article/view/10.21037/qims-23-542/rc
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Figure 1 Structure of a transformer. MHSA, multi-head self-attention.

workings of the transformer (5). It comprises an encoder 
and a decoder, as can be seen in Figure 1. Before the data 
can reach the encoder or decoder, flattened tokens are 
generated, and their position information is added to keep 
the model spatially aware.

Encoder

The encoder has multiple stacks of layers, where each layer 
is composed of two sub-layers, one of which is the multi-
head self-attention (MHSA) layer (see Figure 2A) and 
the other is a fully connected feed forward network. The 
transformer also utilizes residual connections after each sub-
layer, thereby providing an alternate path for data to travel, 
while skipping a few layers. To this end, the dimensions of 

the input and output to the sub-layers are kept the same 
so element wise addition can be performed at the residual 
block. Each sub-layer is succeeded by a normalization layer.

Decoder

The decoder employs similar stacks of sub-layers to the 
encoder; however, it has an extra MHSA layer that performs 
self-attention over the result of the encoder block. The 
decoder also performs a masking technique in the first sub-
layer to prevent positions from attending to subsequent 
positions. The goal here is to prevent predictions for 
position i to depend only on predictions for positions that 
are less than i. This technique is very useful in NLP where 
the prediction of a word should depend solely on its history.
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Figure 2 Attention mechanism of a transformer. (A) Scaled dot product. (B) MHSA layer of a transformer. MHSA, multi-head self-
attention.

Scaled dot product attention

The attention mechanism of the transformer works by 
mapping a set of queries and key-value pairs of vectors into 
an output vector. To compute the output, a weighted sum of 
the value vector is used wherein the weights are calculated 
from the compatibility function between the query and its 
corresponding key.

This ‘scaled dot product’ attention is computed 
simultaneously on a set of projected queries, keys, and 
values that make up the matrices Q, K, and V with their 
respective vector dimensions being dq, dk, and dv. These 
vectors have been projected into their respective dimensions 
from the positionally-embedded token vector of length 
dmodel. To compute the query and key weights, a dot product 
of the query and key vector sets is calculated and divided by 
dk, the square root of the dimension of key vector, dk. Next, 
the softmax of the resulting matrix is computed. Once we 
have the query-key weights, their dot product with the set 
of value vectors provides us with the set of output vector 
or attention vector. This process is depicted in Figure 2A, 
and the mathematical equation of the complete attention 
mechanism is as follows:

( ), ,
T

k

QKAttention Q K V Softmax V
d

 
=   

 
 [1]

MHSA

In the MHSA layer, as can be seen in Figure 2B, instead of a 
single projection, the query, key, and value are projected H 
number of times with different, learned linear projections. 
The scaled dot product attention is then computed in 
parallel for all the heads, with the output vectors being 
concatenated. The concatenated vectors are then projected 
into final values. In this manner, the transformer jointly 
attends to the feature representation from different sub-
spaces for all positions. MHSA can be expressed as follows:

( ) ( )1, , , ..., hMultiHead Q K V Concat head head=
 

[2]

( ), ,i i i ihead Attention Q K V=
 

[3]

where Qi, Ki, and Vi are the query, key, and value matrices, 
respectively, of the ith subspace or head.

Significance of MHSA

MHSAs have both advantages and disadvantages when 
it comes to generalizability. On one hand, they flatten 
loss landscapes, leading to improved performance and 
generalization. This is because flatter loss landscapes enhance 
accuracy and robustness, especially in scenarios with large 
amounts of data (22). On the other hand, MHSAs can have 
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negative Hessian eigenvalues in situations with small amounts 
of data. This non-convexity of loss landscapes can disrupt 
neural network optimization. However, the presence of a 
substantial training dataset suppresses negative eigenvalues 
and makes the losses more convex (27).

MHSAs and convolutions exhibit contrasting behaviors 
in the sense that while MHSAs aggregates feature maps, 
convolutions diversify them. Additionally, Fourier 
analysis of feature maps reveals that MHSAs reduce high-
frequency signals, whereas convolutions amplify high-
frequency components. Essentially, MHSAs act as low-
pass filters, while convolutions function as high-pass filters. 
Understandably, convolutions are susceptible to high-
frequency noise, unlike MSHAs, which are more robust (23).

A survey of transformer-based medical image 
segmentation

Key contents & findings

In this paper, we survey diverse transformer models 
and strategies tailored for medical data. We examine 
structural modifications, self-attention enhancements, and 

multi-scale correlations in place to boost performance 
and generalizability. This is followed by conducting a 
quantitative analysis on select networks mentioned in 
our survey. Specifically, we focus on networks that were 
evaluated using benchmark datasets, which are commonly 
employed for the evaluation of medical image segmentation. 
Lastly, we conclude with a performance comparison of 
transformer-based networks with other networks for a 
number of different tasks to show how the transformer 
outperforms state of the art methodologies.

As shown in Figure 3, we introduce a taxonomy to 
categorize different transformer models based on medical 
data types, architectural designs, attention strategies and the 
presence of multi-scale correlations. Key characteristics of 
individual models were described based on this taxonomy. 
The papers included in this survey and their respective 
designs are listed in Table 2.

Dimensions

3D
In this category, we focus on transformer-based networks 
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Table 2 Main features of the transformer networks

Transformer 
network

Dimension Modality Segmentation tasks Architecture
Patch 

representation
Use of vanilla 
self-attention

Multi-scale 
correlations

Convolution-free 
transformer (13)

3D CT & MRI Pancreas, 
hippocampus & 
brain cortical plate

Pure, sequential Yes Yes No

UNETR (28) 3D CT & MRI Multi-organ & brain 
tumor

Hybrid, hierarchical transformer encoder 
& convolution decoder

Yes Yes No

TransBTS (29) 3D MRI Brain tumor Hybrid, hierarchical encoder-decoder, 
transformer in bottleneck

No Yes No

Medical 
transformer (30)

3D MRI Brain tumor Hybrid, sequential encoder-decoder No Yes No

D-Former (31) 3D CT & MRI Multi-organ & 
cardiac chamber

Pure, hierarchical encoder-decoder Yes No No

CoTr (32) 3D CT Multi-organ Hybrid, hierarchical encoder-decoder No No Yes

nnFormer (33) 3D CT Multi-organ & 
cardiac chamber

Hybrid, hierarchical encoder-decoder, 
Interleaved

Yes No No

TransAttUnet (34) 2D CT & X-ray Gland, nuclei & 
lesion

Hybrid, hierarchical encoder-decoder, 
transformer in bottleneck

No Yes Yes

TransUNet (35) 2D CT & MRI Multi-organ & 
cardiac chamber

Hybrid, hierarchical encoder-decoder, 
transformer in bottleneck

Yes Yes No

TransFuse (36) 2D Colonoscopy Polyp, lesion & hip Hybrid, hierarchical encoder-decoder, 
parallel convolution and transformer-
based encoders

Yes Yes No

SwinUNet (37) 2D CT Multi-organ & 
cardiac chamber

Pure, hierarchical encoder-decoder Yes No No

DS-TransUNet 
(38)

2D Colonoscopy Polyp, gland, nuclei 
& lesion

Pure, hierarchical encoder-decoder 
separate local and global encoders

Yes No Yes

MissFormer (39) 2D CT Multi-organ & 
cardiac chamber

Pure, hierarchical encoder-decoder, 
interleaved

Yes No Yes

Mixed transformer 
(40)

2D CT Multi-organ & 
cardiac chamber

Hybrid, hierarchical encoder-decoder, 
transformer in bottleneck

Yes No No

UTNet (41) 2D CT Cardiac chamber Hybrid, hierarchical encoder-decoder, 
interleaved

No No No

TUNet (42) 2D CT Pancreas Hybrid, hierarchical encoder-decoder, 
parallel convolution and transformer-
based encoders

Yes Yes No

TransBTSV2 (43) 3D CT & MRI Brain, liver tumors & 
kidney tumors

Hybrid, hierarchical encoder-decoder, 
transformer in bottleneck

No No No

Swin UNETR (44) 3D MRI Brain tumor Hybrid, hierarchical transformer encoder 
& convolution decoder

Yes No No

VT-UNet (45) 3D CT Brain tumor Hybrid, hierarchical encoder-decoder Yes No No

LeVit-UNet (46) 2D CT Multi-organ & 
cardiac chamber

Hybrid, hierarchical encoder-decoder, 
transformer in bottleneck

No Yes No

TransClaw-UNet 
(47)

2D CT Multi-organ Hybrid, hierarchical encoder-decoder, 
transformer in bottleneck

Yes Yes No

Segtran (48) 2D & 3D MRI, fundus & 
colonoscopy

Brain tumor & polyp Hybrid, sequential No No No

GT-UNet (49) 2D X-ray & fundus Tooth root & retinal 
vessel

Hybrid, hierarchical encoder-decoder, 
interleaved

Yes Yes No

Table 2 (continued)
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Table 2 (continued)

Transformer 
network

Dimension Modality Segmentation tasks Architecture
Patch 

representation
Use of vanilla 
self-attention

Multi-scale 
correlations

Pyramid medical 
transformer (50)

2D Microscopy Gland, head & neck 
tumors, & nuclei

Hybrid, hierarchical encoder-decoder, 
parallel convolution and transformer-
based encoders

No No No

Medformer (51) 2D & 3D CT & MRI Multi-organ, cardiac 
chamber, liver 
tumors & kidney 
tumors

Hybrid, hierarchical encoder-decoder Yes No Yes

HybridCTrm (52) 3D MRI Brain tissue Hybrid, sequential, parallel convolution 
& transformer-based encoders

Yes Yes No

HyLT (53) 2D Histology & 
microscopy

Gland & nuclei Hybrid, hierarchical encoder-decoder, 
interleaved

Yes No No

PHTrans (54) 3D MRI Multi-organ & 
cardiac chamber

Hybrid, hierarchical encoder-decoder, 
transformer in bottleneck

No No No

3D, three-dimensional; CT, computed tomography; MRI, magnetic resonance imaging; 2D, two-dimensional.

designed for 3D segmentation of medical images obtained 
from modalities like MRI, CT, and ultrasound (US). These 
networks enable direct anatomical segmentation without the 
need for slice-by-slice two-dimensional (2D) segmentation. 
Due to the impracticality of flattening and encoding 3D 
volumes in terms of computational and memory resources, 
network redesign is necessary to handle volumetric medical 
scans efficiently.

One way to deal with volumetric images is to divide 
them into smaller 3D volumes and encode features for 
each volume through a transformer, as performed by 
convolution-free transformer (13). Another more common 
approach is to treat the smaller 3D volumes as individual 
single tokens, which can then be embedded and fed to a 
transformer. Doing this significantly reduces the spatial 
dimension depending on the number of volumes, thus 
enabling prediction at very low computational costs. 
The global scope of the transformer is also maintained, 
since self-attention can then be applied to all the tokens 
combined. This is the approach utilized by various networks 
(28,31,33,44,45,51,52) and the generic architecture can be 
seen in Figure 4A.

3D computations can also be reduced significantly by 
using convolution layers in the early stages of the network 
to transform the volume into smaller feature maps. The 
transformer architecture can then be applied to these 
feature maps without the need to reduce spatial dimensions, 
as can be seen in (29,43,48,54). This process is depicted in 
Figure 4B. Medical transformer (30) introduced another 
method wherein the 3D volume was divided into 2D slices 

of three different views: coronal, sagittal, and axial. Then, 
each view slice was regarded as a separate image on which 
the transformer self-attention (TSA) was applied.

2D
In medical imaging, 2D images encompass various 
modalities such as X-rays and colonoscopy images, as well as 
individual slices extracted from 3D scans like CT and MRI. 
When employing models designed for 2D medical images 
in 3D segmentation tasks, the training typically occurs 
on individual 2D slices, resulting in a loss of volumetric 
information and patterns inherent in the 3D scan.

As is the case for 3D volumetric images, tokens can be 
generated from 2D images by first breaking the image 
or feature map into smaller patches, where each patch 
is converted into a single token (see Figure 4A). Patch 
embedding like this has been performed in a number of 
networks like (36-39,42,49). Similar to the 3D networks, 
another technique to reduce the spatial dimensions of 
the input is to begin by employing convolution layers to 
transform the image into lower dimension feature maps 
followed by transformer layers (see Figure 4B). Networks 
such as (34,41,46,48) follow this method to enable the 
computationally efficient modelling of transformer-based 
networks on medical images.

Another technique that many networks follow to further 
reduce computations is to use convolution in the early levels 
of the network as well as patch embedding immediately 
before transformer blocks. This method aims to make 
the network more optimized by substantially downsizing 
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the tokens before performing self-attention through 
transformer blocks. This technique was performed in 
(35,40,47,50,51,53) and the general process is portrayed in 
Figure 4C.

Architecture

Pure transformer architecture
Pure transformer architectures exclusively rely on 
transformers, without incorporating CNNs. These models 
employ tokenization and self-attention to learn features and 
capture long-range dependencies. They stack transformer 
blocks or MHSA modules in serial or encoder-decoder 
configurations to establish relationships between different 
embedding spaces.

Patch-wise architectures are commonly used in pure 
transformer models, where image patches replace pixels as 
units of information. Self-attention is applied to explore the 

connections among embedded information. Examples of 
pure transformer networks, such as (31,37-39,45) adopt a 
U-net-like (55) encoder-decoder architecture (Figure 5A). 
Transformers learn local and global dependencies through 
feature representation and down-sampling, followed by up-
sampling for pixel-wise prediction. MissFormer (39) further 
utilizes transformers in skip connections between encoder 
and decoder levels to generate meaningful multi-scale 
features. An alternative approach, although less common, 
is to construct a sequential transformer architecture as 
demonstrated in convolution-free transformer (13). In 
this setup, the incoming image is divided into patches and 
processed by stacked transformers for segmentation.

Hybrid transformer
As is suggested by the name, these are models that join 
transformers with CNNs in a hybrid architecture to 
attain the key features of both, the local information from 
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CNNs and the global information from transformers. The 
transformer and convolutions layers are placed strategically 
to attain the most out of the network.

Consider medical transformer (30), a hybrid architecture 
utilized for the 3D segmentation task among sequential 
networks (depicted in Figure 5B). It incorporates parallel 
encoder branches, each acquiring 2D slices from distinct 
views (axial, coronal, and sagittal). The sequential network 
commences with a convolution encoder followed by 
a transformer encoder for each branch. Subsequently, 
the features are fused according to each view and then 
processed by the prediction network.

Another sequential network, HybridCTrm (52), focuses 
on multi-modal image segmentation and proposes two 
architectures. The single-path strategy combines both 
modalities into a multi-channel image, which is then 
split into separate branches: a CNN-based encoder and 
a transformer-based encoder. The features are fused and 
decoded using convolution to generate the segmentation 
mask. Alternatively, the multi-path strategy employs parallel 
CNN and transformer encoders for each modality. The 
features from each path are then integrated for subsequent 

decoding.
In medical-specific networks, the prevalent technique 

involves employing a U-net-like encoder-decoder 
architecture for feature extraction at multiple scales. 
However, instead of utilizing convolution layers at every 
level, these hybrid architectures strategically position 
convolution blocks early on to extract high-level local 
features, while transformer blocks are placed deeper or at 
the bottleneck to extract more global features, effectively 
reducing the size of the feature map. This process is 
illustrated in Figure 5C. Several segmentation networks, 
such as (29,32,34,35,40,43,46-48,54) employ this approach. 
Notably, CoTr (32) incorporates skip connections from the 
encoder to the transformer bottleneck, enabling multi-level 
feature extraction.

Another intelligent approach, depicted in Figure 5D, 
involves interleaving convolution and transformer blocks at 
each level of the U-net-like encoder and decoder. Networks 
like (33,41,49,53) adopt this method to extract both local 
and global features using transformers and convolutions 
at each scale throughout the encoder and decoder. This 
enables the model to learn spatial and temporal features 
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from each resolution in the network. Additionally, some 
methods solely employ transformers in the encoder levels, 
while the decoder levels exclusively consist of convolutions. 
Figure 5E presents these strategies, assuming that the 
transformer in the encoder can sufficiently extract both low 
and high-level features, with convolutions reserved for the 
prediction network. Networks such as UNETR (28) and 
Swin UNETR (44) follow this strategy.

Among the unconventional network approaches, 
TransFuse (36) and TUnet (42) stand out. In both cases, 
the image is processed by parallel branches consisting of 
a convolution-based encoder and a transformer-based 
encoder, while a single convolution-based decoder predicts 
the segmentation mask. However, there is a distinction 
between the two in the manner that in TransFuse, features 
of the same scale from both encoder branches are fused 
together, whereas this fusion does not occur in TUnet. 
Additionally, TUnet employs skip connections from the 
CNN-based encoder to the decoder, while the parallel 
transformer branch provides global features to the decoder 
input. The general architecture of such networks is depicted 
in Figure 5F.

Another network, pyramid medical transformer (50), 
deviates from the standard architecture which incorporates 
a branch comprising a simple convolution-based encoder, 
along with three hybrid branches consisting of convolution 
and transformer-based encoders. Each hybrid branch 
focuses on different dependency ranges (short, medium, and 
long), with the input image resized to various dimensions 
corresponding to large, medium, and small-scale image 
sizes for the respective branches. The features of different 
dimensions are fused with the pure convolution-based 
encoder, considering the feature map size, and are then 
passed as skip connections to the decoder.

Medformer (51) introduces a network that directly 
divides the image into large patches as tokens. These local 
image features undergo embedding into a token map using 
multiple convolution and down-sampling layers to reduce 
spatial size before being fed into the transformer for global 
feature extraction. Similar to the previous networks, it 
adopts a U-net-like architecture with transformer blocks at 
each level to extract meaningful information.

Attention

Vanilla self-attention
This refers to the attention style of the original transformer 
architecture, where a set of tokens is projected in a 

linear manner into query, key, and value matrices. The 
query and the set of key-value pairs are mapped to an 
output as detailed in the “Scaled dot product attention” 
section, where it is stated that all the queries, keys, and 
values come from the same sources. In this manner, self-
attention is conducted while utilizing information from a 
single space. Medical segmentation networks like (13,28-
30,35,36,42,46,47,49,52) all employ vanilla self-attention to 
extract global information.

Modified self-attention
In this category, the transformer’s self-attention mechanism 
is modified to enhance specific aspects: (I) efficiency: 
computation is optimized to reduce complexity, making the 
architecture more efficient for training and inference. (II) 
Shifted mechanisms: self-attention is computed on separate 
and overlapping windows to expand the receptive field of 
transformer blocks. (III) Local and global scope modules: 
high and low-level features are captured separately to retain 
maximum information and improve generalization. (IV) 
Cross-attention: self-attention involves queries, keys, and 
value matrices from different subspaces, enhancing the 
model’s robustness. (V) Other approaches: novel strategies 
for self-attention that don’t fit into specific categories, 
offering unique ways to improve performance.
Efficiency
Efficiency-focused networks include (32,39,41,48). In 
CoTr (32) and UTNet (41), the token space is sub-sampled 
to reduce the vector space, with UTNet sub-sampling 
only key and value vectors. Conversely, MissFormer (39) 
reduces the spatial dimension before projecting query, key, 
and value vectors, aiding multi-scale feature handling with 
transformers in skip connections. The network Segtran (48) 
introduces efficiency via squeezed attention blocks (SABs), 
performing a more efficient NxM computation (M << N) 
instead of NxN, achieved by learning an M-dimensional 
embedding notebook to ‘squeeze’ the attention matrix, 
reducing time and complexity.
Shifted mechanism
These networks, inspired by the Swin transformer (56), 
divide the feature space into local windows of fixed patch 
count. Within each transformer block, self-attention is 
computed once within these windows and once after shifting 
them vertically and horizontally with a fixed stride. This 
captures both local and global dependencies by correlating 
neighboring windows. Networks such as (33,37,38,44,45,54) 
incorporate these shifted window mechanisms in each 
transformer block.
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Local and global scope modules
These networks go beyond the traditional hierarchical 
encoder-decoder architecture by incorporating separate local 
and global scope modules within the self-attention module 
of the transformer block. In D-Former (31), attention is 
computed within local windows of neighbouring patches as 
part of the local scope module, and within new windows of 
patches at a fixed distance as the global scope module. This 
approach captures both local and global dependencies at 
each hierarchical level. In mixed transformer (40), the local 
scope module computes self-attention within local windows, 
generating a single token for each window. The global 
self-attention module performs axial self-attention with a 
learned Gaussian mask on these tokens to capture global 
dependencies. This reduces computational cost by effectively 
enhancing the perception of each query’s neighborhood. 
Furthermore, the network also incorporates external 
attention (57) to learn correlations between different data 
samples. Memory units are used for key and value matrices, 
capturing essential information from the entire dataset to 
calculate attention scores for each sample.
Cross-attention
VT-Unet (45) incorporates shifted self-attention (SA) 
and cross SA. In the decoder transformer blocks of the 
hierarchical U-net-like architecture, SA is computed in 
parallel pairs. Each pair consists of a simple SA module and 
one with shifted windows. One pair receives key and value 
projections from deeper decoder levels, while the other 
pair receives projections from the encoder level of the same 
resolution. Value fusion between the SA types allows joint 
attention to spatial context from the encoder and semantic 
information from the decoder. HyLT (53) also utilizes cross 
SA in a hybrid network with a CNN encoder path and a 
transformer encoder path. Self-attention includes a vanilla 
MHSA block sandwiched between two cross MHSA blocks 
in each encoder level. The cross MHSA blocks merge local 
and global information from both paths.
Others
In TransAttUnet (34), the hybrid network employs TSA and 
global spatial attention (GSA) in the bottleneck. TSA is a 
simple MHSA module, while GSA combines convolutions, 
matrix multiplication, and softmax to generate a position 
attention map, enhancing global feature aggregation in a 
selective manner.

Another unique approach is seen in Medformer (51), 
which utilizes Bi-directional transformer blocks in both 
encoding and decoding paths. This reduces computational 
complexity from quadratic to linear while enabling multi-

scale fusion of features. By projecting a concise semantic 
token map, each level of the hierarchical encoder-decoder is 
summarized holistically, reducing redundancy.

Scale

Single-scale transformer
Another interesting feature to look for in transformer-
based architectures is the presence or absence of multi-
scale correlation. Networks that have no multi-scale 
correlations extract meaningful information from features 
of the same resolution. These methods include networks 
like (13,28-31,33,35-37,40-50,52-54) where a multi-scale 
interrelationship is not given precedent to extract local and 
global context.

Multi-scale correlations
These networks enhance performance by incorporating 
multi-scale feature correlation. They leverage different 
strategies to efficiently integrate datasets of varying 
resolutions, improving segmentation models (58). For 
instance, MissFormer (39), CoTr (32) and Medformer (51) 
utilize multi-scale transformer-based fusion modules in skip 
connections. MissFormer and CoTr flatten and concatenate 
feature maps from each encoder level as embedded tokens, 
processed by multiple transformer blocks for multi-scale 
correlations. In contrast, Medformer employs semantic 
maps for fusion to prevent redundant tokens. There is 
also DS-TransUNet (38), a pure transformer network 
with hierarchical encoder branches at different scales. 
The transformer interactive fusion (TIF) module in this 
network performs cross-attention by generating tokens 
based on one branch’s feature map and computing self-
attention with the reshaped token sequence from the other 
branch. Other than this, TransAttUNet (34) utilizes a bi-
linear up-sampling module for multi-scale skip connections, 
incorporating cascade connection, residual connection, 
and dense connection techniques to aggregate features of 
varying semantic scales in the decoder.

Quantitative analysis

In this section we have conducted a thorough analysis 
of various networks, focusing on their performance in 
different tasks within the realms of CT and MRI modalities. 
Specifically, for CT, we have examined the multi-organ 
segmentation task by utilizing the widely recognized 
Synapse multi-organ segmentation (59) dataset, which 
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Table 3 Network performances on CT tasks reported in Dice score (%)

Networks Average Aorta Gallbladder Kidney (L) Kidney (R) Liver Pancreas Spleen Stomach

TransUNet† (35) 77.48 87.23 63.13 81.87 77.02 94.08 55.86 85.08 75.62

TransClaw-Unet (47) 78.09 85.87 61.38 84.83 79.36 94.28 57.65 87.74 73.55

LeVit-Unet (46) 78.53 87.33 62.23 84.61 80.25 93.11 59.07 88.86 72.76

Mixed Transformer (40) 78.59 87.92 64.99 81.47 77.29 93.06 59.46 87.75 76.81

Swin-UNet† (37) 79.13 85.47 66.53 83.28 79.61 94.29 56.58 90.66 76.60

MISSFormer (39) 81.96 86.99 68.65 85.21 82.00 94.41 65.67 91.92 80.81

UNetR (28) 79.42 88.92 69.80 81.38 79.71 94.28 58.93 86.14 76.22

VT-UNet† (45) 79.02 88.54 70.07 84.43 87.14 94.79 71.47 91.12 82.16

MedFormer (51) 84.52 92.43 77.36 92.40 91.21 95.85 81.92 93.15 90.23

Swin UNETR (44) 85.78 92.78 76.55 85.25 89.12 96.91 77.22 88.70 79.72

CoTr (32) 86.33 92.10 81.47 85.33 86.41 96.87 80.20 92.21 76.08

nnFormer† (33) 87.40 92.04 71.09 87.64 87.34 96.53 82.49 92.91 89.17

PHTrans (54) 88.55 92.54 80.89 85.25 91.30 97.04 83.42 91.20 86.75

D-Former (31) 88.83 92.12 80.09 92.60 91.91 96.99 76.67 93.78 86.44
†, the model was pre-trained on ImageNet. Top section reports 2D networks with bottom section reporting 3D networks. CT, computed 
tomography; L, left; R, right; 2D, two-dimensional; 3D, three-dimensional.

offers valuable annotations for a range of organs. Moving on 
to MRI, we concentrated our evaluation on a single, highly 
popular task—the Automated Cardiac Diagnosis Challenge 
(ACDC) (60). This challenge provides annotated data for 
three critical regions: left ventricle (LV), right ventricle (RV), 
and left ventricular myocardium (Myo). By assessing the 
networks’ performances on this task, we were able to gain 
insights into their efficacy in automated cardiac diagnosis.

The selection of these tasks and datasets was intentional, 
as they collectively offer diverse shape, size, and tissue 
characteristics, encompassing a wide range of real-world 
scenarios. This diversity allows us to effectively approximate 
the strengths and weaknesses of different models, enabling 
a comprehensive analysis of their capabilities.

Table 3 in our study presents the performance evaluation 
of various networks on the Synapse dataset challenge 
presenting results across eight crucial organs as well as the 
average performance. The evaluation metric used to assess 
the performance is the Dice similarity coefficient, presented 
as a percentage. The results presented in Table 3 are sourced 
from the original papers (31,39,40,51,54), representing the 
highest reported scores achieved by each respective network 
on the specific task. Upon examination, we observe that 
D-Former (31) emerges as the top-performing network 

for the multi-organ segmentation task closely followed 
by PHTrans (51). These networks demonstrate superior 
performance according to the reported results, showcasing 
their effectiveness in the respective tasks.

Similarly, Table 4 in our study presents the evaluation 
of various networks specifically designed for MRI in the 
context of the ACDC task. The evaluation metric used 
is, again, the Dice similarity coefficient, expressed as a 
percentage. The table provides an overview of the scores 
obtained by each network on four different segmentation 
areas: LV, RV, Myo, and the average Dice score across all 
three areas. Upon analyzing the results, it becomes evident 
that D-Former (31) exhibits the highest average Dice score, 
positioning it as the leading network. MedFormer (51) 
closely follows with competitive performance. However, 
in terms of Myo segmentation specifically, MedFormer 
outperforms other networks, claiming the lead.

These findings, based on the compiled scores (31,51,54) 
highlight the effectiveness of D-Former and MedFormer 
in the ACDC task, showcasing their superior performance 
across multiple segmentation areas. Such insights enable us 
to make informed assessments regarding the suitability and 
potential applications of these networks in the field of MRI-
based medical imaging.
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Transformers vs. other networks: performance

In  our  inves t iga t ion ,  we  have  a l so  conducted  a 
comprehensive performance comparison between 
transformer-based networks and other benchmark CNN 
networks in various medical segmentation tasks. This 
analysis has revealed the notable superiority of transformer-
based models over the state-of-the-art networks across 
different modalities and problem domains. Specifically, we 
present the performance comparison in Table 5, focusing on 
three significant tasks: brain tumor segmentation (BraTS 
2019 challenge) (72) in MRI, multi-organ segmentation 
(Synapse) (59) in CT, and gland segmentation (GlaS) (73) in 
Microscopy. These tasks encompass a wide range of target 
scale, form, and structure attributes, thereby providing a 
comprehensive evaluation of the networks’ capabilities. The 
evaluation metric employed in this comparison is, again, 
Dice similarity score in percentage. The table presents 
the performance scores for each task based on the area of 
expertise of the networks involved.

Starting with the BraTS challenge, we observe 
from experiment reports (43) that transformer-based 
networks, such as TransUNet (35), SwinUNet (37), and  
TransBTSV2 (43), demonstrate performance scores 
comparable to or even surpassing those of the best CNN 
network performances. Notably, TransBTSV2 achieves the 
highest score, highlighting the effectiveness of transformer-

based architectures in brain tumor segmentation. Moving 
to the Synapse dataset for multi-organ segmentation, 
reported by Zhou et al. (33), we find that nnFormer (33), a 
transformer-based network, outperforms state-of-the-art 
CNN networks by a significant margin. This performance 
superiority is consistent across different organs, indicating 
the robustness and versatility of transformer-based models 
in handling varied organ contours, proportions, and 
radiographic densities. Additionally, results on the GlaS 
dataset, reported from Chen et al. (34) and Luo et al. (53), 
show a remarkable improvement in performance when 
transformer-based networks like HyLT (53) are employed. 
This demonstrates the ability of transformer architectures 
to capture complex glandular structures and enhance 
segmentation accuracy.

In summary, through a comprehensive performance 
comparison on these diverse medical segmentation tasks, 
transformer-based networks consistently demonstrate their 
superiority over other state-of-the-art CNN networks. The 
robust performance of transformers in these tasks highlights 
their effectiveness in capturing intricate details, modelling 
complex relationships, and achieving better segmentation 
accuracy in medical image analysis.

Conclusions

Through this survey of transformers in medical image 

Table 4 Network performances on the MRI ACDC challenge in Dice score (%)

Networks Average RV Myo LV

UTNet (41) 88.30 90.41 89.15 94.39

TransUNet† (35) 89.71 88.86 84.54 95.73

Swin-UNet† (37) 90.00 88.55 85.62 95.83

LeVit-Unet (46) 90.32 89.55 87.64 93.76

Mixed Transformer (40) 90.43 86.64 89.04 95.62

MISSFormer (39) 90.86 89.55 88.04 94.99

UNETR (28) 87.15 84.52 84.36 92.57

VT-UNet† (45) 91.13 89.44 88.42 95.53

nnFormer† (33) 91.78 90.22 89.53 95.59

PHTrans (54) 91.79 90.13 89.58 95.76

MedFormer (51) 92.14 90.95 89.71 95.76

D-Former (31) 92.29 91.33 89.60 95.93
†, the model was pre-trained on ImageNet. MRI, magnetic resonance imaging; ACDC, Automated Cardiac Diagnosis Challenge; RV, right 
ventricle; Myo, left ventricular myocardium; LV, left ventricle.
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Table 5 Performance in Dice score (%) of CNN-based and transformer-based networks across three different datasets

Network BraTS 2019 (avg.) Synapse (avg.) GlaS

U-Net (55) 76.90 76.85 75.73

Att-Unet (61) 80.65 77.77 81.59

Tunet (62) 83.29 – –

3D KiU-Net (63) 78.24 – 83.25

V-Net (64) 79.72 – –

TransUNet (35) 82.18 – –

SwinUNet (37) 82.20 79.13 86.70

TransBTS (29) 83.62 – –

TransBTSV2 (43) 85.17 – –

DualNorm-UNet (65) – 80.37 –

ENet (66) – 77.63 –

R50-DeepLabv3+ (67) – 75.73 –

EDANet (68) – 75.43 –

LeVit-UNet-384s (46) – 78.53 –

nnFormer (33) – 87.40 –

UNet++ (69) – – 81.83

ResUNet (70) – – 80.88

FANet (71) – – 84.67

TransAttUNet (34) – – 89.11

HyLt (53) – – 90.86

CNN, convolutional neural network; BraTS, brain tumor segmentation; avg., average; GlaS, gland segmentation.

segmentation applications, we have elucidated the different 
approaches that can be taken to efficiently boost the 
performance of deep learning in medical AI. We started by 
highlighting the different medical applications that can be 
ameliorated through image segmentation via AI. We then 
moved on to the state-of-the-art networks already in use in 
several application areas and their limitations, with CNNs 
representing the state of the art before transformers were 
introduced in the vision domain.

In this paper, we have explored the different aspects 
of transformer-based networks, ranging from network 
architecture designs to modified self-attention mechanisms. 
Additionally, we have conducted quantitative analyses on 
significant tasks to compare transformer-based networks 
with each other, as well as with other state-of-the-art 
networks that do not incorporate transformers. Our findings 
reveal that hybrid networks combining Transformers and 

CNNs, such as PHTrans (54), HyLt (53), TransBTSV2 (43),  
and MedFormer (51), demonstrate impressive results 
across most tasks. However, even pure transformer-based 
networks like D-Former (31) exhibit excellent performance 
in 3D tasks. Notably, our analysis highlights the significance 
of modified self-attention mechanisms as a key factor 
contributing to the enhanced performance of these 
networks across all examined tasks.

However, there are a number of important research 
directions for improving the performance of the transformer 
in the medical  domain.  While transformer-based 
approaches have shown promise, there is room for further 
enhancement. Transfer learning is a potential direction to 
explore, especially in the medical domain where annotated 
images are scarce for training accurate deep learning models 
from scratch. By utilizing pre-trained transformer-based 
models trained on large datasets from related domains, such 
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as ImageNet (74) and Microsoft COCO (75), or specifically 
medical imaging datasets like RadImageNet (76), NIH (77),  
and CheXpert (78), which include diverse modalities 
(CT, MRI, X-ray, etc.), the models can be fine-tuned on 
limited medical image datasets of interest. This approach 
has the potential to enhance the accuracy and efficiency of 
segmentation models.

Semi-supervised learning and self-supervised learning are 
utilized to address the scarcity of medical data in training 
transformer-based models. Semi-supervised learning 
combines labeled and unlabeled data, augmenting the labeled 
data to enhance accuracy and robustness of segmentation 
models. Promising results have been achieved by leveraging 
multiple segmentation tasks and their consistency (79). 
Another approach involves a combination of supervised and 
unsupervised losses to utilize unlabeled data, as demonstrated 
in cardiac MR image segmentation (80). Self-supervised 
learning trains models to solve pretext tasks, like restoring 
image context (81), or predicting anatomical position (82),  
leading to notable advancements in medical image 
segmentation. However, further investigation is required 
to comprehensively evaluate these techniques and their 
applicability to other medical imaging tasks.

Medical imaging technologies like CT and MRI produce 
scans with very high resolutions that can even reach up to 
three times the image resolution we now see in models for 
natural camera images. However, these are then processed 
and down-sampled greatly to fit the state-of-the-art model 
networks, which causes the loss of a lot of vital information. 
If these images could somehow be kept at their original 
resolutions, it would greatly improve current segmentation 
solutions.

Lastly, analogous to how domain-general large language 
models such as Bidirectional Encoder Representations 
from Transformers (BERT) (83) and ChatGPT (84) have 
provided a strong foundation for diverse successful domain-
specific large langue models, an intriguing direction for 
future research in medical image segmentation involves 
leveraging foundation models such as segment anything 
model (SAM) (85). Specifically, there is a need for further 
exploration in areas including fine-tuning, embedding and 
in-context learning, among others, to effectively adapt these 
foundation models for general medical image segmentation 
while considering unique characteristics of medical images.

Strengths & limitations

This section outlines the limitations and strengths of 

our research survey on transformers in medical image 
segmentation.

Limitations:
(I) The survey primarily focuses on analyzing and 

comparing transformers specifically tailored 
for medical image segmentation, potentially 
over looking the ef fect iveness  of  general 
transformer-based architectures in this domain.

(II) Despite efforts  to include innovative and 
pioneering research, there remains a possibility 
of omission of certain medical segmentation 
transformer networks. Given the continuously 
evolving and demanding nature of research in 
transformers for medical image segmentation, it is 
important to acknowledge that new developments 
and advancements may continue to emerge 
beyond the scope of this survey.

(III) The quantitative analysis of transformer-based 
networks is cantered on widely known medical 
segmentation tasks and challenges, encompassing 
only a subset of medical data. The assessment 
relies on data reported in respective papers rather 
than conducting new experiments.

Strengths:
(I) The survey introduces a unique taxonomy 

for evaluating transformer-based networks, 
incorporating distinct assessment categories such 
as self-attention types and multi-scale strategies.

(II) The taxonomy facilitates coherent grouping 
of networks sharing similar characteristics, 
enhancing comprehension of  underly ing 
architectural principles.

(III) The survey delves into understanding architectures 
that deviate from prevalent approaches within the 
taxonomy, offering a comprehensive insight into 
various network traits.

(IV) A quantitative assessment of numerous transformer-
based networks is provided across diverse medical 
segmentation datasets, covering a wide spectrum of 
segmentation tasks. These tasks encompass diverse 
modalities, prediction volumes, sizes, and contrast, 
ensuring a comprehensive performance evaluation 
of the networks.
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