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differentiate lung cancer from benign lung lesions with dual-layer 
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Background: Extracellular volume (ECV) fraction has been used in cardiovascular diseases, pancreatic 
fibrosis, and hepatic fibrosis. The diagnostic value of ECV for focal lung lesions remains to be explored. 
The aim of this study was to evaluate the feasibility of ECV derived from a dual-layer detector computed 
tomography (DLCT) to differentiate lung cancer (LC) from benign lung lesions (BLLs).
Methods: Retrospectively, 128 consecutive patients with pathologically confirmed LC (n=86) or BLLs 
(n=42) were included. Conventional computed tomography (CT) characteristics and spectral CT parameters 
were assessed. All patients’ hematocrits were measured to correct contrast volume distributions in blood while 
calculating ECV. After performing logistic regression analysis, a conventional CT-based model (Model A),  
DLCT-based model (Model B), combined diagnostic models (Model C), and an ECV-based model (Model D)  
were developed. The diagnostic effectiveness of each model was examined using the receiver operating 
characteristic (ROC) curve and their corresponding 95% confidence intervals (CIs). The area under the 
curve (AUC) of each model was compared using the DeLong test.
Results: Certain conventional CT features (such as lesion size, lobulation, spiculation, pleural indentation, 
and enlarged lymph nodes) differed significantly between the LC and BLL groups (all P<0.05). Statistical 
differences were found in the following DLCT parameters (all P<0.05): effective atomic number (Zeff) (non-
enhancement), electron density (ED) (non-enhancement), ECV, iodine concentration (IC), and normalized 
iodine concentration (NIC). Models A, B, C, and D had AUCs of 0.801 [95% confidence interval (CI): 
0.721–0.866], 0.805 (95% CI: 0.726–0.870), 0.925 (95% CI: 0.865–0.964), and 0.754 (95% CI: 0.671–0.826), 
respectively. The AUC of Model D (ECV) showed no significant difference from that of Models A and B 
(DeLong test, P>0.05).
Conclusions: The ECV derived from DLCT may be a potential new method to differentiate LC from 
BLLs, broadening the scope of ECV in clinical research.
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Introduction

Worldwide, lung cancer (LC) remains the leading cause 
of cancer death (1). The mortality of LC can be greatly 
reduced by early detection and diagnosis (2). At present, 
the National Lung Screening Trial (NLST) has shown 
that low-dose computed tomography (LDCT) screening 
can detect 13% more LC and result in a 20% reduction in 
LC-specific 5-year mortality compared to radiography (3),  
whereas another LC screening trial [the Nederlands-
Leuvens Screening Onderzoek trial (NELSON)] has shown 
that LDCT screening can reduce mortality by more than 
25% (4). Therefore, early detection and diagnosis of LC 
have greatly benefited from LDCT screening. Numerous 
imaging studies on the differential diagnosis of LC have 
been performed, including the conventional morphological 
features, imaging quantitative parameters, and the 
application of radiomics and artificial intelligence. However, 
there are still some overlaps between the diagnostic criteria 
of pulmonary benign lesions and LC. Therefore, the search 
for more accurate differential diagnosis methods remains 
critical, especially with the development of the latest 
imaging techniques.

The development of dual-layer detector computed 
tomography (DLCT) has been a significant advancement for 
computed tomography (CT) (5,6). In addition to reflecting 
the morphological characteristics of lesions, it can provide 
multiparametric information, such as effective atomic number 
(Zeff), iodine concentration (IC), and extracellular volume 
(ECV) fraction, among others (7). IC has been demonstrated 
to have potential clinical value in lung disease. Hou et al. (8) 
reported that normalized iodine concentration (NIC) could 
be a novel method for distinguishing lung malignancies from 
inflammatory masses. Also, as reported by Zhang et al. (9),  
the iodine content acquired in dual energy spectral CT may 
be a useful and valuable parameter for differentiating solitary 
pulmonary nodules.

ECV provides a reflection on the changes in the cellular 
microenvironment, which is determined by equilibrium 
contrast-enhanced CT images and calculated with 

hematocrit (10). At present, the ECV score is mainly used 
in cardiovascular diseases, pancreatic (11) and hepatic 
fibrosis (12), and some abdominal cancers, focusing on 
fibrosis evaluation. Fibrotic processes exist in both LC and 
benign lung lesions (BLLs). The inflammatory reaction 
will induce the fibrosis process during its development (13).  
It is not known whether ECV, as a new quantitative 
parameter, adds value in the differential diagnosis of LC. 
To the best of our knowledge, scanty research is performed 
to evaluate the performance of ECV in lung disease. 
As aforementioned, the ECV evaluation should use the 
equilibrium or delayed contrast-enhanced CT images of 
abdominal and cardiovascular lesions. After the injection of 
contrast agent, chest contrast-enhanced CT scans routinely 
include the arterial and delayed phases. To explore the 
ECV in pulmonary lesions, the delayed phase has been 
favored. Therefore, the purpose of this study was to explore 
the feasibility and performance of ECV derived from 
chest contrast-enhanced delayed phase CT on the aspect 
of differential diagnosis of LC. We present this article in 
accordance with the STARD reporting checklist (available 
at https://qims.amegroups.com/article/view/10.21037/
qims-23-736/rc).

Methods

This study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013). Retrospectively, 
spectral chest CT images and clinical data were collected 
in the Second Affiliated Hospital, Navy Medical University 
(Shanghai, China) and Nanjing Drum Tower Hospital 
(Nanjing, China) from June 2022 to November 2022. This 
retrospective study was approved by the Ethics Committees 
of Navy Medical University and Nanjing University Medical 
School, and individual consent for this retrospective analysis 
was waived. The following criteria were used for inclusion: 
(I) chest CT showing solitary nodule (≥1 cm) or mass; (II) 
diagnosis was confirmed by histopathology or improved 
after taking anti-inflammatory medications; (III) accurate 
hematocrit within 1 week before CT examination; and 
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(IV) contrast-enhanced spectral CT scans. The following 
were the criteria for exclusion: (I) interval between the 
operation and spectral CT scan ≥2 weeks; (II) lesion with 
a large amount of necrosis, cystic changes, or calcification; 
(III) history of other malignancies; (IV) insufficient image 
quality. The flowchart of the inclusion and exclusion criteria 
is shown in Figure 1.

DLCT scanning protocol

A dual-layer spectral detector CT (Spectral 7500 or IQon 
spectral CT, Philips Healthcare, Best, The Netherlands) 
was used. The scanning parameters were as follows: tube 
voltage, 120 kV; tube current, modulated by automated 
radiation dose control; collimation, 128×0.625 mm; rotation 
time, 0.5 s; pitch factor, 1.0; reconstruction slice thickness, 
1 mm. During enhancement scanning, all patients received 
intravenous injection of contrast agent (Iopromide; Bayer 
Healthcare, Berlin, Germany; 1.2–1.3 mL/kg, with an 
injection rate of 3.0–3.5 mL/s). Then, 30 mL normal 
saline was injected with the same injection rate. The delay 
times for the arterial and delayed phases were fixed at 25 
and 90 seconds (14) after the contrast agent injection, 
respectively. For subsequent analysis, all the original data 
were reconstructed with a slice thickness of 1 mm.

Image analysis

Images were analyzed on the post-processing workstation 
(IntelliSpace Portal, Version 12.1; Philips Healthcare, Best, 
The Netherlands).

Conventional CT characteristics were assessed 
and analyzed on images with the lung [window width,  
1,500 Hounsfield units (HU); window level −600 HU] 
and mediastinal (window width, 400 HU; window level, 
40 HU) window settings. The transverse CT with the 
biggest nodule slice was used to measure quantitatively 
with the lung window. Lesion size was determined by 
averaging 3 long-axis diameter measurements. The 
morphologic characteristics were as follows: shape (round/
oval, irregular), lesion border (lobulated, non-lobulated), 
lesion margin (spiculated, non-spiculated), boundary (clear, 
blurred), pleural indentation (present, absent), vascular 
convergence sign (present, absent), enlarged lymph nodes 
in the mediastinum (present, absent).

In spectral quantitative analysis, the homogeneous 
enhancement area of the lesion was manually marked 
with a circular region of interest (ROI), avoiding vascular, 
calcified, and necrotic areas that might have an impact 
on the measurement outcome. The ROI’s surface area 
was directed to be larger than 50% of the lesion’s biggest 
axial section if the lesion was homogeneous. In cases 
where there was an uneven density of lesions, the ROI 
was located in the region that contained the most solid 
components. On the nonenhanced images, Zeff and 
electron density (ED) were evaluated, then IC, arterial 
enhancement fraction (AEF), and ECV were analyzed 
on the contrast-enhanced images. According to the 
ECV formula: ECV (%) = (1 − hematocrit) × (IC lesion/
ICaorta) ×100%, where IClesion and ICaorta are delayed phase 
lesion and aortic iodine densities, respectively. NIC was 
calculated by dividing the IC of the lung lesion by the IC 
of the thoracic aorta in the same slice, with the goal of 
reducing adverse impact due to the patient’s circulation 
condition and scanning times.

All analyses were independently evaluated by two 
thoracic radiologists with 3 years of thoracic CT clinical 
experience who were unaware of the pathological results. 
The average results were used for statistical analysis. When 
there was a wide discrepancy, the perspective of a senior 
radiologist with 20 years of thoracic CT experience was 
adopted.

202 Consecutive patients with suspected 
lung tumors underwent chest dual-layer 
detector spectral CT between June 2022 

and November 2022 

74 patients were excluded for:
• Interval between the operation and 

spectral CT scan ≥2 weeks (n=37)
• Lesion with a large amount of necrosis, 

cystic changes or calcification (n=9)
• History of other malignancies (n=15)
• Insufficient image quality (n=13)

 Final study population (n=128)

Lung cancer (n=86)
Benign pulmonary lesions (n=42)

Figure 1 The flowchart of the inclusion and exclusion criteria. CT, 
computed tomography.
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Statistical analysis

The measurements were analyzed using the software 
SPSS 25.0 (IBM Corp., Armonk, NY, USA). Mean ± 
standard deviation (SD) and proportions were used to 
express continuous and categorical variables, respectively. 
Shapiro-Wilk tests were used to determine the normality 
of quantitative variables. The independent-sample t-test 
was used to assess normally distributed data. The Mann-
Whitney U test was used to assess nonnormally distributed 
data. For categorical variables, the chi-square and Fisher’s 
exact tests were performed. A P value <0.05 was considered 
statistically significant. After conducting a univariate 
analysis, the variables that had a P value of less than 0.05 
were subsequently incorporated in a multivariate logistic 
regression analysis in order to create appropriate regression 
models. The area under the curve (AUC), accuracy, 
sensitivity, specificity, and 95% confidence interval (CI) of 
the receiver operating characteristic (ROC) curve were also 
calculated. To determine whether the efficiency disparity 
between the models was statistically significant, the DeLong 
test was applied.

Results

In total, 128 patients (42 females and 86 males; age 
59.9±12.0 years; median age, 61.0 years) were enrolled, of 
which 86 (67.2%) were LC (age 61.5±11.0 years; median 
age, 62.0 years), including 48 (37.5%) adenocarcinoma, 
15 (11.7%) squamous cell carcinoma, 9 (7.0%) small cell 
carcinoma, 2 (1.6%) pulmonary sarcomatoid carcinoma, 
and the remaining 12 (9.4%) were reported only as non-
small cell lung cancer. A total of 42 (32.8%) cases (age  
59.2±12.1 years; median age, 59.5 years) were benign 
lesions with 40 (31.3%) inflammatory masses and 2 (1.6%) 
tuberculosis.

Comparison of conventional CT risk factors between LC 
and BLLs

A comparison of the demographic and conventional CT 
parameters between LC and BLLs is presented in Table 1.  
There was no significant difference between the LC and 
BLLs groups in terms of sex, age, shape, boundary, or 
vascular convergence sign (P>0.05). Lesion size, lobulation, 

Table 1 Demographic and conventional CT parameters characteristics of patients with LC and BLLs

Variable BLLs (n=42) LC (n=86) P value

Sex 0.376

Male 26 (61.9) 60 (69.8)

Female 16 (38.1) 26 (30.2)

Age (years) 0.301

Mean ± SD 59.2±12.1 61.5±11.0

Median [range] 59.5 [29–79] 62.0 [36–86]

Conventional CT parameters

Lesion size (mm) 24.29±13.47 32.58±17.49 0.008

Round/oval 13 (31.0) 41 (47.7) 0.855

Lobulation 17 (40.5) 65 (75.6) <0.001

Spiculation 6 (14.3) 38 (44.2) 0.001

Clear boundary 25 (59.5) 51 (59.3) 0.981

Pleural indentation 6 (14.3) 33 (38.4) 0.005

Vascular convergence sign 21 (50.0) 57 (66.3) 0.076

Enlarged lymph nodes 12 (28.6) 44 (51.2) 0.016

Data are presented as n (%), mean ± SD, or median [range]. CT, computed tomography; LC, lung cancer; BLLs, benign lung lesions; SD, 
standard deviation.
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Figure 2 Spectral CT of adenocarcinoma in a 66-year-old male patient. (A) Lung window; (B) mediastinal window; (C) ED pseudo-color 
images; (D) Zeff pseudo-color images; (E) IC-AP pseudo-color images; (F) IC-DP pseudo-color images; (G) ECV pseudo-color images; (H) 
AEF pseudo-color images. ED =102.50%; Zeff =7.56; IC-AP =0.86 mg/mL; IC-DP =1.84 mg/mL; ECV =21.40%; AEF =20.3%; NIC-AP 
=0.12 mg/mL; NIC-DP =0.35 mg/mL. ECV, extracellular volume; AEF, arterial enhancement fraction; CT, computed tomography; ED, 
electron density; Zeff, effective atomic number; IC-AP, arterial phase iodine concentration; IC-DP, delayed phase iodine concentration; 
NIC-AP, arterial phase normalized iodine concentration; NIC-DP, delayed phase normalized iodine concentration. 

spiculation, pleural indentation, and enlarged lymph node 
revealed significant within-group differences (P<0.05).

Comparison of quantitative parameters on DLCT between 
LC and BLLs

The two sets of typical spectral CT images of LC and BLLs 
are displayed in Figure 2 and Figure 3, respectively. Table 2 
presents the estimations of spectral parameters and their 
pairwise comparisons between LC and BLLs. Statistical 
differences were found in the following indicators, Zeff 
(P=0.031), ED (P<0.001), ECV (P<0.001), arterial phase 
iodine concentration (IC-AP) (P=0.006), delayed phase 
iodine concentration (IC-DP) (P=0.043), arterial phase 
normalized iodine concentration (NIC-AP) (P=0.004), and 
delayed phase normalized iodine concentration (NIC-DP) 
(P<0.001). The difference in AEF between the two groups 
was not statistically significant (P=0.145).

Model construction and comparison

Lesion size, lobulation, spiculation, pleural indentation, 
and enlarged lymph nodes were used as input variables 
for multiple logistic regression analysis to establish the 
conventional CT-based model (Model A). To establish a 
DLCT based model (Model B), we incorporated Zeff, ED, 
ECV, IC, and NIC into multiple logistic regression analysis.

After that, the statistically significant independent 
variables in Table 1 and Table 2 were included in the 
multivariate regression analysis and a combined diagnostic 
model was obtained (Model C). Lesion size, lobulation, 
and spiculation were independent predictors in Model C 
(P<0.05). The corresponding adjusted odds ratios (ORs) 
were 1.068 [95% confidence interval (CI): 1.016–1.124; 
P=0.010], 0.139 (95% CI: 0.040–0.482; P=0.002), and 0.206 
(95% CI: 0.052–0.808; P=0.024), respectively.

The ECV based model was established by univariate 
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Figure 3 Spectral CT of pulmonary granuloma in a 66-year-old female patient. (A) Lung window; (B) mediastinal window; (C) ED 
pseudo-color images; (D) Zeff pseudo-color images; (E) IC-AP pseudo-color images; (F) IC-DP pseudo-color images; (G) ECV pseudo-
color images; (H) AEF pseudo-color image. ED =103.50%; Zeff =7.51; IC-AP =2.49 mg/mL; IC-DP =2.50 mg/mL; ECV =27.60%; AEF 
=42.3%; NIC-AP =0.22 mg/mL; NIC-DP =0.45 mg/mL. ECV, extracellular volume; AEF, arterial enhancement fraction; CT, computed 
tomography; ED, electron density; Zeff, effective atomic number; IC-AP, arterial phase iodine concentration; IC-DP, delayed phase iodine 
concentration; NIC-AP, arterial phase normalized iodine concentration; NIC-DP, delayed phase normalized iodine concentration.

Table 2 Spectral CT parameters characteristics of patients with LC and BLLs

Variable BLLs (n=42) LC (n=86) P value

Zeff 7.56 (7.52, 7.64) 7.53 (7.46, 7.57) 0.031

ED (%) 100.60 (98.73, 102.33) 103.00 (100.65, 103.63) <0.001

ECV (%) 29.82±6.34 23.21±7.73 <0.001

IC (mg/mL)

IC-AP 1.96 (1.76, 2.23) 1.74 (1.41, 2.01) 0.006

IC-DP 2.11±0.46 1.84±0.78 0.043

AEF (%) 42.78 (36.15, 52.53) 39.25 (28.75, 49.23) 0.145

NIC

NIC-AP 0.20±0.08 0.16±0.07 0.004

NIC-DP 0.49±0.11 0.38±0.12 <0.001

Mean ± standard deviation for normally distributed variables, median (interquartile range) for non-normally distributed variables. CT, 
computed tomography; LC, lung cancer; BLLs, benign lung lesions; Zeff, effective atomic number; ED, electron density; ECV, extracellular 
volume; IC, iodine concentration; AP, arterial phase; DP, delayed phase; AEF, arterial enhancement fraction; NIC, normalized iodine 
concentration.
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Table 3 ROC curve analysis of all single spectral CT parameters and four models

Model types AUC (95% CI) YI Cutoff Accuracy Sensitivity Specificity

Model A 0.801 (0.721–0.866) 0.520 – 0.727 0.663 0.857

Model B 0.805 (0.726–0.870) 0.507 – 0.734 0.698 0.810

Zeff 0.617 (0.527–0.702) 0.238 7.535 0.586 0.523 0.714

ED 0.708 (0.621–0.785) 0.367 102.450 0.648 0.581 0.786

IC-AP 0.650 (0.561–0.732) 0.310 1.700 0.594 0.477 0.833

IC-DP 0.680 (0.592–0.760) 0.359 1.505 0.586 0.407 0.952

ECV 0.754 (0.671–0.826) 0.494 26.250 0.742 0.733 0.762

NIC-AP 0.689 (0.601–0.768) 0.365 0.165 0.680 0.674 0.690

NIC-DP 0.747 (0.662–0.819) 0.497 0.389 0.703 0.616 0.881

Model C 0.925 (0.865–0.964) 0.698 – 0.797 0.698 1.00

Model D 0.754 (0.671–0.826) 0.494 26.250 0.742 0.733 0.762

Model A, conventional CT-based model; Model B, DLCT-based model; Model C, combined diagnostic model; Model D, ECV-based model. 
ROC, receiver operating characteristic; CT, computed tomography; AUC, area under the curve; CI, confidence interval; YI, Youden index; 
Zeff, effective atomic number; ED, electron density; IC, iodine concentration; AP, arterial phase; DP, delayed phase; ECV, extracellular 
volume; NIC, normalized iodine concentration; CT, computed tomography; DLCT, dual-layer detector CT.
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Figure 4 Receiver operating characteristic curves for all single spectral CT parameters and four models. (A) Spectral CT parameters; 
(B) four models. Model A, conventional CT-based model; Model B, DLCT-based model; Model C, combined diagnostic model; Model 
D, ECV-based model. AUC, area under the curve; Zeff, effective atomic number; ED, electron density; IC-AP, arterial phase iodine 
concentration; IC-DP, delayed phase iodine concentration; ECV, extracellular volume; NIC-AP, arterial phase normalized iodine 
concentration; NIC-DP, delayed phase normalized iodine concentration; CT, computed tomography; DLCT, dual-layer detector CT.

logistic regression with the ECV quantitative parameter as 
the only independent variable. The corresponding adjusted 
OR was 0.885 (95% CI: 0.835–0.938; P<0.001).

The ROC curves are presented in Table 3 and Figure 4.  

Among single parameters in the spectral CT, ECV 
performed the best in distinguishing between LC and 
BLLs, with an AUC (95% CI), sensitivity, and specificity of 
0.754 (0.671–0.826), 0.733, and 0.762, respectively. And a 
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cut-off value of ECV ≤26.250 was the optimal for predicting 
LC. Model A included all parameters for which Table 1 
displayed a significant difference, with AUC, sensitivity, 
and specificity values of 0.801 (0.721–0.866), 0.663, and 
0.857, respectively. The diagnostic performance improved 
further when all the DLCT parameters were combined 
into Model B, with AUC, sensitivity, and specificity of 
0.805 (0.726–0.870), 0.698, and 0.810, respectively. When 
conventional CT parameters were combined with spectral 
CT parameters, Model C exhibited the best diagnostic 
performance, with an AUC, sensitivity, and specificity of 
0.925 (0.865–0.964), 0.698, and 1.00, respectively. Model 
D was composed of ECV only, so its results of ROC curve 
analysis were consistent with ECV (Table 3, Figure 4). In the 
DeLong test (Table 4), AUC comparisons between Model D 
and A, Model D and B, or Model A and B did not show any 
statistically significant difference (DeLong test, P>0.05).

Discussion

In our study, we discovered significant differences between 
LC and BLLs in ECV in 120 kV images (P<0.001). Among 
the single spectral CT parameters, ECV fraction had the 
overall best performance. Moreover, ECV had a similar 
diagnostic performance compared to conventional CT 
based model (Model A) and DLCT based model (Model B).  
The ECV in dual-layer detector spectral chest CT has 
its potential value to differentiate the focal lung lesions. 
When conventional CT signs and DLCT parameters were 
combined, diagnostic performance was obviously improved.

BLLs, especially inflammatory masses, often present 
as focal, solitary, and peripheral lung nodules, or masses. 

Moreover, CT findings of LC are variable but not  
specific (15). Significant overlap exists between the two 
pulmonary diseases on conventional CT scans, making it 
difficult to distinguish LC from BLLs (16,17). Spectral 
CT imaging is a growing field that offers radiologists the 
opportunity to benefit from tissue energy dependence 
through virtual monochromatic images and the breakdown 
of matter into water, iodine, and other components (18).  
Recent studies have demonstrated that quantitative 
parameters from spectral CT may be useful in the clinical 
diagnosis of lung diseases (7-9,19,20). According to Zhang 
et al. (9), the iodine content derived from dual-energy 
spectral CT (DESCT) could be a useful parameter for 
distinguishing solitary pulmonary nodules. Also, as reported 
by Hou et al. (8), LCs and inflammatory masses may be 
distinguished using DESCT imaging with quantitative 
parameters such as NIC. These are consistent with our 
findings. Our study showed that IC and NIC of BLLs were 
much higher than those of LC. ECV has been considered 
a state-of-the-art and steady quantitative parameter, which 
is independent of a number of technical confounders and 
physiological variations (21). Nevertheless, to our best 
knowledge, the use of ECV to distinguish malignant from 
BLLs has not been reported previously.

A macromolecule known as the extracellular matrix 
(ECM) both regulates the physiological processes of the cell 
and also maintains the structure of the cell (22), which is an 
important component of the tumor microenvironment (23).  
Quantification of ECM is expressed in ECV. ECV can 
reflect the degree of fibrosis, tumor angiogenesis, and tumor 
microenvironment (24). The connection between elevated 
ECV during the equilibrium phase and widespread fibrosis 
in the liver, pancreas, and heart has been well supported by 
recent investigations (11,25,26). However, in these studies, 
the time for delayed phase imaging is inconsistent. Yoon 
et al. (27) reported that when evaluating liver fibrosis, the 
delayed phase imaging with a 3-minute delay time could 
provide slightly better visualization of lesions and a more 
accurate measurement of ECV. Due to no reference about 
the ECV in pulmonary lesions, and considering the delay 
time of abdominal and cardiac scanning is relatively long, 
we selected the delayed phase with 90 seconds delay after 
injection of contrast media. This delay time is the routine in 
clinical practice without prolonging the scanning time (14).  
A 90-second delayed time could allow contrast agent to 
circulate freely in the extracellular space. In our study, the 
ECV was significantly higher in BLLs than in LC. This 
discrepancy between two groups may be caused by the 

Table 4 DeLong test of AUC for four diagnostic models

Model comparison P value

Model D and A 0.464

Model D and B 0.194

Model D and C <0.001

Model A and B 0.946

Model A and C <0.001

Model B and C 0.001

Model A, conventional CT-based model; Model B, DLCT-
based model; Model C, combined diagnostic model; Model D, 
ECV-based model. AUC, area under the curve; CT, computed 
tomography; DLCT, dual-layer detector CT.
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different degrees of fibrosis. Lung inflammation has been 
reported to cause chronic fibrosis, which is a common 
complication of inflammation (28). At least in the lung, 
the release of inflammatory cytokines by fibroblasts, such 
as CCL8, contributes to the pathophysiology of fibrosis. 
Inflammation is one of the primary factors that might lead 
to fibrosis (29). The ECV increases with progression of 
fibrosis (11,30). BLLs, especially inflammatory masses, are 
usually accompanied by a considerable degree of fibrosis, 
which may be responsible for the elevated ECVs in BLLs 
patients.

 Similar to previous studies (8,9), IC and NIC showed 
significant differences between two groups in our study, 
although our research was based on 120 keV images. The 
IC of the lesion, conversely, is affected not only by the 
lesion’s microvascular environment (including blood flow, 
blood volume, permeability, and extracellular extravascular 
components), but also by technical (contrast material 
and CT scanning protocols) and physiological (patient 
body weight and hemodynamic status) variations (31). In 
other studies, evidence suggests that the ECV has been a 
reliable and steady quantitative parameter (32,33). In our 
study, among single parameters in the spectral CT, the 
ECV achieved the highest AUC score at 0.754. Under the 
threshold of 26.25 for the ECV, the accuracy, sensitivity, and 
specificity for differentiating LC from BLLs were 0.742, 
0.733, and 0.762, respectively. Moreover, the ECV-based 
model (Model D) had a similar diagnostic performance 
compared to the conventional CT-based model (Model A)  
and DLCT-based model (Model B). All these results 
suggest that ECV in dual-layer detector spectral CT may 
be a useful and valuable parameter for differentiating focal 
lung lesions.

This study had several limitations. First, as a proportion 
of patients with BLLs can be judged as benign by imaging, 
this group of patients will not undergo surgery and 
therefore fewer patients with BLLs were included in this 
retrospective study than patients with LC. To validate and 
generalize our findings, we need additional prospective 
studies with large sample size of patient populations. 
Second, we did not classify subtypes and categories of LC 
or BLLs, without considering the correlation between 
histopathological type and DECT features. Third, we only 
used a single-CT vendor. Other DECT scanners should be 
used for testing. Fourth, the lesions we included were large 
in diameter (≥1 cm), and further research is needed for 
lung lesions with a diameter of less than 1 cm. Finally, since 
we selected 120 kV image datasets, further research might 

expand the application of ECV in the focal lung lesions, for 
example, to evaluate the diagnostic performance of ECV in 
100 kV images.

Conclusions

ECV calculated from DLCT may be a potential new 
method to diagnose focal lung lesions with the clinical 
routine delayed scanning without prolonging scanning 
time. Spectral CT parameters combined with conventional 
CT signs can improve the differential diagnosis efficiency 
between LC and BLLs.
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