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Background: Myocardial perfusion reserve index (MPRI) in magnetic resonance imaging (MRI) is an 
important indicator of ischemia, and its measurement typically involves manual procedures. The purposes of 
this study were to develop a fully automatic method for estimating the MPRI and to evaluate its performance. 
Methods: The method consisted of segmenting the myocardium in dynamic contrast-enhanced (DCE) 
myocardial perfusion MRI data using Monte Carlo dropout U-Net, dividing the myocardium into segments 
based on landmark localization with machine learning, and estimating the MPRI after the calculation of 
the left ventricular and myocardial contrast upslopes. The proposed method was compared with a reference 
method, which involved manual adjustments of the myocardial contours and upslope ranges. 
Results: In test subjects, MPRIs measured by the proposed technique correlated with those by the manual 
reference in segmental assessment [intraclass correlation coefficient (ICC) =0.75, 95% CI: 0.70–0.79, 
P<0.001]. The automatic and reference MPRI values showed a mean difference of −0.02 and 95% limits of 
agreement of (−0.86, 0.82).
Conclusions: The proposed automatic method is based on deep learning segmentation and machine 
learning landmark detection for MPRI measurements in DCE perfusion MRI. It holds the potential to 
efficiently and quantitatively assess myocardial ischemia without any user’s interaction. 
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Introduction

Magnetic resonance (MR) perfusion imaging is non-
invasive without ionizing radiation and is reported to 
show non-inferior performance in the prediction of major 
cardiac events, when compared with the invasive fractional 
flow measurement (1). Quantitative analysis of myocardial 
perfusion with MR imaging (MRI) helps evaluate diffuse 
microvascular dysfunction, and it requires many steps to 
arrive at perfusion quantification (2,3). Automatic analysis 
of myocardial perfusion with artificial intelligence has 
been demonstrated in the literature, showing the potential 
to improve efficiency in cardiac MRI exams (4-7). The 
myocardial perfusion reserve index (MPRI) based on 
myocardial upslope estimation is used as a means to assess 
perfusion reserve (8). Myocardial perfusion imaging under 
stress and rest conditions is necessary for the estimation of 
the MPRI. Stress perfusion is indispensable for the visual 
identification of ischemic and salvageable tissue. Rest 
perfusion has its value in quantitative studies, although it 
alone does not provide sufficient diagnostic accuracy for 
ischemia detection from visual analysis (9). For instance, 
MR images are prone to signal intensity variation across 
the myocardium due to the sensitivity of the surface coil 
array, but the normalization of the regional upslope by 
rest perfusion can reduce the effect of intensity variation 
and thus improve the accuracy of quantitative perfusion 
measurement.

MPRI measurements have been used to evaluate 
perfusion abnormalities due to coronary microvascular 
dysfunction in patients with severe aortic stenosis (AS) (10)  
and hypertrophic cardiomyopathy (HCM) (11), and in 
women with symptoms of ischemia and no obstructive 
coronary artery disease (CAD) (12). They have also been 
used to standardize acquisition protocols for an alternative 
stress agent such as regadenoson (13). However, one 
primary drawback in the context of analysis technology 
is that the MPRI quantification process typically involves 
laborious and time-consuming procedures, including 
manual tracings of the epicardial and endocardial borders in 
dynamic contrast-enhanced (DCE) images (14).

Fully automatic MPRI estimation would be desirable, 
since it does not require the annotator’s effort and time for 
tracing the myocardial contours and annotating landmarks 
of the left ventricle (LV) center point and anterior right 
ventricle (RV) insertion point. Recent studies investigated 
the feasibility of automatic analysis of MPRIs based on 
myocardial blood flow (MBF) (5,15), but to our knowledge 

there has been lack of studies in automatic estimation of 
MPRI based on the myocardial upslope estimates. Our 
work aimed to develop a new automatic algorithm for 
MPRI estimation and evaluate its performance against a 
semi-automatic reference method, which involves manual 
adjustments of the myocardial segmentation results and 
frame ranges of the LV and myocardial upslopes.

Methods

Data acquisition

Cardiac MRI scans were performed on a 1.5 T scanner 
(Siemens Avanto, Erlangen, Germany). The study was 
conducted in accordance with the Declaration of Helsinki 
(as revised in 2013). The study was approved by the 
institutional ethics board of the Samsung Medical Center, 
and individual consent for this retrospective analysis was 
waived. An electrocardiogram (ECG) gated gradient echo 
sequence was employed to obtain DCE images during first 
pass of extracellular contrast agent. Imaging parameters 
were the following: flip angle =15°, slice thickness  
=8 mm, field-of-view (FOV) =400×315 mm2, image matrix 
=320×252, pixel spacing =1.25×1.25 mm2, and number of 
image frames =80. As the acquisition took longer than a 
minute, the subject resumed breathing after a 15–20 s of 
breath-hold. Frame-by-frame motion compensation was 
performed using a non-rigid registration algorithm (16). We 
used motion-compensated perfusion Digital Imaging and 
Communications in Medicine (DICOM) data for this study.

Image processing overview

A flowchart of the proposed method is illustrated in  
Figure 1. It describes a fully automatic process of measuring 
the upslope value from stress perfusion data. The automatic 
process involves the automatic detection of an RV 
enhanced frame using k-means clustering (17), Monte-
Carlo dropout U-Net for myocardial segmentation (18), 
landmark localization using machine learning (19), and 
finally, segmental calculation of myocardial upslope values. 
The final MPRI value is calculated as a ratio of the upslope 
value from stress perfusion to the upslope value from rest 
perfusion in each myocardial segment.

Detection of peak RV enhancement frame

The detection of an RV enhanced frame can lead to the 
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Figure 1 A flowchart of the proposed method. The flowchart shows an automatic estimation of myocardial upslope for stress perfusion, with 
a series of k-means clustering, Monte-Carlo dropout U-Net, and machine learning landmark detection. This process is repeated for rest 
perfusion. The final MPRI value for a given myocardial segment is calculated as a ratio of Upslopestress to Upsloperest. DCE, dynamic contrast-
enhanced; RV, right ventricle; LV, left ventricle; MR, magnetic resonance; MPRI, myocardial perfusion reserve index; a.u., arbitrary unit.
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detection of subsequent LV and myocardial enhanced 
frames, and it was performed using the k-means clustering 
algorithm available on scikit-learn library (20). Each data 
sample consisted of an 80×1 vector of a time series signal 
from a voxel. The number of clusters was empirically set to 
4 for the identification of the RV region of interest (ROI). 
A cluster corresponding to the RV ROI was obtained by 
finding a cluster cmin that is the smallest in the calculation of 
the cost function F(c) shown in Eq. [1].
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fc(t) is the normalized time intensity curve (TIC) averaged 
from the pixels that belong to a cluster c. The first term is 
the first moment of fc(t), which is a metric suitable to the 
detection of the arterial input function (AIF) in cerebral 
perfusion (21). The second term is a time index of the 
maximum fc(t), weighted by α. It is used to penalize the late 
enhanced TIC, which is contributed by a cluster consisting 
of parts from the LV cavity. The third term is used to avoid 
the selection of a cluster resulting from the bright signal 

(e.g., subcutaneous fat). We tested two different sets of 
choice (α, β) = (0, 80) and (20, 80) to observe the effect of 
the second term on accuracy of peak RV frame detection. 
As shown in Figure 2, the peak RV enhancement frame tRV 
was obtained by finding the time index of the peak signal 
enhancement from the cluster cmin in Eq. [2]. The peak RV 
frame detection step is used to develop a landmark detection 
model for localizing the anterior RV insertion point (see 
“Landmark localization” section) and to find an LV enhanced 
frame and a frame range for the LV upslope calculation (see 
“MPRI calculation” section).

Myocardial segmentation

We used the U-Net architecture (22) with dropout (23), 
which was trained on the cardiac cine MRI data (18,24). The 
segmentation model was trained on 13,535 short-axis slice 
cine images from 88 subjects and validated on 4,148 short-
axis slice cine images from 22 subjects as described in (18). 
Hence, a total of 110 subjects were used for the myocardial 
segmentation model development (Table 1). The dropout 
ratio ranged from 0.1 to 0.3, following the implementation of 
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Figure 2 Detection of an RV enhanced frame using k-means clustering. (A) Mean cluster signals after k-means clustering. The red line is a 
time intensity curve of a cluster corresponding to the RV cavity, and it results in the minimum cost value according to Eqs. [1] and [2]. The 
blue line, green line and black line represent time intensity curves of the other three clusters, and they result in higher cost values than the 
red line. (B) Detection of the maximum frame index (black dot) from the ‘RV’ time intensity curve. (C) The RV enhancement frame image 
from the detected frame in (B). Detected RV enhanced frames are used to train a machine learning model for localizing the anterior RV 
insertion point or to predict the anterior RV insertion point using the model on a test image. MR, magnetic resonance; a.u., arbitrary unit; 
RV, right ventricle.

Table 1 Training/validation and test data

Task Training/validation Test

Myocardial segmentation (stress/rest) Cardiac cine data (n=110) Cardiac stress/rest perfusion data (n=60)

Landmark detection

Stress Cardiac stress perfusion data (n=72) Cardiac stress perfusion data (n=60)

Rest Cardiac rest perfusion data (n=63) Cardiac rest perfusion data (n=60)

the concrete dropout (25). We used a Monte Carlo dropout 
(26,27) for uncertainty estimation with 50 repetitions, 
where the output of the U-Net model was obtained with 
dropout (i.e., random selections of the units in each layer) 
for each repetition. From the results of the Monte Carlo 
dropout, we obtained average and standard deviation 
(SD) maps, denoted by AVGMC (x, y) and SDMC (x, y),  
respectively. For each time frame of interest, the pixel-wise 
summation of the SD map was calculated as a metric of 
uncertainty, denoted by relative sum of standard deviation 
(rSSD).
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where N and M are the numbers of image rows and 
columns, respectively. The denominator of Eq. [3] penalizes 
the case where the contrast enhancement is minimal. We 
computed the rSSD metric for each time frame within the 
frame range of [tRV + 4, tRV + 24]. Selection of a frame for 

an endocardial (or epicardial) boundary segmentation was 
made based on a frame that resulted in the smallest rSSD in 
the frames of interest. The stress and rest perfusion data of 
60 subjects were used to evaluate the segmentation accuracy 
in terms of Dice similarity coefficient (28).

Landmark localization

We considered machine learning for automatic landmark 
localization (29). The LV center point was detected by 
calculating the center of gravity of the endocardial mask 
estimated using the deep learning segmentation described in 
the previous section. The RV insertion point was detected 
using random forest classifiers on the RV enhancement 
frame. The details of the landmark localization method 
followed the procedures described in (19). The main idea was 
to find candidate voxels that are likely to be the RV insertion 
point using a random forest classifier and calculate the center 
of gravity within the candidate voxels. In this work, we 
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Figure 3 Sample results of the presented automatic method from a patient for (A) stress and (B) rest perfusion data. The left column shows 
endocardial (red) and epicardial (green) contours as well as LV center point (red) and RV insertion point (green). The middle column shows 
automatic division of the myocardium into the six regions. The right column shows automatic selection of the upslope range in time as 
well as automatic estimation of the slopes for the time intensity curves of the LV blood pool (red) and a myocardial section (blue). LV, left 
ventricle; RV, right ventricle; MR, magnetic resonance; a.u., arbitrary unit.

separately trained random forest classifier models for stress 
and rest perfusion data (Table 1). The stress perfusion data 
from 72 subjects were used to train a model, and the rest 
perfusion data from 63 subjects were used to train a model. 
The remaining 60 subjects’ data were used to test the two 
models on stress and rest perfusion data, respectively.

MPRI calculation

Based on the locations of the LV center point and RV 
insertion point, the myocardium was divided into six uniform 
segments (Figure 3). For each of the six myocardial segments, 
a mean time-intensity curve of the myocardial segment 

(TICmyo, k) was obtained after averaging all the voxels within 
the kth segment. Similarly, a mean time-intensity curve of the 
LV blood pool was obtained after averaging all the voxels 
within the LV blood pool. The frame ranges of the LV 
upslope and myocardial upslope were set to [tRV − 3, tLV + 3]  
and [tLV − 3, tLV + 10], respectively. The first derivative of the 
TIC was calculated. If the difference signal was less than 
30% of the maximum difference value, it was not considered 
for the calculation of the upslope. A linear regression was 
performed on the upslope samples to estimate the slope 
and intercept. This process was performed on both stress 
and rest perfusion data, and the final MPRI value for the kth 
myocardial segment was calculated as follows:
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Figure 4 The custom user-interactive graphical user interface. This was used to calculate the MPRI values and served as the manual 
reference method. The layout shows both stress and rest perfusion analysis procedures in a window panel, which facilitates the direct 
comparison of the images and intermediate results between stress and rest perfusion. LV, left ventricle; MPRI, myocardial perfusion reserve 
index. 
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Evaluation

We developed a tool that involves the user’s epi/endocardial 
segmentation and landmark annotation for MPRI 
calculation. The tool is based on a Python custom user 
interface that allows for the semi-automatic assessment 
of MPRI (Figure 4). In the user interface, the user selects 
an image frame that shows adequate contrast between 
the myocardium and blood, clicks the button for the 
U-Net segmentation, and performs manual corrections 
of the myocardial contours if necessary. Next, the user 
annotates the two landmarks of an LV center point and an 
anterior RV insertion point. The user adjusts the frame 
ranges corresponding to the LV and myocardial upslopes. 
The above procedures are performed for stress and rest 
perfusion data. Finally, clicking the ‘Update MPRI’ button 
enables MPRI values of the six segments to be displayed 
in the panel. The MPRI estimates obtained by manual 

procedures served as a reference.
Landmark localization accuracy was evaluated by the 

Euclidean distance from the manually annotated location 
to the machine learning predicted location. The distance 
errors were calculated for the LV center point and the 
anterior RV insertion point, for both the stress and rest 
perfusion data.

MPRI calculations were performed on the 60 test 
subjects who underwent both stress and rest perfusion scans. 
Among the 60 test subjects, there were 34 patients with 
CAD, 19 patients with HCM, 3 patients with AS, 3 patients 
with cardiac amyloidosis (AMYL), and 1 healthy volunteer 
(VOL). Computation time of the proposed method was 
measured on a Microsoft Windows 10 operating system 
with an eight-core AMD Ryzen 7 1800X CPU @ 3.60 GHz, 
16 GB RAM, and NVIDIA GeForce GTX 1080 GPU  
(8 GB memory size). Mean MPRI values were calculated 
from all segments in each patient. The test subjects were 
divided into three groups: (I) diffuse ischemic pattern group; 
(II) focal ischemic pattern group; and (III) “other” group. 
The diffuse ischemic pattern group included HCM, AS, 
AMYL, and 2- or 3-vessel disease CAD patients. The focal 
ischemic pattern group included CAD patients with 1-vessel 
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disease. The “other” group included patients suspected of 
CAD and the healthy VOL.

Statistical analysis

Statistical analysis was performed using the R software (R 
Foundation for Statistical Computing, Vienna, Austria). 
The intraclass correlation coefficient (ICC) and its 95% 
confidence interval (CI) were computed between two 
methods in terms of MPRIs. The mean and SD values were 
calculated for MPRIs. A two-sample unpaired Student’s 
t-test was performed to determine if MRPI values between 
two groups were significantly different. A P value <0.05 was 
considered to indicate a statistically significant correlation, 
given the null hypothesis of no relationship between the 
two measurements.

Results

For the peak RV enhanced frame detection, the choice 
(α, β) = (0, 80) in Eq. [1] resulted in an accuracy of 
101/120=84.2%, and the choice (α, β) = (20, 80) resulted in 
an accuracy of 120/120=100%. Figure 5 illustrates examples 
of correct and incorrect RV enhanced frame detection 
results. Figure 5A shows the same successful detection 
results for both (α, β) = (0, 80) and (20, 80). Figure 5B shows 
a correct detection of the peak RV enhanced frame with 
the choice (α, β) = (20, 80). Figure 5C shows an incorrect 
detection of the peak RV enhanced frame, where the LV 
ROI was detected after k-means clustering. The inclusion 
of the second term in Eq. [1] helped to robustly find the 
peak RV enhanced frame.

For the landmark localization task with the 60 test 
subjects, the median (interquartile range) values of distance 
errors were 2.3 mm (1.5–3.7 mm) for the RV insertion 
point and 2.2 mm (1.5–3.0 mm) for the LV center point, for 
the stress perfusion data. For the rest perfusion data, the 
median (interquartile range) values of distance errors were  
5.3 mm (3.9–7.3 mm) for the RV insertion point and 2.7 mm  
(1.8–3.5 mm) for the LV center point.

When compared with manual segmentation of the 60 test 
subjects, the deep learning-based automatic segmentation 
of the myocardium using Monte-Carlo dropout resulted in 
median (interquartile range) Dice similarity scores of 0.80 
(0.77–0.84) for stress perfusion and 0.81 (0.77–0.84) for rest 
perfusion. The results were similar to those of our previous 
work where Dice similarity scores had a mean ± SD value of 
0.806±0.096 (18).

MPRI measurements using the proposed technique 
correlated with manual reference in segmental assessment 
(ICC =0.75, 95% CI: 0.70–0.79, P<0.001). Figure 6A 
shows a scatter plot of correlation between automatic and 
reference MPRI measurements. In the Bland-Altman 
analysis, the automatic and reference MPRI values were in 
agreement in per-segment [MPRI: mean difference =−0.02, 
95% limits of agreement = (−0.86, 0.82)] (see Figure 6B). 
More specifically, Table 2 shows segment-wise evaluations of 
the MPRIs. The anterior segment showed the lowest ICC 
of 0.63, while the infero-lateral segment showed the highest 
ICC of 0.82. The antero-septal segment showed the largest 
mean difference, while the infero-lateral segment showed 
zero mean difference. The diffuse group’s mean MPRI was 
smaller than the focal group’s mean MPRI (mean ± SD, 
1.37±0.47 vs. 1.71±0.56, P=0.032). The “other” group’s 
MPRIs were not statistically different from the diffuse 
(P=0.933) or the focal ischemic groups (P=0.060). The 
“other” group’s mean MPRI was comparable to the diffuse 
group’s mean MPRI (mean ± SD, 1.38±0.32 vs. 1.37±0.47, 
P=0.933). The automatic method took approximately 96 s to 
estimate an MPRI from stress and rest perfusion data, and 
the Monte-Carlo U-Net segmentations in the stress and 
rest perfusion images took up 95% of the computational 
time.

Figure 7 shows three representative examples of the 
MPRI measurements. The blue arrows indicate the splenic 
switch-off in stress perfusion and the splenic enhancement 
in rest perfusion, suggesting that the adenosine stress 
condition was well maintained during the stress perfusion 
scan (30). Figure 7A shows a healthy VOL case, where the 
MPRIs in all segments are higher than 1. Figure 7B shows 
a perfusion defect case in the left circumflex (LCx) artery 
territory, which appears dark in the lateral myocardial 
segment in stress perfusion image and appears normal in 
rest perfusion image. MPRI was the lowest with the value 
of 0.35. Figure 7C shows a three-vessel disease case, having 
distributed stress perfusion defects in the three main artery 
territories, and a normal appearance in the rest perfusion. 
The MPRI values of Figure 7B,7C are relatively lower in the 
entire myocardium than those of Figure 7A.

Discussion

In this study, we proposed a method that automatically 
calculates the MPRI using a series of processing pipelines, 
consisting of RV peak frame detection with k-means 
clustering, automatic myocardial segmentation with 
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Figure 5 Impact of the choice of (α, β) in Eq. [1] on peak RV enhanced frame detection. (A) Successful detection for both (α, β) = (0, 80) 
and (20, 80) in Test 19 subject. (B) Successful detection for (α, β) = (20, 80) in Test 23 subject. (C) Unsuccessful detection for (α, β) = (0, 80) 
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measurements. (B) Bland-Altman plot of the MPRI measurements. The colors of the dots indicate the myocardial segments. MPRI, 
myocardial perfusion reserve index.

Table 2 Intraclass correlation coefficient and Bland-Altman statistics between the proposed method and semi-automatic reference method in 
MPRI measurements of six myocardial segments

Myocardial segments in short-axis orientation ICC 95% CI Mean difference 95% limits of agreement 

Anterior 0.63 0.44–0.76 0.06 −0.82 to 0.95

Antero-septal 0.79 0.67–0.87 0.16 −0.75 to 0.86

Infero-septal 0.75 0.61–0.84 −0.05 −0.75 to 0.66

Inferior 0.72 0.57–0.82 −0.07 −0.99 to 0.84

Infero-lateral 0.82 0.72–0.89 0.00 −0.85 to 0.86

Antero-lateral 0.72 0.57–0.82 0.14 −0.67 to 0.95

MPRI, myocardial perfusion reserve index; ICC, intraclass correlation coefficient; CI, confidence interval.

Monte-Carlo dropout U-Net, landmark localization with 
random forest classifiers, and frame range detection for 
the myocardial upslope estimation. A moderate correlation 
of MPRIs was observed between the proposed method 
and manual method. The proposed method demonstrated 
its feasibility to automate MPRI quantification. MPRI 
quantification would be tedious and time consuming if it 
involved manual segmentations of the myocardium, manual 
annotations of the landmark points, and manual adjustments 
of the upslope frame ranges in the contrast enhancement 
curves.

Similar to our study, recent studies have investigated the 
feasibility of automatic methods for the analysis of DCE 
perfusion MRI. Scannell et al. demonstrated the utility of 
deep learning-based methods for myocardial segmentation, 
landmark localization of the RV insertion point, and AIF 

estimation to automatically and accurately quantify MBF 
values averaged over each myocardial segment (4,7), but 
the estimation of MPRI based on myocardial upslope 
estimates was not demonstrated in their work. Xue et al. 
used deep learning for automatic myocardial segmentation 
and MBF estimation (31) as well as for automatic landmark 
localization (32). Jacobs et al. showed automatic myocardial 
segmentation in perfusion (33). Our study is different 
from the other methods because we used myocardial 
segmentation based on Monte-Carlo dropout U-Net and 
calculated myocardial upslopes for the MPRI estimation 
rather than MBFs.

We calculated the MPRI based on the ratio of stress 
perfusion upslope to rest perfusion upslope. Alternatively, 
one can consider measuring the MPRI based on the ratio 
of the stress perfusion MBF to the rest perfusion MBF. The 
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Figure 7 Sample cases. (A) A healthy volunteer case; (B) a case of perfusion defect (yellow arrow) in the LCx territory; (C) a case of 
perfusion defect (yellow arrow) in three vessel diseases. The blue arrows in (A) indicate the splenic switch-off in adenosine stress relative to 
the rest perfusion. The splenic switch-off in stress perfusion images implies the adequacy of adenosine stress. The MPRI color coded maps 
overlaid to the perfusion images show high values in (A) and relatively low values in (B,C). The antero-lateral region in (B) resulted in the 
lowest MPRI value of 0.35. MPRI, myocardial perfusion reserve index; LCx, left circumflex artery.

main difference in the two MPRI calculations is whether to 
use the semiquantitative upslope or the quantitative MBF. It 
appears difficult to decide which one is more advantageous 
than the other, given the lack of standardization in cardiac 
MR perfusion image acquisition and analysis protocol. Hsu 
et al. compared MPRI values between two MPRI calculation 
methods using a dual bolus approach and concluded that the 
upslope-based MPRI method significantly underestimated 
MPRIs compared to the MBF-based MPRI method (34). 
However, Larghat et al. compared reproducibility between 
the two MPRI calculation methods and concluded that 
the semiquantitative analysis based on normalized upslope 
was more reproducible than quantitative method based on 
absolute MBF using Fermi-constrained deconvolution (35).  
Brown et al. compared reproducibility between stress (or 
rest) MBF and MPRI derived from stress and rest MBF 
ratios and concluded that both rest and stress MBF showed 
better repeatability than MPRI (36). Notably, recent review 
papers (6,37) indicate that semiquantitative analysis has 

limitations in nonlinearity between upslope and flow rates, 
and quantitative analysis requires dedicated acquisition 
protocols such as dual sequence (38) or contrast agent 
injection schemes such as dual bolus (34). Hence, dedicated 
perfusion acquisition and analysis methods would favor 
the quantitative MBF-based approach. The perfusion 
sequence protocol used in our study was based on neither 
dual sequence nor dual bolus, so we only considered the 
semiquantitative method to derive the MPRIs in this study.

Our study demonstrated the segmental analysis of 
MPRIs in the myocardium. The segmental analysis 
may average healthy myocardial voxels and ischemic 
myocardial voxels within a myocardial segment, hence 
leading to underestimation of myocardial ischemia in the 
presence of small ischemic lesions. Pixel-wise analysis (39) 
is an alternative method that overcomes the limitation 
of segmental analysis and has the potential to provide a 
focal ischemic lesion analysis automated with k-means  
clustering (40). Pixel-wise or subsegmental analysis enables 
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the calculation of transmurality of ischemia and can 
improve diagnostic accuracy for the detection of obstructive  
CAD (41). A drawback of the pixel-wise perfusion 
quantification is its sensitivity to noise (42,43).

There are several factors that can contribute to the 
errors or uncertainties in MPRI estimates. First, the 
motion compensation from the scanner may not always 
remove 100% of inter-frame motion, and our method 
may be sensitive to any residual motion in the data. In 
our acquisition protocol, the acquisition took longer than 
a minute. The subject initially performed a breath-hold 
of 15–20 s in an initial stage of data acquisition, and then 
resumed free breathing until the end of the scan. Since 
the LV and myocardial enhancements during first pass 
typically occur during a subject’s breath-hold, the frame 
ranges corresponding to the LV and myocardial upslopes 
are not affected by breathing motion. Hence, we think 
that in general, upslope estimation is not highly likely 
to be affected by motion. Second, in some rare cases, 
the anatomical short-axis slices can be slightly different 
between stress and rest perfusion data. This may be due 
to the patient’s motion during a time interval between the 
stress and rest perfusion scan sessions. Errors in motion 
correction in either stress or rest perfusion data may 
contribute to the errors in the MPRI measurements (5). 
Third, a surface coil intensity correction was not used in 
this study. However, since the segmental MPRIs involve the 
division of stress upslopes by rest upslopes, coil sensitivity 
effect can be canceled out by the division. Fourth, the LV 
enhancement upslope reaches its peak within a very short 
duration. The temporal resolution of an R-R interval in 
the first pass perfusion may not be adequate for certain 
patients with low heart rates. Fifth, myocardial TICs may 
not show clear upslope patterns, especially in regions with 
low perfusion or ischemia. In this low perfusion case, it is 
often not straightforward to determine how to estimate the 
myocardial upslope.

The current study has limitations. First, a small 
number of subjects were employed, and the study was a 
single-center, single-vendor study. Second, deep learning 
segmentation models were trained on cardiac cine data, so 
it would improve segmentation accuracy if deep learning 
models were trained on cardiac perfusion data. Third, we 
considered the basal or mid slice level for the evaluation, 
not the apical slice level. Fourth, the MPRI manual 
calculations were performed by only one operator. The 
inter-operator agreement was not assessed in this study. 
Fifth, we considered motion-corrected perfusion image 

series data only. A recent study investigated the effectiveness 
of deep learning for motion correction in perfusion  
data (44). For the raw perfusion image series without 
inter-frame motion correction, it is worth investigating 
the effectiveness of motion correction algorithms (45) as 
a part of the processing workflow. Last but not least, we 
only compared the automatic MPRI calculation method 
with the reference MPRI calculation manually performed 
by an expert. We did not evaluate diagnostic accuracy by 
comparing it with the ground truth MPRI measurements 
using positron emission tomography or microspheres.

Conclusions

The proposed method automatically quantifies the MPRI 
measurements based on segmental upslopes obtained 
from stress and rest perfusion MRI data. The method 
utilizes a series of machine learning techniques consisting 
of k-means clustering for the RV peak frame detection, 
machine learning for the landmark localization, and Monte-
Carlo dropout U-Net for the myocardial segmentation. 
The evaluation resulted in good correlation between the 
automatic method and the manual reference method. 
The method holds the potential to quantitatively assess 
myocardial ischemia without any user intervention, 
although it requires further investigation using multi-
center, multi-vendor perfusion MRI data.
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