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Background: Survival prediction is crucial for patients with gastric neuroendocrine neoplasms (gNENs) 
to assess the treatment programs and may guide personalized medicine. This study aimed to develop and 
evaluate a deep learning (DL) radiomics model to predict the overall survival (OS) in patients with gNENs. 
Methods: The retrospective analysis included 162 consecutive patients with gNENs from two hospitals, 
who were divided into a training cohort, internal validation cohort (The First Affiliated Hospital of 
Zhengzhou University; n=108), and an external validation cohort (The Henan Cancer Hospital; n=54). DL 
radiomics analysis was applied to computed tomography (CT) images of the arterial phase and venous phase, 
respectively. Based on pretreatment CT images, two DL radiomics signatures were developed to predict 
OS. The combined model incorporating the radiomics signatures and clinical factors was built through the 
multivariable Cox proportional hazards (CPH) method. The combined model was visualized into a radiomics 
nomogram for individualized OS estimation. Prediction performance was assessed with the concordance 
index (C-index) and the Kaplan-Meier (KM) estimator.
Results: The DL-based radiomics signatures based on two phases were significantly correlated with OS 
in the training (C-index: 0.79–0.92; P<0.01), internal validation (C-index: 0.61–0.86; P<0.01), and external 
validation (C-index: 0.56–0.75; P<0.01) cohorts. The combined model integrating radiomics signatures 
with clinical factors showed a significant improvement in predictive performance compared to the clinical 
model in the training (C-index: 0.86 vs. 0.80; P<0.01), internal validation (C-index: 0.77 vs. 0.71; P<0.01), 
and external validation (C-index: 0.71 vs. 0.66; P<0.01) cohorts. Moreover, the combined model classified 
patients into high-risk and low-risk groups, and the high-risk group had a shorter OS compared to the low-
risk group in the training cohort [hazard ratio (HR) 3.12, 95% confidence interval (CI): 2.34–3.93; P<0.01], 
which was validated in the internal (HR 2.51, 95% CI: 1.57–3.99; P<0.01) and external validation cohort (HR 
1.77, 95% CI: 1.21–2.59; P<0.01).
Conclusions: DL radiomics analysis could serve as a potential and noninvasive tool for prognostic 
prediction and risk stratification in patients with gNENs.
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Introduction

Gastr ic  neuroendocrine neoplasms (gNENs)  are 
rare and heterogeneous tumors whose incidence is 
increasing worldwide due to improved recognition and 
diagnosis technologies of neuroendocrine neoplasms 
as distinct tumor types (1). The latest World Health 
Organization (WHO) guidelines classify gNENs into 
well-differentiated neuroendocrine tumor (NET), poorly 
differentiated neuroendocrine carcinoma (NEC), and mixed 
neuroendocrine-nonneuroendocrine neoplasms (MiNENs) 
based on their molecular characteristics (2).

The prognosis of poorly differentiated gNENs, which 
includes gastric NEC and MiNENs, differs significantly 
from the well-differentiated gNENs. According to a 
previous study of 900 patients with gNENs, the 3- and 
5-year overall survival (OS) rates of gastric NEC are 
much lower than those of gastric NET (3). Several reports 
suggest that there is a significant difference in biological 
behavior between NET and NEC, with NEC being more 
aggressive and being associated with a poorer prognosis 
(4,5), Nevertheless, purely anatomically based prognostic 
systems may not fully account for tumor heterogeneity 
for predicting long-term outcomes for NEN (6-9). The 
heterogeneity of gNENs introduces a challenge, and these 
require different treatment strategies. To address this urgent 
issue, it is necessary to identify a novel and dependable 
biomarker that can accurately differentiate gNENs for 
clinical decision-making (10).

Endoscopic biopsies, which are invasive in nature, are 
widely regarded as the most reliable method for diagnosing 
gNENs and have been endorsed by the European 
Neuroendocrine Tumor Society (ENETS) (11). However, 
with biopsies, sample errors in diagnosing histopathological 
features are unavoidable. Computed tomography (CT) 
is a useful tool for predicting the prognosis of both 
gastric cancer and gNENs, making it an indispensable 
diagnostic method (12). Its widespread recognition is due 
to its high diagnostic accuracy and consistent availability. 
The sensitivity and specificity of CT for diagnosing 

gNENs and gastric cancer range from 61% to 93% and 
from 71% to 100%, respectively (13). Nevertheless, the 
prognostic significance of conventional medical imaging 
is fundamentally restricted by mutual accuracy and 
reproducibility. As a newly emerging image quantization 
technique, radiomics has been widely applied across various 
diseases, especially in the diagnosis and prognosis of 
tumors, and can provide a basis for the accurate treatment 
of tumors (14-16). A radiomics nomogram, a noninvasive 
model visualization tool that integrates radiomics signatures 
and clinical factors, has potential application in differential 
diagnosis and the prediction of clinical outcomes  
(17-19). The emergence of deep learning (DL) techniques 
has significantly enhanced the capabilities of radiomics, 
facilitating the automated acquisition of correlative 
quantitative representations of tumor phenotypes (20). 
Prior studies have demonstrated that the DL radiomics 
analysis based on the on convolutional neural networks 
(CNNs) are effective in cancer prognosis (21,22). However, 
the application of DL radiomics analysis for individualized 
evaluation of OS in gNENs has not yet been reported.

Given the above considerations, we collected CT images 
and independent clinical factors before treatment to build 
and evaluate a DL-based radiomics model and investigated 
whether DL radiomics analysis could predict the prognosis 
of patients with gNENs. We present this article in 
accordance with the TRIPOD reporting checklist (available 
at https://qims.amegroups.com/article/view/10.21037/
qims-23-577/rc).

Methods

Patients

In this retrospective, multicenter study, patients with 
gNENs who had been pathologically confirmed through 
endoscopic biopsy or surgical resection were recruited in 
two hospitals (The First Affiliated Hospital of Zhengzhou 
University and The Henan Cancer Hospital). The inclusion 
criteria were as follows: (I) patients aged older than  
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18 years; (II) patients with gNENs with confirmed biopsy 
pathology or postoperative pathological diagnosis; (III) 
multiphase enhanced abdominal CT imaging performed 
before treatment; (IV) relatively complete clinical and 
pathological data; and (V) complete and dependable follow-
up information. The following exclusion criteria were 
applied: (I) pathological findings obtained after neoadjuvant 
chemotherapy, radiotherapy, or other treatments; (II) 
metastatic gNENs; (III) poor CT image quality with severe 

artifacts; (IV) a minimum diameter of the tumor <5 mm 
insufficient to contain the region of interest (ROI); and (V) 
severe heart, liver, or kidney dysfunction or other primary 
tumors. The recruitment process is shown in Figure 1. All 
clinical data were gathered from the medical and endoscopic 
reports. The eight edition of the American Joint Committee 
on Cancer (AJCC) TNM staging manual [2017] was used 
for tumor staging (23).

This  retrospect ive  s tudy was  approved by the 
Institutional Review Board of the First Affiliated Hospital 
of Zhengzhou University (No. 2021-KY-1070-002), and 
the requirement for informed consent was waived due to 
the retrospective nature of the study. Both participating 
hospitals were informed of and agreed with the study. The 
study was conducted in accordance with the Declaration of 
Helsinki (as revised in 2013).

Baseline staging evaluations included ultrasound 
endoscopy and CT. The treatment was jointly decided 
upon by multidisciplinary discussion with oncologists, 
radiologists, and surgeons for the patients with gNENs in 
accordance with the AJCC guidelines. Finally, 162 patients 
with gNENs were enrolled from two centers. Among 
them, 108 patients from the First Affiliated Hospital of 
Zhengzhou University were randomly divided into a 
training cohort (n=76) and an internal validation cohort 
(n=32) at a ratio of 7:3 between August 2011 and December 
2020. Additionally, 54 patients from the Henan Cancer 
Hospital were placed in the external validation between 
March 2016 and September 2020. The primary endpoint of 
this study was OS, which was considered to be the duration 
from the date of diagnosis to death or the end date of 
follow-up. The follow-up information for OS is detailed in 
Supplementary file (Appendix 2) .

CT acquisition and tumor segmentation

All patients from the two hospitals underwent biphasic 
(arterial and venous phase) enhanced CT scanning before 
surgery. The detailed CT acquisition procedure and 
protocols are described in Table S1. Manual segmentation 
was performed on the tumor in arterial and venous phases 
CT images using ITK-SNAP software (version3.6.0; 
www.itk-snap.org). The tumor ROIs were manually 
segmented along the margin of the tumor on the cross-
section of biphasic phases. The segmentation procedure 
was performed by two radiologists with more than 10 years 
of experience. For each phase, 1 slice with the maximum 
cross-sectional area of the lesion was chosen visually by 

Center 1

Center 1

516 cases from August 

2011 to December 2020 

Center 1

n=108

Center 2

n=54

Training cohort 

76 cases

Internal validation 

cohort 32 cases

External validation 

cohort 54 cases

Center 2

147 cases from March 

2016 to September 2020 

Center 2

Inclusion criteria

•	Patients aged older than 18 years

•	gNENs patients with definite biopsy pathology or 

postoperative pathological diagnosis

•	Enhanced abdominal CT examination before treatment

•	Complete clinical and pathological data

•	Follow-up information was complete and reliable

Exclusion criteria

•	Metastatic rather than primary gNENs

•	With other primary tumors

•	Poor image quality

•	Pathological findings were obtained after radiotherapy or 

neoadjuvant chemotherapy

•	The lesion is too small (<5 mm)

Figure 1 The procedure of recruitment and partition of datasets. 
gNEN, gastric neuroendocrine neoplasm; CT, computed 
tomography.
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the radiologist, and a 2-dimensional ROI of the tumor 
was delineated. If a consensus concerning tumor region 
segmentation could not be reached, this would be decided 
upon by a third senior abdominal radiologist. After 1 month, 
we randomly selected 30 patients in the training cohort 
for ROI segmentation again to evaluate the intraobserver 
reproducibility. The features with intraclass correlation 
coefficients (ICCs) greater than 0.8 were considered reliable 
and retained for further analysis (24).

DL feature extraction

CT images in venous and arterial phases need to first be 
standardized to avoid variability in reconstruction slice 
thickness and voxel spacing. By applying the bicubic spline 
interpolation algorithm, we resampled the raw images into 
a 1×1×1 mm3 voxel size (24). We constructed a DL model 
based on residual CNN (ResNet-50 architecture), with the 
input of segment CT images (size: 224 mm × 224 mm) (25). 
ResNet-50 significantly outperforms conventional CNNs 
on challenging object recognition benchmark tasks while 
requiring less computational resources and having fewer 
parameters and is thus more practical and accessible. The 
pretrained ResNet-50 model is available online, but for this 
study, the last fully connected layer at the top of the model 
was removed. Global max pooling strategies were used to 
extract the maximum values from each layer of the feature 
maps, which were then transformed into their original 
feature values. The details of the DL model are described in 
the Supplementary file (Appendix 1 and Appendix 2).

Building of the DL-based radiomics signature

Feature selection and radiomics signatures building were 
performed in the training cohort. The two radiomics 
signatures were respectively built as follows. First, ICCs 
were calculated from the resegmentation data to evaluate 
the reproducibility of features. Only those features with 
ICCs >0.8 were selected further analysis. We then applied 
the least absolute shrinkage and selection operator (LASSO) 
Cox regression model to identify the most useful prognostic 
features among all the DL features. Subsequently, a multiple 
feature-based radiomics signature, known as the radiomics 
score, was built to predict survival in the training cohort. 
Finally, we built two DL-based radiomics signatures to 
reflect the phenotypic characteristics of the primary tumor 
from two phases of CT images: the arterial and venous 
phases. The “glmnet” package in R (The R Foundation of 

Statistical Computing) was used to perform the LASSO 
Cox regression model analysis.

Construction of an individualized radiomics nomogram

To evaluate the predictive performance of the DL-based 
radiomics signature (Modeldl) for OS, we conducted initial 
assessments in the training cohort and then verified its 
performance in the internal validation cohort and external 
validation cohort. Additionally, to compare the prognostic 
performance between the DL-based radiomics signatures 
and conventional clinical features, we built a clinical model 
(Modelclinic) using the multivariable Cox proportional 
hazards (CPH) method based on independent clinical 
prognostic factors.

The univariate and multivariate CPH models were 
employed to investigate the association between the 
clinical risk factors and OS of gNENs in the training 
cohort. Subsequently, a combined model (Modelclinic + dl) 
incorporating the DL radiomics signatures and clinical 
factors was built through the multivariable CPH method. 
Figure 2 shows the architectures of the DL radiomics 
analysis in this study. Finally, we visualized Modelclinic + dl as 
a radiomics nomogram to assist clinicians in conveniently 
obtaining individualized OS estimates. The performance 
of Modelclinic + dl was quantitatively evaluated using hazard 
ratio (HR) and the Harrell concordance index (C-index). 
Furthermore, risk stratification for the radiomics nomogram 
was performed, and a specific threshold was determined in 
the training cohort and locked during the validation phase.

Verification and evaluation of the radiomics nomogram

Kaplan-Meier (KM) curves were adopted to investigate 
the potential association between the models and OS. To 
evaluate the agreement between the observed actual OS rate 
and the nomogram-predicted OS rate, calibration curves 
were employed. In order to compare the predictive power 
of Modelclinic + dl with Modeldl and Modelclinic, time-dependent 
receiver operating characteristic (TDROC) analysis (26), 
which could handle censored data, was adopted. To ascertain 
the network benefit, we adopted decision curve analysis 
(DCA) to validate the prognostic value of Modelclinic + dl.

Statistical analysis

A 2-tailed P value <0.05 was set as the threshold for 
statistical significance. Univariate analysis was performed 

https://cdn.amegroups.cn/static/public/QIMS-23-577-Supplementary.pdf
https://cdn.amegroups.cn/static/public/QIMS-23-577-Supplementary.pdf
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with the independent t-test or Mann-Whitney test for 
numeric variables. The differences of categorical data were 
analyzed with the chi-squared test or Fisher exact test. 
The KM curves for OS were plotted, with 1 month being 
defined as 30 days. The HRs and C-index were analyzed 
with confidence intervals (CIs) of 95%, along with the 
corresponding P values (27,28). In the multivariable CPH 
method, Akaike information was used as the optimization 
criterion, and backward stepwise selection was adopted. 
The Schoenfeld residuals test was performed for each 
clinical factors, factors with P value larger than 0.05 were 
considered eligible for Cox regression. We used R version 
4.0.3 (https://www.r-project.org) and Python version 
3.6 (The Python Software Foundation; https://www.
python.org) to conduct statistical analysis and graphic 
representation.

Results

Baseline clinical characteristics for the training, internal 
validation, and external validation cohorts are summarized 
in Table 1. Of the 162 patients included in the study, 119 
(73.5%) were men, and the median age of all patients was 
62.57 years. The median OS in the training cohort, internal 
validation cohort, and external validation cohort was 32, 34 
and 25 months, respectively.

For each clinical factor, the Schoenfeld residuals test with 

chi-squared test was calculated (Figure S1). Factors with a 
P value larger than 0.05 were considered eligible for Cox 
regression. The test results indicated that all clinical factors 
were eligible for employ Cox regression in univariable and 
multivariable analyses (Figure S1). M stage, Ki-67 index, 
and longest diameter were independent predictors for risk 
prediction (P value <0.05; Table 2) in the construction of 
Modelclinic. Modelclinic yielded worse results than did the DL-
based radiomics signature Modeldl in the training (C-index: 
0.80; 95% CI: 0.73–0.86), internal validation (C-index: 0.71; 
95% CI: 0.60–0.84), and external validation (C-index: 0.66; 
95% CI: 0.52–0.72) cohorts (Table 3).

In the building of the combined model (Modelclinic + dl), 
Modelclinic + dl adopted DL-based radiomics signatures, Ki-
67 index, M stage, and longest diameter. Subsequently, the 
combined model was visualized as a radiomics nomogram 
for OS estimation using regression coefficients of  
Modelclinic + dl, as shown in Figure 3. Compared with Modelclinic 
and Modeldl, Modelclinic + dl demonstrated the strongest 
prognostic ability of OS in the training cohort [C-index: 
0.86, 95% confidence interval (CI): 0.81–0.92; HR 3.12, 
95% CI 2.34–3.93; P<0.01], internal validation cohort 
(C-index: 0.77, 95% CI: 0.66–0. vv89; HR 2.51, 95% CI: 
1.57–3.99; P<0.01), and external validation cohort (C-index: 
0.71, 95% CI: 0.62–0.83; HR 1.77, 95% CI: 1.21–2.59; 
P<0.01) (Table 3). Moreover, Modelclinic + dl was capable of 
dividing all patients into 2 distinct risk subgroups (the low-

Figure 2 Architectures of deep learning radiomics analysis based on the residual convolutional neural network. (A) CT imaging; (B) tumor 
segmentation; (C) deep learning feature extraction; (D) modeling. DL, deep learning; CT, computed tomography; DLV, deep learning 
venous phase signature; DLP, deep learning arterial phase signature.
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risk and high-risk group). Figure 4 presents the KM curves for  
Modelclinic + dl, while Table 4 displays the clinical factor analysis 
of the different risk groups in the three cohorts. In the 
training cohort, the median survival time was 42.5 months 
for the low-risk group and 16.3 months for the high-risk 
group; in the internal validation cohort, the median survival 
time was 36.7 months for the low-risk group and 9.9 months 
for the high-risk group; and in external validation cohort, 
the median survival time was 20.6 months for the low-risk 
group and 15.5 months for the high-risk group.

To evaluate the performance of the three models, their 
KM curves were compared (Figure 4). The cutoff values of 

Modelclinic + dl (0.567), Modeldl (0.512), and Modelclinic (0.367) 
were obtained in the training cohort. The distribution of 
risk scores for prediction with Modelclinic + dl in the three 
cohorts is shown in Figure 5. In the distribution shape of the 
risk scores in the training, internal validation, and external 
validation cohorts, all patients were divided into three 
subgroups. Furthermore, as seen in Table 3, the Modelclinic + 

dl had the best predictive performance with a high C-index 
in the training, internal validation, and external validation 
cohorts (0.86 vs. 0.77 vs. 0.71).

 As shown in Table 3, Modelclinic + dl had the highest 
HR in the training cohort: (Modelclinic + dl vs. Modeldl vs. 

Table 1 Clinical characteristics of patients in the training and validation cohorts

Characteristics Training cohort (n=76) Internal validation cohort (n=32) External validation cohort (n=54) P value

Age (years) 61.70±11.31 63.06±11.39 64.50±9.15 0.274

Sex 0.617

Female 23 (30.3) 8 (25.0) 12 (22.2)

Male 53 (69.7) 24 (75.0) 42 (77.8)

Location 0.364

Cardia/fundus 41 (54.0) 17 (53.1) 27 (50.0)

Body 21 (27.6) 11 (34.4) 15 (27.8)

Antrum 9 (11.8) 1 (3.1) 2 (3.7)

≥2/3 stomach 5 (6.6) 3 (9.4) 10 (18.5)

Long diameter (mm) 44.80±27.49 44.57±29.71 53.97±27.55 0.163

CT-reported LN 0.912

No 39 (51.3) 15 (46.9) 26 (48.1)

Yes 37 (48.7) 17 (53.1) 28 (51.9)

M stage 0.927

M0 59 (77.6) 25 (78.1) 43 (79.6)

M1 17 (22.4) 7 (21.9) 11 (20.4)

Ki-67 53.08±34.21 49.25±33.19 66.83±24.25 0.365

Grade 0.218

NETG1 15 (19.7) 7 (21.9) 0 (0.0)

NETG2 6 (7.9) 3 (9.4) 5 (9.3)

NETG3 3 (4.0) 0 (0.0) 2 (3.7)

MiNEN 38 (50.0) 15 (46.8) 30 (55.5)

NEC 14 (18.4) 7 (21.9) 17 (31.5)

Values are shown as n (%) or mean ± SD. The analysis of variance test was used to compare the characteristics. CT, computed 
tomography; LN, lymph node status; NETG, neuroendocrine tumor grade; MiNEN, mixed neuroendocrine-nonneuroendocrine neoplasm; 
NEC, neuroendocrine carcinoma; SD, standard deviation.
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Table 2 Characteristics analysis for hazard ratio

Characteristic
Univariable analysis Multivariable analysis

HR (95% CI) P value HR (95% CI) P value

Age (years) 1.05 (1.05–1.13) 0.001* 1.05 (0.97–1.07) 0.065

Sex

Female 1 (reference) 1 (reference)

Male 0.33 (0.16–0.68) 0.002* 1.24 (0.52–2.93) 0.629

Location

Cardia/fundus 1 (reference)

Body 0.29 (0.11–0.75) 0.002* 1.14 (0.45–2.81) 0.787

Antrum 0.42 (0.13–1.37) 0.152 1.29 (0.39–4.23) 0.860

≥2/3 stomach 1.29 (0.39–4.22) 0.678 0.40 (0.09–1.88) 0.256

Long diameter 1.03 (1.02–1.04) <0.001* 1.02 (0.99–1.04) 0.030*

CT-reported LN

No 1 (reference) 1 (reference)

Yes 5.65 (2.66–11.97) <0.001* 1.66 (0.77–3.59) 0.198

M stage

M0 1 (reference) 1 (reference)

M1 4.59 (2.21–7.33) <0.001* 2.26 (1.00–4.36) 0.037*

Ki-67 1.03 (1.01–1.05) 0.001* 1.04 (0.98–1.08) 0.049*

Grade

NETG1 1 (reference) 1 (reference)

NETG2 0.001 (0.0–Inf) 0.99 0.001 (0–Inf) 0.997

NETG3 13.05 (1.52–147.51) 0.012* 5.16 (0.32–71.15) 0.2892

MiNEN 11.50 (2.77–47.63) 0.003* 0.33 (0.01–12.95) 0.5207

NEC 7.59 (1.56–36.97) 0.012* 0.15 (0.01–4.08) 0.1638

On a 95% CI, the result is considered significant when the P value is less than 0.05; *, P<0.05. For the P value, the “Coxph” package of R 
software was used with the Wald test and likelihood ratio test, where appropriate. HR, hazard ratio; CI, confidence interval; CT, computed 
tomography; LN, lymph node status; NETG, neuroendocrine tumors grade; MiNEN, mixed neuroendocrine-nonneuroendocrine neoplasm; 
NEC, neuroendocrine carcinoma.

Modelclinic: 3.12 vs. 2.71 vs. 2.68), indicating that the high-
risk groups predicted by Modelclinic + dl were at a higher risk 
of death than those of the other models. In the internal and 
external cohort, the findings were similar. Moreover, in 
comparing the TDROC of the three models, we observed 
that the performances of the Modelclinic + dl were equally 
effective across all three cohorts (Figure S2). Calibrations 
were performed, and DCA curves of Modelclinic + dl for 
individualized OS prediction were drawn (Figures 5,6). The 
DCA revealed that Modelclinic + dl provided a more significant 

net benefit to patients compared to the other models.

Discussion

In this study, we established and verified the prognostic 
value of CT-based radiomics for individualized assessment 
of OS in patients with gNENs using a DL method 
in three cohorts. The DL-based radiomics signatures 
from dual-phase CT images showed notable prognostic 
value for estimating OS. This research demonstrated 

https://cdn.amegroups.cn/static/public/QIMS-23-577-Supplementary.pdf
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Table 3 Performance comparison of different models via concordance index and hazard ratio

Model
C-index (95% CI) Hazard ratio (95% CI)

Training Internal validation External validation Training Internal validation External validation

Modelclinic 0.80 (0.73–0.86) 0.71 (0.60–0.84) 0.66 (0.52–0.72) 2.68 (1.93–3.83) 2.27 (1.32–3.90) 1.52 (1.19–1.95)

Modeldl 0.84(0.79–0.92) 0.73 (0.61–0.86) 0.65 (0.56–0.75) 2.71 (2.02–3.66) 2.16 (1.44–3.22) 1.25 (0.89–1.77)

Modelclinic + dl 0.86 (0.81–0.92) 0.77 (0.66–0.89) 0.71 (0.62–0.83) 3.12 (2.34–3.93) 2.51 (1.57–3.99) 1.77 (1.21–2.59)

C-index, concordance index; CI, confidence interval; Modelclinic, a clinical model; Modeldl, the deep learning-based radiomics signature; 
Modelclinic + dl, the combined model.

that incorporating DL-based radiomics signatures with 
independent clinical factors can provide significantly 
enhanced predictive power as compared to a clinical model 
and effectively classify patients into high- and low-risk 
groups, thus indicating its feasibility as a noninvasive tool 
for predicting the prognosis of patients with gNENs. To 
our knowledge, the current study is the first to explore the 
prognostic value of DL radiomics analysis for individualized 
evaluation of OS in patients with gNENs.

The clinical factors and survival outcomes of patients 
with gNENs have been investigated in a few previous 
studies. One research team assessed the prognosis of 64,971 
patients with NENs from the Surveillance, Epidemiology, 
and End Results (SEER) database, and the findings revealed 

that G1 grade undifferentiated tumors were associated 
with the highest median OS (16.2 years), while G2 grade 
differentiated tumors were associated with poor OS  
(8.3 years), and G3 grade poorly differentiated tumors 
were associated with the worst OS (10 months) (1). In 
one study, the prognosis of 51 cases with gastric NEC was 
investigated, and it was found that for patients who received 
palliative resection, the median OS was 21 months and 
the 5-year survival rate was 10.0% (29). In another study, 
the median OS of patients with stage I–III and those with 
stage IV gNENs was 32 and 11 months, respectively (30). 
Taken together, these studies indicate that early detection of 
patients with poorly differentiated gNENs can significantly 
improve their survival.
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Figure 4 Comparison of KM curves for models. (A,D,G) Modelclinic + dl; (B,E,H) Modeldl; (C,F,I) Modelclinic. The vertical ticks on the bottom 
of the KM curves at each point represent patients who were censored at that time. Modelclinic + dl, the combined model; Modeldl, the deep 
learning-based radiomics signature; Modelclinic, a clinical model; KM, Kaplan-Meier.

Some researchers have recently adopted radiomics 
analysis to predict the prognosis of patients with 
gastrointestinal and pancreatic NENs or gastric NECs, 
obtaining satisfactory predictive results (31,32). Radiomics 
as a new image quantification method can extract high-
throughput medical imaging features and has been broadly 
adopted in the diagnosis and prognosis of patients with 
cancer (33-35). Prior investigations have indicated that 
the proteomic and phenotypic information extracted from 
radiological images of tumors can provide significant 
predictive value, particularly in terms of tumor recurrence 
and metastasis, which may thus be considered crucial 
prognostic biomarkers (36,37). In our previous research, 
we found that radiomics nomograms had significant 
clinical implications for the preoperative detection of 
gastric malignancies, and radiomics analysis demonstrated 
satisfactory performance in distinguishing GNEC from 
gastric adenocarcinoma (38). In our study, a DL radiomics 

signature from dual-phase CT images was constructed. 
The DL-based radiomics signatures were highly associated 
with OS in the training, internal validation, and external 
validation cohorts (P<0.01). The combined model 
incorporating the independent clinical risk factors and 
radiomics signatures demonstrated notable enhancements 
in predicting OS as compared to the clinical model.

The Ki-67 index serves as a crucial metric for assessing 
tumor proliferation activity (39-43). According to the 
recommendations of previous literature, there is a close 
relationship between Ki-67 and tumor grade, and patients 
can be categorized into four groups: grade 1 NET, grade 
2 NET, grade 3 NET, and NEC, with Ki-67 index criteria 
of <3%, 3–20%, 20–55%, and >55%, respectively (2). Our 
study examined the association of the Ki-67 index and 
distant metastasis with patient prognosis. After conducting 
univariate and multivariate Cox regression analysis, we 
found that the Ki-67 index and distant metastasis were 
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Table 4 Clinical characteristic analysis of the deep learning radiomics model in the training and validation cohorts

Characteristics
Training cohort (n=76) Internal validation cohort (n=32) External validation cohort (n=54)

Low risk High risk P value Low risk High risk P value Low risk High risk P value

Age (years) 59.43±12.11 64.50±9.69 0.051 59.17±12.46 68.07±7.64 0.031 62.44±9.91 68.00±6.51 0.060

Sex 0.004* 0.264 0.970

Female 19 (45.2) 4 (11.8) 6 (46.2) 2 (10.5) 7 (20.6) 5 (25.0)

Male 23 (54.8) 30 (88.2) 7 (53.8) 17 (89.5) 27 (79.4) 15 (75.0)

Location 0.074 0.223 0.007

Cardia/fundus 20 (47.6) 21 (61.7) 7 (38.9) 10 (71.4) 22 (64.7) 5 (25.0)

Body 16 (38.1) 5 (14.7) 10 (55.6) 1 (7.2) 9 (26.5) 6 (30.0)

Antrum 5 (11.9) 4 (11.8) 1 (5.5) 0 (0.0) 1 (2.9) 1 (5.0)

≥2/3 stomach 1 (2.4) 4 (11.8) 0 (0.0) 3 (21.4) 2 (5.9) 8 (40.0)

Long diameter (mm) 32.08±23.74 60.52±23.58 <0.001* 24.34±17.48 70.58±20.26 <0.001* 43.31±13.40 72.10±35.43 <0.001*

CT-reported LN 0.001* 0.448 0.078

No 29 (69.0) 10 (29.4) 10 (55.6) 5 (35.7) 20 (58.8) 6 (30.0)

Yes 13 (31.0) 24 (70.6) 8 (44.4) 9 (64.3) 14 (41.2) 14 (70.0)

M stage <0.001* 0.003* 0.050*

M0 40 (95.2) 19 (55.9) 18 (100.0) 7 (50.0) 30 (88.2) 13 (65.0)

M1 2 (4.8) 15 (44.1) 0 (0.0) 7 (50.0) 4 (11.8) 7 (35.0)

Ki-67 41.48±37.13 67.41±23.74 <0.001* 33.67±35.70 69.29±13.85 0.001* 64.61±28.21 70.50±15.72 0.396

Grade <0.001* 0.221 0.195

NETG1 13 (31.0) 2 (5.9) 7 (38.9) 0 (0.0) 0 (0.0) 0 (0.0)

NETG2 6 (14.2) 0 (0.0) 3 (16.7) 0 (0.0) 5 (14.7) 0 (0.0)

NETG3 1 (2.4) 2 (5.9) 0 (0.0) 0 (0.0) 1 (2.9) 1 (5.0)

MiNEN 13 (31.0) 25 (73.5) 6 (33.3) 9 (64.3) 16 (47.1) 14 (70.0)

NEC 9 (21.4) 5 (14.7) 2 (11.1) 5 (35.7) 12 (35.3) 5 (25.0)

Follow-up (months) 42.5 16.3 36.7 9.9 20.6 15.5

Values are shown as n (%) or mean ± SD. *, P<0.05. CT, computed tomography; LN, lymph node; NETG, neuroendocrine tumor grade; 
MiNEN, mixed neuroendocrine-nonneuroendocrine neoplasm; NEC, neuroendocrine carcinoma; SD, standard deviation.
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independent risk factors affecting prognosis, which is 
consistent with previous studies (31). Tumor grade and 
Ki-67 index may have overlapping statistical efficacy in 
predicting survival and thus interfere with one another. 
However, the Ki-67 index showed greater predictive ability 
in the multivariate Cox regression analysis. Therefore, we 
included the Ki-67 index in the model construction, while 
the tumor grade was discarded.

Advanced DL models have become the most important 
method for radiomics analysis based on large-scale medical 
imaging data (44,45). Based on the fixed size bounding 
box of the tumor region, DL features can be easily 
extracted, and the subjectivity of manual segmentation in 
the radiomics procedure can be reduced (46). Therefore, 
we developed a CT-based DL radiomics nomogram for 
individualized evaluation of OS in patients with gNENs. 
The experimental results showed that the DL radiomics 
analysis had good performance in preoperatively predicting 
the OS of patients with gNENs.

Our study still has several limitations. First, manually 
segmenting tumor ROIs on CT images is a laborious and 
expensive task. A semiautomatic or automatic segmentation 
approach may be preferable. Second, we employed a 
retrospective design, and the CT images were obtained 
from different CT scanners, which might have introduced 
some deviation and interference. Third, the DL model 
we adopted consisted of a limited dataset, and a larger 
dataset should be used to ensure the effectiveness of model. 
Furthermore, we used 2-dimensional features from a single 
slice instead of 3-dimensional features, and 2-dimensional 
segmentation may not represent the whole tumor, as well 

as 3-dimensional segmentation. Although 3-dimensional 
lesion segmentation is a time-consuming process, further 
exploration of this technique is warranted.

Conclusions

The value of DL-based radiomics analysis on CT images 
for prognostic prediction in patients with gNENs was 
confirmed. Our DL-based radiomics model could 
successfully stratify individual patients into two groups with 
different prognoses and could thus be used as a noninvasive 
tool for the prognostic prediction and risk stratification of 
patients with gNENs.
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Appendix 1: Deep learning feature definitions

Data preprocessing

With the tumor region clearly delineated, we extracted 3 
consecutive axial slices that contained the largest amount 
of tumor tissue. These slices were then cropped to a size of 
224 mm × 224 mm using a bounding box that encompassed 
the entirety of the tumor. This size corresponded to the 
input layer of the models used. The cropped images with 3 
consecutive axial slices as image channels were used as the 
input for the convolutional neural network (CNN) model.

Convolutional neural network architecture

In our study, ResNet50 (25) was used for the extraction 
of representational deep learning features. This network 
was pretrained on ImageNet (47). This publicly released 
dataset contains a substantial number of object categories 
and manually annotated training images. The optimization 
hyperparameters were not tuned, which meant a broader 
generalization on the other datasets. The models are publicly 
assessable using Keras and TensorFlow open-source code 
(https://github.com/fchollet/deep-learning-models/releases/
download/) under the MIT license. After preprocessing, 3 
consecutive slices in computed tomography (CT) images 
with the maximum area of the tumor lesion were propagated 
in the network to generate deep learning features.

Removal of the last fully connected layer

For the pretrained models, the convolutional base is 

connected by a fully connected layer. We removed the last 
fully connected layer. A total of 2048 feature maps were 
obtained from the new output of this model.

Addition of a max pooling layer and feature extraction

With the use of a global pooling window, local data are 
concentrated, thus decreasing dimensionality. After Step 
1.3, for models with more than 1 dimensional feature, we 
obtained feature maps with height and width dimensions 
consistent with the location invariance in the input layer. 
Following global pooling, the feature map vectors were 
transformed to their respective maximum raw values. The 
feature maps were transformed to numeric values, which 
were the representational deep learning features.

Appendix 2: Parameters of CT images and 
follow-up time

Follow-up time for overall survival

The overall survival (OS) is often regarded as the best endpoint of 

interest in survival analysis. For our study, the endpoint of follow-
up was January 2022. The time from diagnosis to death or the 
end of follow-up was recorded as OS in our study. The median 
follow-up was 29.5 months, and the maximum was 124 months. 
In the first 2 years, the follow-up occurred every 2 or 3 months. 
Thereafter, follow-up occurred every 6 months. The follow-up 
process involved checking inpatient medical records, outpatient 
return records, and making phone calls to collect follow-up data.

Table S1 CT scanning equipment and scanning scheme

Parameters Scheme

Equipment Equipment name GE Discovery 750 HD CT

Philips Brilliance iCT

GE BrightSpeed CT

Siemens Somatom Perspective CT

Scanned protocol Width of collimator 32×0.6 mm or 64×0.625 mm

Rotation time 0.5–0.8 s/r 

Tube voltage 120 kVp

Tube current 290–650 mA

Pitch 1.375:1/0.992:1

Layer thickness/spacing 5.0 mm/5.0 mm

Matrix 512×512

Noise figure 10 HU

Scanned area Location standard Top of diaphragm to lower pole of both kidneys

Enhancement condition Contrast agent Iohexol (300 mgI/mL) or ioversol (320 mg/mL)

Flow rate 2.5–3.5 mL/s

Dose 1.5 mL/kg

Acquisition time Arterial phase: 30 s; venous phase: 60–70 s

Post-process Reconstruction thickness 0.625 mm, 1.25 mm

CT, computed tomography; HU, Hounsfield unit.
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Figure S1 Validation of the proportional hazard assumption. For each clinical co-variable, Schoenfeld residuals test with chi-squared test 
was calculated (48). Factors with P>0.05 were considered eligible for Cox regression. For each of the covariables in the Cox model, the P 
value was not statistically significant, and the P value for the global test was also not statistically significant. Therefore, it was reasonable to 
use Cox regression for univariable and multivariable analysis.
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Figure S2 Time-dependent receiver operating characteristic curves for 3 and 5 years for each of the 3 models in the training, internal 
validation, and external validation cohorts. Receiver operating characteristic curves are shown for 3 cohorts.
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