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Original Article

Noncontact remote sensing of abnormal blood pressure using a 
deep neural network: a novel approach for hypertension screening
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Background: As the global burden of hypertension continues to increase, early diagnosis and treatment 
play an increasingly important role in improving the prognosis of patients. In this study, we developed and 
evaluated a method for predicting abnormally high blood pressure (HBP) from infrared (upper body) remote 
thermograms using a deep learning (DL) model.
Methods: The data used in this cross-sectional study were drawn from a coronavirus disease 2019 
(COVID-19) pilot cohort study comprising data from 252 volunteers recruited from 22 July to 4 September 
2020. Original video files were cropped at 5 frame intervals to 3,800 frames per slice. Blood pressure (BP) 
information was measured using a Welch Allyn 71WT monitor prior to infrared imaging, and an abnormal 
increase in BP was defined as a systolic blood pressure (SBP) ≥140 mmHg and/or diastolic blood pressure 
(DBP) ≥90 mmHg. The PanycNet DL model was developed using a deep neural network to predict 
abnormal BP based on infrared thermograms.
Results: A total of 252 participants were included, of which 62.70% were male and 37.30% were female. 
The rate of abnormally high HBP was 29.20% of the total number. In the validation group (upper body), 
precision, recall, and area under the receiver operating characteristic curve (AUC) values were 0.930, 0.930, 
and 0.983 [95% confidence interval (CI): 0.904–1.000], respectively, and the head showed the strongest 
predictive ability with an AUC of 0.868 (95% CI: 0.603–0.994).
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Introduction

Hypertensive disease remains the leading cause of death and 
chronic disability from cardiovascular diseases worldwide 
(1,2). However, the disease is currently characterized by 
low control rates and high morbidity (3) and has become 
the most significant risk factor for fatal events globally (4).  
In 2019, hypertensive disease was a major risk factor in 
19.2% (16.9–21.3%) of deaths worldwide (1). It has been 
shown that elevated blood pressure (BP) at a young age 
(18–45 years) may increase the risk of cardiovascular 
diseases such as coronary heart disease, stroke, and all-
cause mortality later in life. Compared with individuals 
with ideal BP [systolic blood pressure (SBP) <120 mmHg/
diastolic blood pressure (DBP) <80 mmHg], those with 
class 1 hypertension (140–159/90–99 mmHg) and class 
2 hypertension (160–180/100–110 mmHg) had 42% and 
101% elevated risks of all-cause mortality, respectively (5). 
However, many young people tend to ignore this potential 
risk because hypertension is perceived to be an age-related 
disease (6,7). In fact, not only is it ignored by young 
people, hypertension is ignored by people of all ages. A 
study showed that the detection, monitoring, and control 
of hypertension were inadequate in all age groups, with 
only 46% of hypertensive patients having their condition 
under control (8). Therefore, hypertension should be 
taken seriously by people of all ages for early detection, 
diagnosis, and BP as early as possible, we urgently require 
an abnormal BP detection tool that is efficient and suitable 
for mass screening.

Deep learning (DL) is widely used in research domains 
such as computer vision, speech analysis, and natural 
language processing (NLP). DL is a subset of machine 
learning (ML) differentiated by the ability of DL algorithms 
to automatically learn representations from data such as 
images, videos, or text without bringing in knowledge 
from the human domain. The term “deep” in DL denotes 
a multi-layer algorithm or neural network that recognizes 

patterns in data. The highly flexible architecture of DL 
allows it to learn directly from raw data, similar to how 
the human brain operates, and its predictive accuracy 
improves as more data becomes available. Recently, 
DL algorithms such as convolutional neural network 
(CNN) have been introduced to disease diagnosis and 
other medical activities. In addition to traditional cuff BP 
measurement, novel approaches to the monitoring of BP 
are being developed by DL. Several studies have reported 
that photoplethysmography (PPG) can be used to measure 
BP. A CNN has been utilized to estimate BP from PPG 
signals without the need for waveform analysis and signal 
feature extraction (9). Zhang et al. (10) proposed a refined 
BP prediction strategy that uses single-channel PPG signals 
to stratify populations by cardiovascular status before BP 
estimation and a DL model (BiLSTM-At) to estimate the 
long-term BP trend for different cardiovascular diseases 
groups. Furthermore, based on a conformal and flexible 
strain sensor array and DL neural networks, an intelligent 
BP and cardiac function monitoring system has been 
developed. A user can wear the conformal flexible sensor 
array on the wrist and acquire high-quality pulse signals 
without precise positioning or wired connections (11).

Since the global outbreak of coronavirus disease 2019 
(COVID-19), body temperature measurement by remote 
infrared thermography has become a routine screening 
procedure in many public places, especially in crowded 
places such as subways, train stations, and airports (12,13). 
Therefore, it is of great clinical and socioeconomic value 
to develop an abnormal BP detection system using existing 
remote infrared imaging equipment and data, thereby 
enabling large-scale population screening. In particular, with 
the global spread of COVID-19, it is important for studies 
on disease screening to take the special group of novel 
coronavirus carriers into consideration. Therefore, this 
study included people who tested positive for COVID-19 
nucleic acids. Moreover, the establishment of noncontact 

Conclusions: This is the first technique that can perform screening for hypertension without contact 
using existing equipment and data. It is anticipated that this technique will be suitable for mass screening of 
the population for abnormal BP in public places and home BP monitoring.

Keywords: Blood pressure (BP); hypertensive disease; artificial intelligence (AI)

Submitted Jul 04, 2023. Accepted for publication Sep 27, 2023. Published online Oct 08, 2023.

doi: 10.21037/qims-23-970

View this article at: https://dx.doi.org/10.21037/qims-23-970



Quantitative Imaging in Medicine and Surgery, Vol 13, No 12 December 2023 8659

© Quantitative Imaging in Medicine and Surgery. All rights reserved.   Quant Imaging Med Surg 2023;13(12):8657-8668 | https://dx.doi.org/10.21037/qims-23-970

abnormal BP detection systems in airports and stations 
could facilitate the detection of high-risk populations and 
help reduce cardiovascular emergencies on airplanes, trains, 
and other means of transportation (14).

Therefore, we developed a new DL model that can be 
used with existing equipment and data to achieve accurate 
and efficient noncontact remote detection of abnormal 
BP. The model is suitable for all people with abnormal BP, 
including patients who were coronavirus-positive during 
the COVID-19 pandemic. We present this article in 
accordance with the STARD reporting checklist (available 
at https://qims.amegroups.com/article/view/10.21037/
qims-23-970/rc).

Methods

Data

We used the dataset from a pilot cohort study on 
COVID-19 (15,16) for this cross-sectional study. BP was 
measured by a Welch Allyn 71WT monitor (Welch Allyn, 
Skaneateles Falls, NY, USA) prior to infrared imaging, 
and an abnormal increase in BP was defined as a SBP  
≥140 mmHg and/or DBP ≥90 mmHg. In addition, the 
dataset included participant information about physical 
activity, symptoms such as fever or cough, and alcohol 
and tobacco consumption over the last 2 hours. Thermal 
images were recorded in video mode using a digital thermal 
imaging camera TI-128 from Omega Engineering, Inc. 
(Norwalk, CT, USA) with a speed of 5 frames per second. 
The body image was segmented by three registered 
physicians into the head, chest, abdomen, and hands 
(including forearms), and each final segmentation required 
the consensus of all three physicians. Individuals aged 18 
and above who requested a polymerase chain reaction (PCR) 
test and signed the informed consent were included in the 
criteria. Individuals who were unable to maintain a deep 
breath for a minimum of 10 seconds or were unwilling to 
reveal their bare skin on their backs were excluded from the 
criteria. The volunteers included in Figures 1-3 are from 
pilot cohort study on COVID-19 (15,16). The study was 
conducted in accordance with the Declaration of Helsinki (as 
revised in 2013).

PanycNet neural network model

We designed a deep neural network model specifically for 
this type of data. First, the infrared thermogram videos 

were randomly divided into training and validation sets 
with a ratio of 9:1, and then the videos were sliced using 
an interval of 5 frames to obtain a total of 3,800 upper 
body infrared thermograms. The data were normalized 
before they were entered into the network to make the 
data more suitable for the network weights. The main 
deep network structure consisted of 3 convolutional layers, 
1 flattened layer, 1 fully connected layer, and the output 
layer of the category to which the input belonged. The 
output of the last fully connected layer of the network was 
set according to the number of categories, and the input 
image size was 112×112×3 (image matrix size). The model 
was visualized (Figure 1) using the Netron package, and a 
three-dimensional visualization of the model data analysis 
and transmission process was performed using Zetane 
Engine (https://github.com/Zetane/viewer). Regarding the 
optimization hyper-parameters, we made combinations of 
learning rate, number of network layers, and number of 
training times, respectively, in the training phase, and finally 
determined the following settings for the hyper-parameters 
after continuous combinations of the hyper-parameters. The 
learning rate was 1e−4 and epochs were 50. The optimizer 
used was Adam. Convolutional network layers were 3. 
The activation, classification layer, and loss functions were 
rectified linear unit (ReLu), Sigmoid, and mean square 
error (MSE), respectively. Optimizing hyperparameters 
was not performed automatically. To investigate the role of 
the information from each body part in BP detection, we 
calculated the diagnostic area under the receiver operating 
characteristic curve (AUC) values of the upper body, head, 
chest, abdomen, and hand (including forearms) segments 
individually. The principal codes of the PanycNet neural 
network model are provided in Appendix 1.

Evaluation and data analysis

Precision, recall, and the AUC were calculated for the 
hypertension detection algorithm using normalized 
BP values measured by the monitors. We evaluated the 
abnormal BP prediction ability overall (upper body) 
and of the head, hands (including forearms), chest, and 
abdomen. Thermograms were used to show the importance 
of each region of the image in the classification task, and 
t-distribution stochastic neighbor embedding (t-SNE) (17) 
was used to reduce dimensionality and visualize the data. The 
deep neural network model, plotting, and body segmentation 
were performed using Python 3.8, the Matplotlib 
package, and LabelImg software, respectively (18).  

https://qims.amegroups.com/article/view/10.21037/qims-23-970/rc
https://qims.amegroups.com/article/view/10.21037/qims-23-970/rc
https://cdn.amegroups.cn/static/public/QIMS-23-970-Supplementary.pdf


Liu et al. Noncontact measurement of BP8660

© Quantitative Imaging in Medicine and Surgery. All rights reserved.   Quant Imaging Med Surg 2023;13(12):8657-8668 | https://dx.doi.org/10.21037/qims-23-970

We conducted subgroup analyses to demonstrate model 
stability. We performed subgroup analyses according to 
age (greater than or equal to 40 years group and less than  
40 years group) and gender (male and female groups).

Statistics

Deep spatio-temporal convolutional models were built 
using Python software (3.9). Consecutive values were 
compared using the Student’s t-test or Mann-Whitney U 
test. All comparisons were two-sided, and a P value <0.05 
was considered significant. Randomized segmentation was 

implemented using the NumPy package random function. 
The main hardware is the graphics card RTX 3080 Ti 
(Nvidia, Santa Clara, CA, USA).

Results

We used the dataset from a pilot cohort study on 
COVID-19 (15,16) for this cross-sectional study, which 
included a total of 252 volunteers recruited from July 22 to 
September 4, 2020 (Table 1). Among the participants, 158 
(62.70%) were males, and 94 (37.30%) were females, with 
a mean age of 37.08 (18.00–75.00) years and abnormally 

Figure 1 PanycNet neural network structure and visualization of the main analysis steps. Conv2D, two-dimensional convolution; ReLU, 
rectified linear unit.

Input

?×112×112×3

Kernel: 1×1×3×32

Kernel: 1×1×64×32

Kernel: 96,800×10

Kernel: 10×2

Kernel: 3×3×32×64

Bias: 32

Bias: 32

Bias: 10

Bias: 2

Dense

Bias: 64

Conv2D

Conv2D

Conv2D

ReLU

ReLU

ReLU

Flatten

Dense

Dense

Sigmoid



Quantitative Imaging in Medicine and Surgery, Vol 13, No 12 December 2023 8661

© Quantitative Imaging in Medicine and Surgery. All rights reserved.   Quant Imaging Med Surg 2023;13(12):8657-8668 | https://dx.doi.org/10.21037/qims-23-970

high blood pressure (HBP) in 73 people (29.20%). All 
participants underwent novel coronavirus PCR testing 
using nasopharyngeal swabs prior to videotaping, with 59 
(23.51%) found to be positive. Only 32.00% of the febrile 
population had hypertension, and the effect of fever on the 
diagnosis of hypertension was excluded.

The model obtained an AUC of 0.980 (0.973–0.989) in 
the training set, with an accuracy of 0.930 (0.898–0.967) 
in identifying abnormally HBP and an accuracy of 0.972 
(0.956–0.983) in identifying normal BP (Table 2, Figure 2A). 
The model obtained an AUC of 0.983 (0.904–1.000) in 
the validation set, with an accuracy of 0.931 (0.778–1.000) 
in identifying abnormally HBP and 0.959 (0.818–1.000) 
in identifying normal BP (Table 2, Figure 2B). J indexes of 
the training set and testing set were both 0.94. The t-SNE 
visualization showed that the two types of data were clearly 
separable (Figure 2C). AUCs of 0.868 (0.603–0.994) for 
head information classification, 0.500 (0.091–0.663) for 
chest information classification, 0.500 (0.364–0.818) for 
abdominal information classification, and 0.736 (0.500–

1.000) for hand information classification were calculated 
(Figure 3). A conceptual diagram of the application of 
this technology in public places is shown in Figure 4. To 
completely protect the privacy of volunteers, we masked 
their faces in all displayed images (Figures 1-3).

The subgroup results showed an AUC of 0.999 (0.994–
1.000) in the lower age group and 0.974 (0.883–1.000) in 
the higher age group. In the male group, AUC was 0.983 
(0.953–0.997) and in female group AUC was 0.995 (0.982–
1.000). The above results indicated that the model was very 
stable in all subgroups and there was no overfitting.

Discussion

The application of artificial intelligence (AI) in the medical 
field is becoming increasingly widespread. Cardiovascular 
disease, as an important factor in the current threat to 
human health, urgently needs early detection, diagnosis, 
and treatment, and at present, the screening and prediction 
of cardiovascular disease through AI is rapidly developing; 

Figure 2 Performance results of the model on the overall (upper body) imaging data and data visualization. (A) ROC curve of the model in 
the training set; (B) ROC curve of the model in the validation set; (C) data t-SNE visualization. ROC, receiver operator characteristic curve; 
HBP, high blood pressure; t-SNE, t-distribution stochastic neighbor embedding.
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the results have been or will soon be clinically implemented. 
A study has shown that AI plays an important role in 
the management of hypertension, including measuring 
BP, predicting arterial hypertension (AH) development, 
diagnosing AH, predicting AH treatment success, and 
predicting AH prognosis (19). Besides, a brain signature, 
capable of accurately predicting BP level from individually 
unique connectivity profiles, can be identified by ML, 
which corroborates the model robustness in capturing 
rel iable brain-BP relat ionships,  and furthermore 
emphasizes the demand of early and optimum control 
of BP (20). In addition to AH, ML has also reported the 
potential applicability to provide useful clinical prognostic 
information to stratify complex heterogeneity in patients 
with heart failure (21). Therefore, AI is promising in the 
management of cardiovascular diseases.

As  the  understanding of  hypertens ion and i t s 
complications increases, early detection and timely 
intervention have become important tools for preventing 
and treating these diseases as well as reducing mortality (22).  
However, early detection of hypertension remains difficult 

because of limited medical resources and generally 
insufficient attention in society (23). With the global spread 
of COVID-19, remote temperature detection has become 
an important means of epidemic prevention and control in 
public places, which has further promoted the widespread 
use of an infrared imaging technique that was originally 
mainly used in transportation facilities such as railroads and 
airports (24). Infrared thermography captures the infrared 
light emitted by an object and uses the infrared spectrum 
to characterize its surface temperature (25). Thermal 
imagers, which are relatively inexpensive and easy to 
operate, have become widely used. It has been reported that 
this technique has been used to detect breast tumors and 
pleural effusions with acceptable results (26). In contrast, 
to our knowledge, no studies have yet used this technique 
to detect abnormal BP levels. According to our findings, 
there is a correlation between BP and infrared thermograms 
and, theoretically, a causal relationship between them. 
First, from a physical point of view, all objects with a 
temperature above absolute zero emit infrared radiation, 
the intensity of which is related to the temperature of the 

Figure 3 Predictive performance of different body parts regarding abnormal BP. (A) Input images; (B) predictive performance of the hands; 
(C) predictive performance of the head; (D) predictive performance of the chest; (E) predictive performance of the abdomen. ROC, receiver 
operator characteristic; BP, blood pressure.
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Table 1 Description of the study population

Characteristics Values

Age (years) 37.08±13.50/34.00 (18.00–75.00)

Weight (kg) 78.50±17.65/77.00 (45.00–125.00)

Height (cm) 169.41±8.60/170.00 (147.00–196.00)

Body temperature (℃) 36.66±0.62/36.70 (34.50–38.60)

Sex

Female 94 (37.30)

Male 158 (62.70)

Resting (<2 hours)

No 98 (38.89)

Yes 154 (61.11)

Walking (<2 hours)

No 241 (95.63)

Yes 11 (4.37)

Running (<2 hours)

No 251 (99.60)

Yes 1 (0.40)

Gym (<2 hours)

No 251 (99.60)

Yes 1 (0.40)

Fever (<24 hours)

No 196 (77.78)

Yes 56 (22.22)

Chills

No 228 (90.48)

Yes 24 (9.52)

PCR results

Negative 192 (76.49)

Positive 59 (23.51)

Abnormally HBP

No 177 (70.80)

Yes 73 (29.20)

Abnormally HBP of the febrile population

No 38 (68.00)

Yes 18 (32.00)

Data are shown as mean ± standard deviation/median (min–
max) or n (%). There was no significant difference in baseline 
data (including age, height, weight, and body temperature) 
between individuals with abnormal BP and those with normal 
BP, with P values >0.05. PCR, polymerase chain reaction; HBP, 
high blood pressure; BP, blood pressure.

object. According to Planck’s law, dry skin has an emissivity 
of 0.98, which is almost an ideal blackbody and can be 
considered a long-wave infrared radiator. Therefore, human 
skin emits infrared radiation depending on its temperature. 
Physiologically, blood carries body heat and distributes 
it throughout the body via the vascular system. When 
blood flows through the blood vessels under the skin, it 
transfers heat to the surrounding tissues including the 
skin. When the BP changes, the blood flow rate, and blood 
flow volume will change accordingly, which will result in 
a change in the temperature of the skin. Thus, there is a 
causal relationship between BP and infrared thermography, 
and BP can be indirectly monitored by infrared imaging 
through skin surface temperature. However, because there 
has been a decline in the willingness of people to attend 
hospitals for examinations and consultations because of 
the spread of COVID-19 (27), this convenient large-scale 
screening technique, which can utilize available equipment 
and information, is even more valuable. In particular, given 
the global spread of COVID-19, the development of new 
medical techniques should take into account possible novel 
coronavirus-infected people and carriers. The viremia stage 
of infection is characterized by changes in basic vital signs 
such as body temperature and respiratory patterns (28,29), 
which may have a considerable impact on prediction and 
analysis based on these characteristics. In particular, it has 
been demonstrated that AI models may reflect and amplify 
human bias (30) and degrade their performance on data 
from populations that make up a relatively small portion of 
the training data (e.g., women, ethnic minorities, or patients 
with low socioeconomic status). Similarly, if the population 
of novel coronavirus carriers is not involved in the study, 
the AI algorithm may make incorrect diagnoses from the 
data of this population, which may delay their access to 
treatment. This is particularly important in large-scale 
population screening.

To address this, we developed a DL model for remote 
noncontact abnormal BP monitoring that uses infrared 
thermograms and was trained using datasets containing 
images of novel coronavirus carriers. This model is expected 
to provide a reliable method for abnormal BP screening in 
an epidemic situation.

In this study, we found that when detecting abnormal BP 
by infrared thermography, data from as many body parts 
as possible were needed for optimal results (AUC =0.983). 
In the upper body structures, the head (AUC =0.868) and 
the hands (AUC =0.736) were more important, whereas 
the chest and abdomen were less predictive (AUC =0.500), 
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Figure 4 Conceptual diagram of the application of this technology in public places.

You may want to pay attention to
your blood pressure

Abnormal blood pressure

Normal blood pressure

Unknown

Table 2 Results of training sets and validation sets

Evaluation indicators Training set Validation set

AUC (95% CI) 0.980 (0.973–0.989) 0.983 (0.904–1.000)

HBP

Precision (95% CI) 0.930 (0.898–0.967) 0.931 (0.778–1.000)

Recall (95% CI) 0.932 (0.909–0.960) 0.930 (0.750–1.000)

F1-score (95% CI) 0.931 (0.910–0.953) 0.927 (0.800–1.000)

Non-HBP

Precision (95% CI) 0.972 (0.956–0.983) 0.959 (0.818–1.000)

Recall (95% CI) 0.971 (0.957–0.985) 0.959 (0.800–1.000)

F1-score (95% CI) 0.971 (0.962–0.979) 0.958 (0.842–1.000)

AUC, area under the receiver operating characteristic curve; CI, confidence interval; HBP, high blood pressure.



Quantitative Imaging in Medicine and Surgery, Vol 13, No 12 December 2023 8665

© Quantitative Imaging in Medicine and Surgery. All rights reserved.   Quant Imaging Med Surg 2023;13(12):8657-8668 | https://dx.doi.org/10.21037/qims-23-970

which is probably related to the fact that the head has the 
densest network of blood vessels and heat dissipation system 
on the body surface, and the hands have more superficial 
major blood vessels, allowing both sites to better respond 
to BP changes. Meanwhile, the chest and abdominal AUC 
was 0.500, indicating that infrared thermography through 
the chest and abdomen is as useful as randomized testing 
for the detection of hypertension and is not valuable for 
screening for hypertension. This suggested that we should 
obtain as much information as possible from all parts of the 
body, focusing on the head and hands, when developing 
applications. This may mean that comprehensive imaging 
data for security screening using infrared light at airports 
and other places will provide ideal conditions for the 
developed model. We chose the DL model PanycNET, 
because the data in this study involved dynamic images, and 
this amount of data can best be supported by an end-to-end 
DL model. DL is more suitable for our application scenario 
of rapid screening than the traditional method of extracting 
features before ML modeling.

The strengths of our study can be summarized as follows. 
First, our technique requires less-specialized equipment 
and can conduct BP screening at larger distances than some 
of the reported techniques using photoelectric volumetric 
pulse waves for noncontact BP measurement (31).  
Additionally, our method can screen a larger number of 
subjects because it does not require the acquisition of 
equipment or installation of relevant software to examine 
people. Moreover, infrared imaging is less affected by body 
skin obscured by clothing or accessories (25), allowing 
more detection information to be utilized and improving 
reliability.

Second, in contrast to some previously reported remote 
BP monitoring systems (32,33), our protocol eliminates 
the need for contact with the subject and can minimize the 
impact on both the screening organizer and the subject. For 
patients with infectious diseases, remote vital sign detection 
is also possible and accessible, which will reduce the cost of 
care and the risk of cross-infection.

Third, we trained the model using a dataset containing 
thermograms of novel coronavirus carriers, which ensures 
that this technique can be applied to this population and 
avoid the further loss of healthcare opportunities for this 
vulnerable group.

Fourth, given that infrared imaging is currently 
commonly used for security screening at airports 
and railroads or epidemic prevention in public places 
(24,34,35), our technique allows hypertension screening 

to be performed simultaneously with those tests necessary 
for travel, minimizing screening costs. It also ensures a 
sufficiently large screening population to help maximize 
the detection of potential hypertension patients, especially 
BP abnormalities that remain undiscovered. In particular, 
for people with BP abnormalities who are about to travel 
by airplane or train, early warning could improve responses 
and reduce cardiovascular emergencies (14).

Fifth, the data used to build the model came from 
different individuals in both healthy and diseased states 
(e.g., fever, cough, sore throat, diarrhea, vomiting, loss of 
smell, loss of taste, shivering/chills, headache, myalgia, 
and generalized joint pain) and from different individuals 
who had engaged in specific behaviors that may affect BP, 
such as exercising, smoking, and drinking. Therefore, we 
believe that the data used to train the model can cover a 
considerable number of real-life scenarios.

Limitations

The present study also has several limitations. First, as a 
single-center cross-sectional study, it was performed using 
a dataset from the Mexican population. As a result, its 
applicability to populations in other regions still needs to be 
evaluated using larger multicenter datasets. The reliability 
validation of this study would benefit from an independent 
external validation dataset; performing cross-validation will 
also support the stability of the model.

Second, only 1 type of infrared imaging equipment was 
used in this study, and the effect of the data acquired by 
other types of infrared imaging devices on performance 
remains to be evaluated on larger multicenter datasets.

Third,  because  specia l  groups  such as  minors  
(<18 years old) and pregnant women were not included, 
further validation of the performance of the model on such 
groups is warranted.

Fourth, because the dataset contained information on 
individuals with symptoms such as fever and chills, as well 
as those who had performed activities that could affect 
BP, such as exercise or alcohol consumption, before data 
collection, further examination is needed to diagnose 
hypertensive disease, although it is possible to accurately 
distinguish people with abnormally HBP.

Fifth, abnormal BP was not discussed separately in 
the results section according to SBP, DBP, and mean 
BP, and therefore the relationship between the infrared 
thermograms of each type of BP is not clear and should be 
analyzed in more detail in subsequent studies. However, 
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according to the definition of hypertension, an SBP  
≥140 mmHg and/or a DBP ≥90 mmHg should be screened 
for either type of abnormally elevated BP, and therefore 
distinguishing between what type of hypertension is not the 
focus of the discussion in this study.

Sixth, due to the “black box”, shorthand for models that 
are sufficiently complex that they are not straightforwardly 
interpretable to humans, humans can not completely trust 
the performance of DL, which is a common limitation of 
DL (36).

Finally, deploying this technology on a population 
without COVID-19 carriers will require further validation; 
given the nature of the dataset used for building the DL 
model.

Conclusions

We developed a remote noncontact abnormal BP detection 
model based on infrared thermography using a DL 
approach. This model has excellent detection performance 
and is suitable for all population with abnormal BP 
including the population with COVID-19, which may help 
to promote early detection and early intervention among 
people with abnormal BP, ultimately reducing the incidence 
of severe complications and mortality.
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Supplementary

Appendix 1

The principal codes of the PanycNet neural network model.
The principal codes of the PanycNet neural network model:
from tensorflow.keras.applications.inception_v3 import InceptionV3
from tensorflow.keras.models import Sequential, load_model, Model
from tensorflow.keras.layers import Input, Conv2D, GlobalAveragePooling2D, BatchNormalization, Flatten
from tensorflow.keras.layers import Dense, Dropout, Activation, Flatten
from tensorflow.keras.models import Model
from tensorflow.keras import layers, models, backend
def get_model(inputs, nb_classes):
# inputs = Input(shape=(31, 40, 1), name=“input”)
x = Conv2D(32, (1, 1), strides=1, activation=“relu”, name=“conv1”)(inputs)
# x = BatchNormalization()(x)
x = Conv2D(64, (3, 3), strides=2, name=“conv2”)(x)
x = Conv2D(32, (1, 1), strides=1, activation=“relu”, name=“conv3”)(x)
x = Flatten()(x)
# x = Dense(50, activation=“relu”, name=“dense1”)(x)
x = Dense(10, activation=“relu”, name=“dense2”)(x)
predictions = Dense(nb_classes, activation=“sigmoid”)(x)
# this is the model we will train
model = Model(inputs=inputs, outputs=predictions)
return model
def get_pre_model(inputs, nb_classes, weights=“imagenet”):
x = Conv2D(64, (3, 3), strides=1, activation=“relu”)(inputs)
x = layers.Conv2DTranspose(3, kernel_size=(4, 4),strides=(3, 3), padding=“same”, kernel_initializer=“he_normal”)(x)
base_model = InceptionV3(weights=weights, include_top=False)
x = base_model(x)
# add a global spatial average pooling layer
x = GlobalAveragePooling2D()(x)
# let’s add a fully-connected layer
# x = Dense(256, activation=“relu”)(x)
x = Dense(1024, activation=“relu”)(x)
# and a logistic layer
predictions = Dense(nb_classes, activation=“softmax”)(x)
# this is the model we will train
model = Model(inputs=inputs, outputs=predictions)
return model


