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Background: Background parenchymal enhancement (BPE) is defined as the enhanced proportion of 
normal fibroglandular tissue on enhanced magnetic resonance imaging. BPE shows promise as a quantitative 
imaging biomarker (QIB). However, the lack of consensus among radiologists in their semi-quantitative 
grading of BPE limits its clinical utility.
Methods: The main objective of this study was to develop a BPE quantification model according to 
clinical expertise, with the BPE integral being used as a QIB to incorporate both the volume and intensity 
of the enhancement metrics. The model was applied to 2,786 cases to compare our quantitative results with 
radiologists’ semi-quantitative BPE grading to evaluate the effectiveness of using the BPE integral as a QIB 
for analyzing BPE. Comparisons between multiple groups of nonnormally distributed BPE integrals were 
performed using the Kruskal-Wallis test.
Results: Our study found a considerable degree of concordance between our BPE quantitative integral and 
radiologists’ semi-quantitative assessments. Specifically, our research results revealed significant variability in 
BPE integral attained through the BPE quantification framework among all semi-quantitative BPE grading 
groups labeled by experienced radiologists, including mild-moderate (P<0.001), mild-marked (P<0.001), and 
moderate-marked (P<0.001). Furthermore, there was an apparent correlation between BPE integral and BPE 
grades, with marked BPE displaying the highest BPE integral, followed by moderate BPE, with mild BPE 
exhibiting the lowest BPE integral value.
Conclusions: The study developed and implemented a BPE quantification framework, which incorporated 
both the volume and intensity of enhancement and which could serve as a QIB for BPE. 
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Introduction

The addition of semi-quantitative background parenchymal 
enhancement (BPE) to the fifth edition of the Breast 
Imaging Reporting and Data System (BI-RADS) marks a 
significant milestone in the interpretation of breast magnetic 
resonance imaging (MRI) (1). BPE refers to the proportion 
of normal fibroglandular tissue (FGT) that enhances at 
varying grades on breast MRI after the administration 
of gadolinium-based contrast material (2). BPE can be a 
confounding factor in the interpretation of breast MRI, 
as it can mimic or mask the presence of malignant lesions 
(3,4). However, visual semi-quantitative assessment of BPE 
has faced challenges due to poor inter- and intrareader 
agreements (2,5,6). Quantitative assessment has the 
potential to help distinguish BPE from lesions, address 
potential MRI diagnostic challenges, and reduce the risk of 
overdiagnosis or missed diagnosis (2,4). Notably, BPE holds 
promise as a reliable risk factor in clinical breast cancer risk 
assessment methods and as an independent prognostic and 
predictive biomarker of neoadjuvant chemotherapy (NAC) 
(5,7-9).

In theory, BPE quantification could involve calculating its 
ratio of range, area, or volume ratio to the that of the FGT or 
the breast as well as the intensity of enhancement on dynamic 
contrast enhancement (DCE) (1). The proposed framework 
aims to quantify BPE by integrating its volume and intensity of 
enhancement on breast MRI. The resulting BPE quantitative 
imaging biomarker (QIB) could provide a better insight into 
the impact of BPE on breast MRI interpretation. This paper 
outlines this framework and demonstrates its efficacy.

Methods

Committee approval

The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013) and was 
reviewed and approved by the Ethics Committee of Chinese 
People’s Liberation Army General Hospital (No. S2019-
093-01). Written informed consent from the patients for 
this retrospective analysis was waived.

Study population

This study included a total of 2,786 cases that were 
quantified using the proposed framework from August 
2012 to September 2019. Initially, there were 2,907 cases, 

but 121 cases were excluded based on the exclusion criteria 
to ensure the quality of the data. The exclusion criteria 
included a history of surgical intervention before MRI 
examination, implant or injection mammoplasty, unilateral 
breast data deficiency (a lack of bilateral breast symmetry 
for evaluation), and poor image quality.

Imaging protocols

A 3.0-Tesla MRI scanner with an 8-channel phased array 
breast coil was used to conduct the MRI examinations 
(Discovery 750, GE HealthCare, Chicago, IL, USA). The 
imaging protocol, lasting for 18 minutes, included 4 pulse 
sequences: diffusion-weighted imaging (DWI), T2-weighted 
imaging (T2WI), T1-weighted imaging (T1WI), and DCE. 
All sequences were spatially matched in axial view, with a 
field of view of 320 mm × 320 mm and 190 mm of z-axis 
coverage. The b value of DWI was 0 and 1,000 s/mm2 in 3 
orthogonal diffusion gradients, the inversion recovery (IR) 
was 250 ms for fat suppression, the repetition time (TR) was 
5,400 ms, minimum echo time (TE), and the matrix size was 
128×128. The T2WI used iterative decomposition of water 
and fat with echo asymmetric and least squares estimation 
(IDEAL) for fat suppression, with a TR of 5,000 ms, a TE 
of 68 ms, and a matrix size of 320×256 (10). Both T1WI 
and DCE were performed with the same volume imaging 
for breast assessment (VIBRANT), spectral inversion at 
lipids (SPECIAL), and 3-dimensional spoiled gradient 
recall sequences. The SPECIAL option was disabled for 
non-fat-suppression T1WI. The T1WI and DCE had 
the same geometric location and were performed with the 
following parameters: an isotropic spatial resolution of  
1.0 mm × 1.0 mm × 1.0 mm, 192 partitions in the axial view, 
a minimum TR/TE, and a flip angle of 120°. The DCE 
scan repeated 6 continuous phases without interruption, 
each of which lasted 120 seconds (s). Following the pre-
contrast phase, 0.5 M of gadopentetic acid (Gd-DTPA) was 
administered into the antecubital vein at a rate of 2 mL/s 
and a dose of 0.1 mmol/kg body weight and was followed by 
a 20-mL flush of saline. Table 1 summarizes the parameters  
of MRI.

The imaging processing included early enhancement 
ratio and time-intensity curve (TIC). The intensity of the 
enhancement ratio (R) was the proportion of the enhanced 
phase to the pre-contrast phase. Before administration of 
the injection medication, a pre-scan baseline image was 
taken and labeled as phase 0. The subsequent images taken 
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after the injection of medication were labeled as time phases 
1, 2, 3, and 4, respectively. The R for each phase (n = phase, 
I = intensity of enhancement) is shown in Eq. [1] below:

0

0

100%n
n

I IR
I
−

= ×	 [1]

The TIC was classified using the enhancement ratio 
difference between the first-enhanced phase and the last-
enhanced phase (8–10 minutes after contrast delivery) (1). 
The persistent, plateau, and washout TICs were defined as 
enhancement ratios of <−10%, −10% to 10%, and >10%, 
respectively (1).

Semi-quantitative BPE assessment

In order to acquire semi-quantitative BPE results, 3 experienced 
radiologists (with 2, 3, and 5 years of experience, respectively) 
independently assessed the BPE grade as mild, moderate, or 
marked based on the fifth edition of the BI-RADS.

Model architecture of the BPE quantification framework

Figure 1 illustrates the process of the BPE quantification 
framework.

FGT segmentation and lesion exclusion
FGT was automatically segmented using a 2D convolutional 
neural network, Deep High-Resolution Net (HR-Net), the 
details of which are shown in the Appendix 1. Before BPE 
grading, the breast lesions were excluded using a lesion 
segmentation model, which developed in house using 
V-Net (11).

BPE identification and quantification
To quantify BPE, we calculated the voxel-wise relative 
intensity of enhancement from the pre-contrast sequence 
to the post-contrast sequence using Eq. [1] with n=1 of 

Eq. [1] as follows: 1 0
1

0

100%I IR
I
−

= × . This yielded the intensity 
of enhancement ratio for the first phase (early intensity 
enhancement rate). A voxel was identified as BPE if it 
satisfied 2 criteria: (I) its first rate of intensity enhancement 
(R1) fell within the range of 30–90%, and (II) it belonged 
to the FGT. Only voxels exhibiting persistent TIC were 
identified as BPE, as plateau and washout TICs were 
indicative of lesions. Additionally, we excluded voxels with 
high signals on DWI, as this is also a sign of a lesion.

Voxels that satisfied the BPE definition in terms of R (%) 
were selected to construct the BPE histogram, as the intensity 
of enhancement and volume of intensity of enhancement were 
the primary parameters used to define BPE. In the histogram, 
the Y-axis (FGT volume ratio) represented the ratio of the 
BPE volume to that of FGT, while the X-axis (intensity 
enhancement) represented the intensity of enhancement with 
a 10% interval.

The BPE integral was identified as the QIB of BPE and 
was calculated from the BPE histogram (Figure 1) using the 
following equation:

8

3
     

i ii
BPE integral intensity enhancement FGT area ratio

=
= ×∑

	
[2]

The i=3 means intensity of enhancement ranging from 
30–40%. Continuing in this manner, until i=8 signifies the 
range of 80–90% intensity of enhancement.

The BPE quantification of 2,786 cases was performed on 
MatLab 2018b (MathWorks, Natick, MA, USA).

Table 1 The intergroup differences of the BPE integral in different BPE grades labeled by radiologists 

Group Mean (95% CI)

Comparison

Among the 3 groups 
(Asymp. Sig.*)

Pairwise comparisons (Adj. Sig.*)

Mild vs. moderate Mild vs. marked Moderate vs. marked

Mild 0.0756 (0.0739, 0.0772) <0.001 <0.001 <0.001 <0.001

Moderate 0.1263 (0.1236, 0.1290)

Marked 0.1585 (0.1519, 0.1650)

*, significance values adjusted with the Bonferroni correction for multiple tests. Comparisons between multiple groups of nonnormally 
distributed BPE integral were performed using the Kruskal-Wallis test. The significance level is 0.05. BPE, background parenchymal 
enhancement; CI, confidence interval; Asymp., asympotic; Sig., significance; Adj., adjusted.

https://cdn.amegroups.cn/static/public/QIMS-23-514-Supplementary.pdf
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Statistical analysis

The FGT segmentation and lesion labeling models were 
assessed using the Dice similarity coefficient (DSC). 
Comparisons between multiple groups of the nonnormally 
distributed BPE integral were performed using the Kruskal-
Wallis test. Table 1 was carried out using SPSS version 26.0 
(IBM Corp., Armonk, NY, USA). Other statistical analyses 
of Figure 2 were performed with R software version 4.2.1 
(The R Foundation for Statistical Computing) with the 
“ggplot2” package being used for data visualization. P<0.05 
indicated a statistically significant difference.

Results

A clear association between BPE integral and BPE grades 
was demonstrated. The findings indicated statistically 
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Figure 1 The BPE quantification framework process. Breast MRI images were used as input for the FGT segmentation model. The 
resulting FGT segmentation was subsequently employed as input for a lesion-labeling model. Consequently, the FGT component devoid 
of lesions was obtained. In turn, the resulting FGT segment was then subjected to the definition of BPE. Next, the BPE histogram was 
generated to show the proportion of BPE within the FGT and its corresponding intensity of enhancement. Integration of the histogram 
yielded the integral value representing the BPE. MRI, magnetic resonance imaging; FGT, fibroglandular tissue; BPE, background 
parenchymal enhancement. 
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Figure 2 Violin plot for distribution of the BPE integral in 
different BPE grades. The BPE grades were semi-quantitatively 
and independently labeled by 3 radiologists as mild, moderate, 
or marked based on the fifth edition of the BI-RADS. BPE, 
background parenchymal enhancement; BI-RADS, Breast Imaging 
Reporting and Data System.
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significant differences in the BPE integral between the 3 
BPE grades labeled by the radiologists (P<0.001): mild-
moderate (P<0.001), mild-marked (P<0.001), and moderate-
marked (P<0.001) (Table 1). As shown in Figure 2 and Table 2, 
further post-hoc analyses revealed that marked BPE exhibited 
the highest BPE integral, followed by moderate BPE, with 
mild BPE demonstrating the lowest BPE integral. The 
results of FGT segmentation and the lesion-labeling models 
are available in Appendix 2.

Discussion

The purpose of  this  study was to develop a BPE 
quantification framework that can output a BPE integral 
value by combining both volume and intensity of 
enhancement to establish a standardized and automated 
approach for breast MRI interpretation and contribute to a 
BPE QIB. A total of 2,786 cases were included in this study.

Our study found a considerable correspondence 
between our BPE quantitative integral framework and the 
semi-quantitative assessments performed by radiologists, 
underscoring the reliability and reproducibility of our 
approach. Our BPE integral was shown to be an effective 
and valuable QIB that demonstrated meaningful variations 
among different BPE grades labeled by radiologists. 
Importantly, the BPE histograms effectively presented 
comprehensive BPE information in a clear and concise 
manner, as illustrated in Figure 1. These findings highlight 
the viability of using the BPE integral as a QIB for accurate 
and standardized interpretation of breast MRI.

The BPE quantification framework was developed 
according to the expertise of radiology professionals. 

BPE is defined by both the volume and intensity of  
enhancement (1). However, a QIB that combines volume 
and intensity of enhancement has not been developed 
(12-19). To construct this BPE quantification framework, 
the BPE voxels were defined as those with an intensity 
of enhancement falling within the range of 30–90%, 
according to clinical experience that suggests voxels 
with a <30% intensity of enhancement are typically 
imperceptible to radiologists. Additionally, voxels with 
an intensity of enhancement greater than 90% may not 
accurately represent normal tissue. Given the challenge of 
distinguishing between lesions and severe BPE, accurate 
quantification of BPE requires the removal of lesions to 
obtain a more reliable measurement of BPE. A lesion 
segmentation model is used for this purpose. Voxels with 
an intensity of enhancement between 90% and 120% are 
considered to be in an early stage of lesion development, 
while those with an intensity of enhancement greater than 
120% are identified as lesions (1,20). Furthermore, the 
persistent TIC limit was added to the exclusion criteria, as 
plateau TIC and washout TIC are typically indicative of 
malignancy or non-mass enhancement (1,20).

The problem of lacking distinct BPE integral ranges 
between different BPE grades labeled by radiologists 
may be partly attributable to the inherent subjectivity 
of the radiologist’s interpretation, which is a pervasive 
phenomenon in clinical practice. This phenomenon can be 
explained by the following variables: (I) BPE is a dynamic 
procedure that varies from woman to woman and across 
time in the same woman (1); (II) the clinical absence 
of restricting MRI scheduling based on the menstrual 
cycle phase could partly impair the interpretation of  

Table 2 The parameters of the breast MRI protocol

Sequence Plane FOV (cm)
Slice 

thickness 
(mm) 

Gap TR (ms) TE (ms) Matrix FA (°) NEX
Fat-sat 

technique
RBW 
(kHZ)

Parallel 
acceleration

TA 
(min:s)

VIBRANT T1WI Ax 32 1 3D 4.9 2.3 320×320 10 1 – 62.5 2 1:49

IDEAL T2WI Ax 32 4 1 4,000 68 320×256 111 1 Dixon 83.3 2 4:00

STIR DWI Ax 32 4 1 4,000 Minimum 128×128 – 6 STIR 250 2 2:40

VIBRANT 
dynamic T1WI

Ax 32 1 3D 7.7 4.3 320×320 10 1 SPECIAL/water 
excitation

125 3 9:51

MRI, magnetic resonance imaging; FOV, field of view; TR, repetition time; TE, echo time; FA, flip angle; NEX, number of excitation; Fat-
sat, fat saturation; RBW, resolution bandwidth; TA, acquisition time; VIBRANT, volume imaging for breast assessment; T1WI, T1-weighted 
imaging; IDEAL, iterative decomposition of water and fat with echo asymmetric and least squares estimation; T2WI, T2-weighted imaging; 
STIR, short time inversion recovery; DWI, diffusion-weighted imaging; Ax, Axial; 3D, three-dimensional; SPECIAL, spectral inversion at 
lipids.

https://cdn.amegroups.cn/static/public/QIMS-23-514-Supplementary.pdf
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radiologists (2); (III) patient movement during the MRI 
procedure will affect the interpretation. The lack of 
consensus among radiologists in the semi-quantitative 
grading of BPE on breast MRI highlights the need for 
a standardized and automated quantification approach. 
Therefore, the BPE quantification pipelines developed in 
this study offer a promising approach to standardizing the 
interpretation of BPE, potentially reducing the impact of 
interreader and intrareader variation.

It is important to note that the use of BPE quantification 
pipelines is not intended to replace expert radiological 
interpretation but to rather act as a complementary tool that 
can improve accuracy and consistency, potentially reducing 
subjectivity and variability (21,22). Therefore, combining 
expert radiological interpretation with quantitative analysis 
may provide a comprehensive and reliable assessment of 
BPE. Furthermore, the development of BPE research may 
produce an updated framework.

Further research should include reader studies to evaluate 
the effectiveness of the BPE quantification framework and 
to assess the confidence of radiologists in adopting this 
method. It may also be useful to compare the performance 
of specialists and those without expertise in interpreting 
BPE using this framework.

Additionally, BPE has the potential to function as 
an independent risk factor for breast cancer and as a 
predictive biomarker in NAC (5,7-9,23). However, various 
BPE measurement techniques have yielded inconsistent 
results, which could be attributed to the fact that there 
is a wide diversity of BPE measurement methods and no 
reliable or reproducible quantification framework for 
BPE (5,7-9,23,24). The development of an automated 
and standardized BPE quantitative evaluation framework, 
such as the one presented in this study, has the potential to 
facilitate the incorporation of BPE as a QIB into clinical 
practice, particularly in the era of personalized medicine.

The study has several main limitations. First, the BPE 
histograms did not include other texture elements such as 
distortion, kurtosis, and skewness (17,22). Second, there was 
no restriction on the menstrual cycle phase. Third, as there was 
an exclusive focus on Chinese females, who typically exhibit 
higher breast density, resulting in only mild, moderate, and 
marked BPE grades (25). Consequently, this study was unable 
to investigate the quantification of minimal BPE despite the 

proposed framework’s capability to quantify it.

Conclusions

We developed a novel and reliable BPE quantification 
framework that output a BPE integral value according 
to clinical experience, incorporating both the volume 
and intensity of enhancement. Moreover, the use of 
the BPE histogram as a visual representation of the 
BPE quantification parameters further enhances the 
interpretability and ease of application of the framework. 
Our approach may improve the accuracy and reproducibility 
of BPE assessment and facilitate its incorporation into 
clinical practice.
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Supplementary

Appendix 1

Methods

Fibroglandular tissue segmentation
The automatic segmentation model was implemented using the two-dimensional (2D) convolutional neural network, High-
Resolution Net (HR-Net), which has shown to have excellent performance in various segmentation tasks. Before dynamic 
contrast enhancement (DCE), each slice of the sequence was separated and then concatenated with the slice of the initial 
uptake, with an 8–10-min delay of DCE sequences at the same position to be used as the input of our model. The signal 
intensities of the input images were normalized using the minmax normalization method. Hyperparameters, including the 
number of epochs and the learning rate, were experimentally determined by monitoring the loss of the validation set. In this 
study, 10% of the data were randomly extracted from the whole development set to be used for validation. The determined 
learning rate, the batch size, and the number of epochs were 0.001, 4, and 100, respectively. Tversky loss function [Tversky 
loss function for image segmentation using three-dimensional (3D) fully convolutional deep networks] was implemented 
to improve the model performance. To increase the robustness of input data variations, random flipping and rotation of 2D 
images, random cropping, and addition of random Gaussian noises were performed at each iteration during the training 
process. The model was trained and tested using Keras 2.3 on a system equipped with a single NVIDIA GeForce GTX 1080 
Ti graphics processing unit.

Appendix 2

Results

Fibroglandular tissue segmentation and the lesion-labeling model
The Dice similarity coefficient between the automatic and manual labeling of fibroglandular tissue segmentation and lesion 
labeling were 0.972 and 0.860, respectively.


