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Background: When an ischemic stroke happens, it triggers a complex signalling cascade that may 
eventually lead to neuronal cell death if no reperfusion. Recently, the relayed nuclear Overhauser 
enhancement effect at −1.6 ppm [NOE(−1.6 ppm)] has been postulated may allow for a more in-depth 
analysis of the ischemic injury. This study assessed the potential utility of NOE(−1.6 ppm) in an ischemic 
stroke model. 
Methods: Diffusion-weighted imaging, perfusion-weighted imaging, and chemical exchange saturation 
transfer (CEST) magnetic resonance imaging (MRI) data were acquired from five rats that underwent scans 
at 9.4 T after middle cerebral artery occlusion. 
Results: The apparent diffusion coefficient (ADC), cerebral blood flow (CBF), and apparent exchange-
dependent relaxations (AREX) at 3.5 ppm and NOE(−1.6 ppm) were quantified. AREX(3.5 ppm) and 
NOE(−1.6 ppm) were found to be hypointense and exhibited different signal patterns within the ischemic 
tissue. The NOE(−1.6 ppm) deficit areas were equal to or larger than the ADC deficit areas, but smaller than 
the AREX(3.5 ppm) deficit areas. This suggested that NOE(−1.6 ppm) might further delineate the acidotic 
tissue estimated using AREX(3.5 ppm). Since NOE(−1.6 ppm) is closely related to membrane phospholipids, 
NOE(−1.6 ppm) potentially highlighted at-risk tissue affected by lipid peroxidation and membrane damage. 
Altogether, the ADC/NOE(−1.6 ppm)/AREX(3.5 ppm)/CBF mismatches revealed four zones of increasing 
sizes within the ischemic tissue, potentially reflecting different pathophysiological information. 
Conclusions: Using CEST coupled with ADC and CBF, the ischemic tissue may thus potentially be 
separated into four zones to better understand the pathophysiology after stroke and improve ischemic tissue 
fate definition. Further verification of the potential utility of NOE(−1.6 ppm) may therefore lead to a more 
precise diagnosis.
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Introduction

During ischemic stroke, vascular occlusion triggers a 
complex signaling cascade that ultimately leads to neuronal 
cell death. This serial of multi-step pathophysiological 
events is known as the ischemic cascade (Figure 1). Briefly, 
the reduced blood flow causes anaerobic glycolysis 
and tissue acidosis, ionic pump failure and anoxic 
depolarization, causing increased glutamate release, and 
an elevation in intracellular calcium. This is then followed 
by mitochondrial collapse, cytotoxic edema, increased 
nitric oxide generation, and the production of free radicals 
which results in lipid peroxidation, leading to apoptosis or  
necrosis (1,2).

The purpose of acute stroke reperfusion treatment is 
to salvage as much viable tissue as possible prior to cell 
death; this tissue is known as the penumbra. However, 
the pathophysiology of stroke is complex, making the 
identification of the at-risk tissue a non-trivial task. The 
viability and size of the penumbra change dynamically 
depending on the regional blood flow, pathophysiological 
environment, and treatment (3). Thus, the ability to identify 
regions of tissue undergoing different stages or biochemical 
events within the ischemic cascade can reveal crucial 
information regarding the pathophysiology of the stroke 
tissue, and ultimately lead to a more precise diagnosis and 
therapeutic strategy.

Chemical exchange saturation transfer (CEST) is a 
magnetic resonance imaging (MRI) technique that works 
through the phenomenon by which saturation is transferred 
between solute and water molecules through chemical 
exchange (4,5). This contrast technique exploits the low-
concentration solute molecules with exchangeable protons 
whose properties vary depending on the physiological 
conditions.

Thus far, the most widely studied form of CEST MRI 
is amide proton transfer (APT), originating from the 
backbone of proteins and peptides (6). APT is sensitive to 
intracellular pH changes (7) owing to the base-catalyzed 
amide proton exchange rate in the physiological range (8). 
As tissue acidosis occurs relatively early in the ischemic 
cascade (Figure 1), APT imaging is often proposed to be 
used as a biomarker for estimating the penumbra. Past 

studies have assessed the capability of APT imaging of 
supplementing conventional MRI in delineating the 
acidotic penumbra (9-16). While the results are promising, 
APT imaging provides mainly information on the tissue 
acidification of the ischemic injury.

Besides low-concentration metabolites, CEST MRI 
is also sensitive to nuclear Overhauser enhancement 
(NOE)-mediated effects that is related to spin interactions. 
Specifically, NOE is the transfer of nuclear spin polarization 
from one nuclear spin population to another via dipole-
dipole cross-relaxation (17-19).

Previous studies have shown that for mobile proteins, 
the dominant mechanism for NOE effects observed upfield 
of water resonance is through intramolecular NOE from 
a non-exchangeable proton to an exchangeable proton, 
followed by chemical exchange between the exchangeable 
proton and bulk water (20-22), also known as relayed NOE. 
One of the most studied forms of relayed NOE effect is that 
resonating around −3.5 ppm (23). This relayed NOE effect 
is attributed to aliphatic protons and has been investigated 
particularly in neuro-oncology (24-27) as well as in ischemic 
stroke (28).

Recently, an increasing number of studies have 
investigated the relayed NOE effect resonating at −1.6 ppm 
[NOE(−1.6 ppm)] (19,29-31). In contrast to relayed NOE 
at −3.5 ppm, studies have shown the NOE(−1.6 ppm) 
signal to potentially arise from membrane choline (Cho) 
phospholipids, although the exact pathway of the observed 
effect is yet to be elucidated (32,33).

A crucial event in the ischemic cascade is the increased 
production of free radicals (Figure 1). These reactive 
oxygen species react irreversibly with cellular constituents 
including the double bonds of phospholipids, causing lipid 
peroxidation and membrane damage (2), which then leads 
to apoptosis or necrosis. Since lipid peroxidation occurs just 
before cell death, NOE(−1.6 ppm) related to membrane 
phospholipids may be sensitive to the consequent changes in 
the membrane, and can thus potentially act as a biomarker 
to identify tissue that is affected by lipid peroxidation and 
at immediate risk of cell death. This would provide vital 
information on a different stage of the ischemic cascade, 
allowing for a more in-depth analysis of the ischemic injury 
and thus precise diagnosis.
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Previously, a 5-pool Lorentzian fitting was performed 
to quantify the NOE(−1.6 ppm) dip but the results were 
quite noisy and the NOE deficit area was only compared 
with diffusion deficit area (29). This study aimed to 
analyze NOE(−1.6 ppm) effect in an animal stroke model 
in a different way in order to determine the potential 
utility of NOE(−1.6 ppm) for ischemic stroke diagnosis 
to complement conventional MRIs such as diffusion and 
perfusion weighted imaging, as well as APT imaging. It is 

stipulated that the results may shed light on the implications 
of the observed effect and the new pathophysiological 
information revealed through NOE(−1.6 ppm) imaging.

Methods

Animal preparation

All animal experiments were approved by the Animal 

Figure 1 Ischemic cascade of biochemical events in the event of cerebral ischemia. The red boxes indicate the events of interest in CEST 
MRI; bold font represent important events. BBB, blood-brain barrier; ATP, adenosine triphosphate; VSCC, voltage sensitive calcium 
channel; AMPA, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid; NMDA, N-methyl-D-aspartate; NADPH, nicotinamide adenine 
dinucleotide phosphate; NF-κB, nuclear factor κB; nNOS, neuronal nitric oxide synthase; iNOS, inducible nitric oxide synthase; PLA2, 
phospholipase A2; AA, arachidonic acid; NO, nitric oxide. The figure was adapted from Sutherland et al. (1) with permission. 
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Care and Ethical Review Committee of the University of 
Oxford and the Home Office (UK), in compliance with 
the University of Oxford Policy on the Use of Animals in 
Scientific Research and the Animals (Scientific Procedures) 
Act 1986 (UK). Reporting of animal experiments is in line 
with the ARRIVE guidelines. Intraluminal filament method, 
where a filament (Doccol, USA) was advanced up to the 
internal carotid artery was applied to induce middle cerebral 
artery occlusion (MCAO) (34) in six male Sprague Dawley 
rats around 8–10 weeks old and weighed in the low 200 g 
range, sourced from Envigo, UK. The filament remained 
in place throughout imaging. The CEST data of one of the 
rats was significantly noisy and was thus excluded; only data 
from the five remaining rats (referred to as Animals 1–5) 
were used for all subsequent analyses. The rats underwent 
MRI scans about 14 mins after MCAO.

MRI

All MRI experiments were carried out using a 9.4 T field 
strength scanner (Agilent, CA, USA). The images had 
spatial resolution of 0.5×0.5×1 mm3 and 64×64 matrix size. 
T1-weighted images were acquired using nine inversion 
times (TI) from 13.14–8,000 ms (repetition time/TR 
=10,000 ms, echo time/TE =27.16 ms); the scan took  
3.35 mins. Diffusion-weighted images (DWI) were obtained 
at two b values –0 and 1,000 s/mm2 in 31 seconds. A multi-
phase pseudo-continuous arterial spin labeling (MP-PCASL) 
was applied at 8 radiofrequency (RF) phase offsets ranging 
from 0º to 315º with TE =28.68 ms and TR =4,000 ms. The 
label plane was placed around the neck, perpendicular to the 
carotid arteries, with the label duration of 1.4 s, comprising 
of a series of 600 µs long Hanning-shaped pulses with 
600 µs separation and post-label delay of 0.55 s. Baseline 
signal intensity and reference images for coil sensitivity 
were acquired by omitting labelling pulses. The perfusion-
weighted images (PWI) had an acquisition time of 1.48 min.

Multi-slice CEST images were acquired at the frequency 
offsets: 100, 72, 51, 37, 26, 19, 13.5, 9.7, 7, 5, 4.1, 3.9, 3.8, 
3.7, 3.6, 3.5, 3.4, 3.3, 3.2, 3.1, 2.9, 2.7, 2.4, 2.1, 1.9, 1.8, 1.7, 
1.6, 1.5, 1.2, 0.9, 0.6, 0.3, 0, −0.3, −0.6, −0.9, −1.2, −1.5, 
−1.7, −2, −2.3, −2.6, −2.9, −3.2, −3.5, −3.8 and −4.1. The 
unsaturated images were ±300 ppm. The saturation scheme 
used consisted of 50 primary and 5 secondary Gaussian 
pulses of 20 ms pulse duration and 50% duty cycle; three 
saturation flip angles (FAs) were acquired: 184º, 276º, and 
366º (equivalent to average powers of 0.547, 0.820, and 
1.088 µT respectively), and the secondary pulses were 

added to compensate for saturation loss during multi-
slice acquisition. The total number of CEST slices was 
10 with an in-plane 64×64 acquisition. The voxel size was  
0.5×0.5×1 mm3. Each CEST experiment had an acquisition 
time of 8.67 mins; TE =27.16 ms and TR =5 s. The average 
total acquisition time was about 120 mins because some 
animals took a longer time to be shimmed and some scans 
had to be repeated.

Data analysis

Apparent diffusion coefficient (ADC) maps were calculated 

as: ( )
2

2 1 1

1 ln b

b

S
ADC

b b S
 

= −  −    where b1=0 and b2=1,000 s/mm2. 
K-means clustering with k = 2 and K-means++ algorithm 
for center initialization seeding was used to automatically 
segment the ischemic lesions from the generated ADC 
maps (35-37) and a contralateral mask was manually 
drawn opposite to this. T1 maps were obtained via mono-
exponential fitting of the acquired signal intensities as a 

function of the inversion time (TI): 
1
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T
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  , where  
a and c are constants. Cerebral blood flow (CBF) maps 
were generated using a model-based fitting approach (38), 
where regions of similar phase offsets in the raw multiphase 
data were defined using supervoxel clustering which were then 
used to obtain high signal-to-noise ratio phase maps to produce 
calibrated CBF maps via a Bayesian multiphase fitting approach.

The collected CEST data were first normalized by 

the unsaturated image I0, i.e., ( ) ( )
0
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∆ = , where I(Δω)
is the CEST image at frequency offset Δω and I0 was the 
averaged signals at ±300 ppm. Then, the Z-spectra were 
smoothed using a moving average over a three-data point 
window to eliminate noise. Following this, the Z-spectra 
were corrected for B0 inhomogeneity via voxel-wise single-
Lorentzian curve fitting at frequency offsets assumed to 
only have direct water saturation (39)—within ±1.2 ppm and 
above/below ±6.0 ppm. The z-spectra were interpolated to 
the acquired frequency offset list above and −1.6 ppm after 
the B0 inhomogeneity correction.

The APT signal was quantified using the apparent 
e x c h a n g e - d e p e n d e n t  r e l a x a t i o n  ( A R E X )  o f  t h e 
inhomogeneity-corrected CEST images as below (40):
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where Δω is the resonance frequency of the labile proton, in 
this case, Δω =3.5 ppm, Zref is the reference signal at −3.5 ppm 
and T1W is the water longitudinal relaxation time (41,42).

Additionally, the commonly used magnetization transfer 
ratio asymmetry at 3.5 ppm [MTRasym(3.5 ppm)] was also 
calculated. The generated CEST images were smoothed 
using a 2×2 median filter.

NOE(−1.6 ppm) is not easy to be quantified because this 
transfer of magnetization effect is around the shoulder of 
the z-spectrum, may not be seen by direct observation of 
the z-spectrum and its effect is much smaller than the other 
commonly known effects such as APT and NOE(−3.5 ppm) 
(43,44). Although changes of the NOE(−1.6 ppm) had been 
reported by several studies (19,29-31), the quantified results 
were very noisy and huge signal variation was observed.

In this study, the NOE(−1.6 ppm) was quantified using a 
different approach, where the inverse of collected signal at 
−1.6 ppm, Z(−1.6 ppm) was first subtracted from a reference 
using the signal at 19 ppm, Z(19 ppm) normalized by the 

signal at 13.5 ppm, Z(13.5 ppm), i.e., ( )
( )

19
13.5

Z ppm
Z ppm and then 

divided by the water longitudinal relaxation time:

( ) ( )
( )
( )
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The reference signal, ( )
( )

19
13.5
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Z ppm  should be free from 

potential contaminations such as magnetization transfer 
(MT) and other CEST/rNOE exchange (45); the opposite 
offset (1.6 ppm) was not used as the reference as it may have 
contaminations from nearby CEST effects such as amine 
around 2 ppm which has been shown to alter significantly 
during ischemia due to slower amine proton exchange rate 
in an acidic environment (13,46); the quantified NOE signal 
is normalized by the water relaxation time because it is widely 
known that this will change significantly after stroke (35-37).

R e l a t i v e  N O E ( − 1 . 6  p p m )  w a s  c a l c u l a t e d  a s : 
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−

− =
− , where NOEnormal(−1.6 ppm) 

is the quantified NOE signal in the contralateral normal 
appearing mask manually drawn opposite to the ischemic 
region. A two-tailed paired t-test was used to test for 
significant differences between the ReNOE(−1.6 ppm) 
within the ADC deficit and contralateral areas at 5% 
significance level.

To determine the optimal saturation power for maximum 
contrast between the ischemic and non-ischemic tissues, the 
contrast-to-noise ratio (CNR) of the NOE(−1.6 ppm) maps 
was evaluated as:

 [4]contrastCNR
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=

where contrast is:
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and CoV is the coefficient of variation:

( )( )
( )( )
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mean NOE ppm

−
=

−
 [6]

STD is the standard deviation.
All the generated CEST images were smoothed 

using a 2×2 median filter (43,44). To compare spatial 
heterogeneity patterns of the ADC, AREX(3.5 ppm), and  
NOE(−1.6 ppm) maps within the ischemic area, the two-
dimensional gradients i.e., the directional changes of the 
voxels within the ADC deficit area were calculated:

ˆ ˆF FF i j
x y

∂ ∂
∇ = +

∂ ∂ [7]

where F(x,y) is the image, i.e., the ADC, AREX(3.5 ppm), 
or NOE(−1.6 ppm) maps.

Lastly, the deficit areas of the AREX(3.5 ppm), 
NOE(−1.6 ppm), and CBF maps were also automatically 
segmented using K-means clustering, with some manual 
corrections verified by an experienced clinician. The binary 
masks of the segmented ADC, CBF, AREX(3.5 ppm), 
and NOE(−1.6 ppm) areas were overlaid to produce the 
mismatch maps of the deficit areas. All the data processing 
and analyses were performed using custom written functions 
in Matlabs on the biggest ADC deficit slice of each animal.

Results

Figure 2 shows the ADC and T1 maps, as well as the 184º, 
276º, 366º FA Z-spectra and NOE(−1.6 ppm) images of a 
representative animal (Animal 1). ADC was decreased in the 
ischemic area, while T1 was hyperintense, consistent with 
previous findings (36). The segmented ADC deficit area 
(red) and the corresponding contralateral mask (blue) are 
overlaid on the MR images.

The CEST Z-spectra decreased in magnitude while 
the CEST dips broadened with increasing FA, as a result 
of the increased saturation power. A dip was observed 
around −1.6 ppm across all FAs. Upon generating the  
NOE(−1.6  ppm)  maps ,  i t  was  observed  that  the 
ischemic areas were hypointense, in line with a previous  
study (29), and coincided well with the ADC deficit area. 
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Figure 2 Representative results of the different magnetic resonance imaging data collected in this study. (A) ADC (µm2/ms), (B) T1 (s), (C) 
CEST Z-spectra, and (D) NOE(−1.6 ppm) at 184º, 276º, 366º saturation flip angles of a representative animal (Animal 1), along with (E) the 
bar chart of ReNOE(−1.6 ppm) of all animals (n=5). The ADC deficit (red) and contralateral (blue) areas are overlaid on the MR images. 
*, P<0.05. ADC, apparent diffusion coefficient; FA, flip angle; CEST, chemical exchange saturation transfer; NOE, nuclear Overhauser 
enhancement; ReNOE, relative nuclear Overhauser enhancement; MR, magnetic resonance.

The ReNOE(−1.6 ppm) of all five animals were found to 
have significant differences between the ischemic and non-
ischemic tissues across all FAs.

The average NOE(−1.6 ppm) of all five animals increased 
from 184º to 366º FA in both ischemic and non-ischemic 
tissues (Figure 3A). The CNR of NOE(−1.6 ppm) between 
the two tissues was found to peak at 276º FA, with 184º FA 
producing the lowest CNR, followed by 366º, as shown 
in Figure 3B. Likewise, the CNR of AREX(3.5 ppm) 
and AREX(2 ppm) were also maximized at 276º FA 
(Figure S1). Since this FA produced the highest CNR 
in both NOE(−1.6 ppm) and AREX(3.5 ppm), the 
CEST/AREX/NOE maps at 276º FA were used for all 
subsequent analyses. The most commonly used metric,  
MTRasym(3.5 ppm) was reported in Figure S2 to facilitate 
the comparison of results with the literature and future 

studies.
Figure 4  shows the ADC, AREX(3.5 ppm), and 

NOE(−1.6 ppm) maps at 276º FA of three representative 
animals (Animal 1–3), overlaid with the spatial gradients 
within the ADC deficit areas, shown as arrows. The ADC 
within the deficit area was comparably more homogenous 
than the 3.5 ppm AREX map and −1.6 ppm NOE map. 
Comparing between the two maps, although both 
AREX(3.5 ppm) and NOE(−1.6 ppm) were hypointense 
within the ADC deficit area, the two maps exhibited 
different spatial signal variations within the deficit area, 
evidenced by the different gradient directions in the 
AREX(3.5 ppm) and NOE(−1.6 ppm) plots.

The deficit areas of the ADC, CBF, AREX(3.5 ppm), 
and NOE(−1.6 ppm) maps were further segmented in  
Figure 5. Both AREX(3.5 ppm) and NOE(−1.6 ppm) 

https://cdn.amegroups.cn/static/public/QIMS-23-510-Supplementary.pdf
https://cdn.amegroups.cn/static/public/QIMS-23-510-Supplementary.pdf
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Figure 4 The quantified results of representative animals. The spatial gradients (arrows) of the (A) ADC, (B) AREX(3.5 ppm), and (C) 
NOE(−1.6 ppm) maps at 276º FA within the ADC deficit area of Animals 1–3. ADC, apparent diffusion coefficient; AREX, apparent 
exchange-dependent relaxation; NOE, nuclear Overhauser enhancement; FA, flip angle.
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produced deficit areas that coincided well with the ADC 
deficit areas. The AREX(3.5 ppm) deficit areas were 
intermediate in size between the ADC and CBF deficit 
areas. Conversely, the NOE(−1.6 ppm) deficit areas were 
found to be equal or larger than the ADC deficit areas, but 
smaller than the AREX(3.5 ppm) deficit areas. Altogether, 
the mismatch maps of the MRI deficit areas produced 
four regions of increasing sizes: ADC deficit (white)  
< NOE(−1.6 ppm) (red) < AREX(3.5 ppm) (blue) < CBF 
(green).

Discussion

This study analyzed NOE(−1.6 ppm) effect in animal 
stroke models in order to assess its potential utility in an 
ischemic stroke model. Several studies have sought to find 
possible origins of the relayed NOE effect resonating at 
−1.6 ppm. Zhang et al. first showed egg phosphatidylcholine 
(P tdCho)  w i th  cho le s t e ro l  to  exh ib i t  the  s ame  
NOE(−1.6 ppm) resonance observed in that of rat brain, 
suggesting the Cho phospholipids in cell membranes to be 

related to the observed relayed NOE effect (31). Zu et al. 
also later verified the NOE(−1.6 ppm) signal to be sensitive 
to Cho phospholipids and the presence of cholesterol was 
also shown to be crucial in inducing the relayed NOE 
effect. In vivo, the signal possibly stems from the head 
groups of PtdCho and sphingomyelin (SM) as they are the 
major phospholipid components of eukaryotic cells (32).

Although Cho phospholipids are largely agreed to be 
related to NOE(−1.6 ppm), the exact pathway or mechanism 
of inducing the relayed NOE signal is still not well 
understood. The study by Zu et al. initially suggested the 
relayed NOE signal to be the dependent on the membrane 
fluidity and composition (32). However, a more recent 
publication by Chang et al. showed that the key to inducing 
the relayed NOE signal is not the lipid bilayer dynamics, 
but the hydroxyl group of cholesterol (33). Still, this has 
only been verified at the molecular level and thus further 
investigations are still needed to determine the pathway of 
the relayed NOE signal in vivo. Nevertheless, the studies 
largely agree that NOE(−1.6 ppm) effect potentially arises 
from membrane Cho phospholipids (31-33).

Figure 5 The ischemic masks in different magnetic resonance imaging results and mismatch maps of representative animals. The (A) ADC 
(white), (B) CBF (green), (C) AREX(3.5 ppm) (blue), and (D) NOE(−1.6 ppm) (red) deficit areas of Animals 1–3, and (E) the mismatch 
maps with display priority of white > red > blue > green. ADC, apparent diffusion coefficient; CBF, cerebral blood flow; AREX, apparent 
exchange-dependent relaxation; NOE, nuclear Overhauser enhancement.
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PtdCho is a major component of the phospholipid 
membrane of cells and has been shown to be broken down in 
response to cerebral ischemia (48). This loss is also associated 
with a breakdown of other phospholipids including SM (49) 
as well as activation of phospholipases (50). This results in 
free fatty acid formation and activation of enzymes such 
as cyclooxygenases and lipoxygenases that can lead to 
reactive oxygen species formation. The presence of free 
radicals can cause substantial lipid peroxidation and loss 
of cell integrity. This is a prominent part of the ischemic 
cascade, as strategies to restore phospholipid (PtdCho and 
SM) levels such as the use of CDP-choline can prevent 
lipid peroxidation, cell loss and could be used as a potential 
therapeutic treatment for stroke patients (49,51,52). 
Thus, the ability to identify regions of tissue affected by 
lipid peroxidation could contribute towards an improved 
therapeutic strategy.

From the results, it was found that NOE(−1.6 ppm) 
exhibited different signal variations within the ADC deficit 
area compared to AREX(3.5 ppm) (Figure 4), suggesting 
that the APT and NOE(−1.6 ppm) were sensitive to 
different changes within the ischemic tissue and thus relay 
information on separate stages or events in the ischemic 
cascade. Most notably, while the AREX(3.5 ppm) deficit 
areas were intermediate in size between the ADC and 
CBF deficit areas, the NOE(−1.6 ppm) deficit areas were 
observed to be smaller than the AREX(3.5 ppm) deficit areas 
but larger than or equal in size to the ADC deficit areas 
(Figure 5). This suggested that the NOE(−1.6 ppm) maps 
further delineated the ADC/AREX(3.5 ppm) mismatch 
into zones of normal and decreased NOE(−1.6 ppm) effect. 
Since NOE(−1.6 ppm) effect is related to the membrane 
phospholipids, it is possible that the NOE(−1.6 ppm) is 
sensitive to the lipid peroxidation of the membranes, and its 
deficit area highlighted the tissue with potential membrane 
damage and tissue close to cell death (Figure 1).

Previous studies on APT imaging of ischemic stroke 
focused on its use to separate the DWI/PWI mismatch into 
zones of acidotic penumbra and benign oligemia (53-55), 
as was also observed in the present study. The findings of 
the present study thus builds on this, demonstrating that 
the use of NOE(−1.6 ppm) may further delineate the ADC/
AREX(3.5 ppm) mismatch into zones of tissue affected by 
lipid peroxidation and membrane damage, and those that were 
not. When analyzed together, the DWI/NOE(−1.6 ppm)/
APT/PWI mismatch map revealed four regions within the 
ischemic tissue, possibly: the ischemic infarct, at-risk tissue 
undergoing lipid peroxidation and membrane damage, 

acidotic at-risk tissue, and the benign oligemia. Therefore, 
the use of NOE(−1.6 ppm) CEST MRI has the potential to 
allow for a better understanding of stroke pathophysiology 
and improve tissue fate definition, thus achieving a more 
precise diagnosis. Nevertheless, it is not possible to rule 
out that there may be a potential change of the lesion size, 
MRI and tissue parameters (e.g., relaxation rates, pH, etc.) 
over the course of MRI acquisitions that could affect the 
observed mismatch maps. In any case, histopathology and 
further studies are still needed to elucidate the origins or 
observed changes of NOE(−1.6 ppm).

It is worth noting that NOE(−1.6 ppm) effect may not 
be visible using clinical scanners with low field strengths of  
3 T and below as the induced effect is very small and close to 
the water center frequency. Nevertheless, recent years have 
seen the rapid methodological and hardware developments 
of ultrahigh magnetic field clinical MRI particularly at 
7 T, and an increasing usage of 7 T MR scanners for 
human imaging (56). The implementation of high field 
strength scanners would thus enable the investigation of  
NOE(−1.6 ppm) at the clinical level (23).

In addition to the aforementioned elusive signal 
inducing pathway, the changes in NOE(−1.6 ppm) proton 
pool in ischemic tissue that result in the changes in the 
observed effect is also currently not well understood. In 
order to speculate possible explanations for this, numerical 
simulation of a six-pool CEST model using average 
experimental water relaxation times and parameters taken 
from literature (57-62) was performed (see Appendix 1). 
The concentration of the NOE(−1.6 ppm) pool of ischemic 
tissue was kept constant while the exchange rate was varied 
with a range of values (decrease by 30–50% of the normal 
value) to match the observed trends in the experimental 
data as seen in Figure 3. Although the concentration is also 
expected to change in ischemic tissue, it is difficult to isolate 
the concentration effects from the exchange rate as the 
two have the same effect on the observed signal. In order 
to estimate the effective changes in the proton pool after 
stroke, changes in the proton concentration were assumed 
to be negligible, as stipulated by Zhou et al. in the case of 
early time point stroke (8). The simulation results suggested 
that the observed decrease in NOE(−1.6 ppm) was likely 
due to a reduction in the NOE(−1.6 ppm) exchange rate 
by 44% of the normal value if the concentration did 
not change (Figure S3). Still, further studies involving 
proteomics are recommended to shed light on the percentage 
of concentration change and determine the isolated changes in 
all the pool concentration and exchange rate after stroke (63).

https://cdn.amegroups.cn/static/public/QIMS-23-510-Supplementary.pdf
https://cdn.amegroups.cn/static/public/QIMS-23-510-Supplementary.pdf
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In this study, K-means clustering was used to automatically 
segment the deficit areas of the MR images as it is difficult 
to differentiate between the gray and white matter of the rat 
brains manually due to the small volume and low resolution 
of the images. Although this approach differs from the clinical 
gold standard of having experienced radiologists drawing the 
regions-of-interests manually, automatic segmentation allows 
for more reproducible results. However, due to the small size 
of the rat brains, the automatic segmentation of the deficit 
areas may have included the ventricles. Additionally, the small 
sample size was also one of the limitations of the study.

Multi-pool Lorentzian fits are another popular method 
to quantify the various CEST and relayed NOE effects, but 
it is not easy to have a reliable fit at −1.6 ppm due to the 
magnitude of this effect and its small frequency separation 
with the water. For more reliable signal quantification 
at −1.6 ppm, it is suggested to first smooth the acquired 
Z-spectra with a moving average to minimize noise and 
then only quantify it using Eq. [3] with reference signal not 
affected by any known exchange effect and normalized by a 
nearby saturated signal, e.g., Z(19 ppm)/Z(13.5 ppm). It is 
believed that the quantified NOE(−1.6 ppm) in this study is 
more ‘clean’ because longitudinal relaxation time which is 
widely known to change after stroke, has been minimized 
by dividing it with T1 and the reference signal [Z(19 ppm)/
Z(13.5 ppm)] is minimally effected by MT and other factors; 
the reference signal can be a ratio of any two neighboring 
offsets that are free from any known CEST or NOE. 
Nevertheless, it is possible that direct saturation as well 
as relayed NOE at −3.5 ppm and potentially some minor 
effect from MT at −1.6 ppm could still affect the quantified 
NOE(−1.6 ppm). In order to ensure optimal and reliable 
NOE(−1.6 ppm) could be obtained, the experiments were 
repeated with three different saturation powers. It was found 
that all the experiments showed consistent NOE(−1.6 ppm)  
effect after stroke using the proposed definition. This is 
the first study to show CEST imaging coupled with DWI 
and PWI may potentially separate the ischemic tissue into 
four zones to better understand the pathophysiology or 
the ischemic cascade after stroke. More investigations are 
needed to improve the specificity of the quantified relayed 
NOE at −1.6 ppm to support the observations, e.g., the 
most optimal way to quantify this small NOE signal, and to 
confirm that CEST can be used to detect the biochemical 
events of the ischemic cascade. In addition, the saturation 
time was not optimized in this study due to the time 
constraint in the induced stroke experiments.

Conclusions

CEST imaging of NOE(−1.6 ppm) that is related to 
membrane phospholipids shows potential in identifying 
ischemic tissue that is affected by lipid peroxidation and 
membrane damage, separate from the acidotic tissue 
estimated using APT. When the NOE(−1.6 ppm) deficit 
area is analyzed together with the DWI, APT and PWI 
deficit areas, the ischemic tissue could potentially be 
defined using information from four different sources. This 
can reveal important information regarding the complex 
pathophysiology of the stroke tissue and contribute to a 
more precise acute stroke diagnosis. Nevertheless, further 
studies are needed to elucidate the origins and observed 
changes of NOE(−1.6 ppm).
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Supplementary

Appendix 1

Average values and CNR of AREX(3.5 ppm) and  
AREX(2 ppm)

AREX(2 ppm) was calculated according to Eq. [2] from the 
main text, with reference signal as the opposite signal at 
−2 ppm, i.e., Z(−2 ppm). Supplementary Figure S1 shows 
the average AREX values and contrast-to-noise ratio 
(CNR) of the AREX(3.5 ppm) and AREX(2 ppm) of all 
five animals. The left column shows the average AREX 
values of the ischemic and non-ischemic tissues, along 
with the corresponding standard deviations represented by 
the shaded regions. APT and amine effect were decreased 
in ischemic tissue, in line with previous study (28). The 
corresponding CNR between the ischemic and non-
ischemic tissues are shown in the right column. Similar to 
NOE(−1.6 ppm), the AREX CNR of amide and amine were 
maximized at 276º flip angle (FA).

Previous studies have found the optimal saturation power 
for maximum NOE(−1.6) effect to be 0.5 µT in human (64) 
and 1.0 µT in rat brain (31) at 9.4 T. Although this may 
maximize the NOE(−1.6) effect observed in normal tissue, 
it may not necessarily produce the highest CNR in the 
diseased tissue, as shown in the results of the present study 
(Figure 3 in the main text), equivalent average saturation 
powers used from approximately 0.5 to 1 µT. In the case of 
ischemic stroke, the optimal FA for maximum NOE(−1.6 
ppm) CNR was found to be 276º (equivalent to 0.82 µT 
continuous wave saturation). The differences in the optimal 
power for the same effect may be due to the different 
subjects scanned, acquisition parameters and quantification 
methods used. During clinical investigation, clinicians 
usually evaluate the acquired or quantified images only, thus 
the CNR between the normal and ischemic tissue becomes 
more important than merely maximizing the signal intensity 
of the image. Other endogenous CEST effects—amide at 
3.5 ppm and amine at 2 ppm also produced maximum AREX 
CNR at 276º (Figure S1). Thus, for the saturation scheme 
and quantification methods used here, the optimal FA for 
maximum CNR between ischemic and non-ischemic tissue for 
the endogenous CEST effects is around 276º (~0.82 µT). This 
is generally in agreement with the reported optimal power 
for low exchange rate protons, especially for NOE(−1.6 
ppm) due to its close frequency separation with the water 
signal; higher power will lead to larger direct saturation and 
diminish the NOE signal (29,44).

Magnetization transfer ratio asymmetry at 3.5 ppm 
[MTRasym(3.5 ppm)]

As previously recommended (37), to ease the comparisons 
of existing and future studies, magnetization transfer ratio 
asymmetry at 3.5 ppm, MTRasym(3.5 ppm) was calculated 
from animal CEST data as:

 [1]

The relative MTRasym(3.5 ppm), rMTRasym(3.5 ppm) was 
then calculated as:

( )
( )

( )( )
asym

asym
asym _ normal

MTR 3.5ppm
rMTR 3.5ppm

mean MTR 3.5ppm
= 	 [2]

Figure S2 shows the MTRasym(3.5 ppm) images of three 
representative animals (Animal 1–3) at the three FAs: 184º, 
276º, and 366º The composite relative MTRasym(3.5 ppm) 
within the ADC deficit and corresponding contralateral areas 
all five animals are shown in the bottom row. Two-tailed 
paired t-test revealed the relative MTRasym(3.5 ppm) of all 
animals to be significantly decreased in the ADC deficit, in 
line with the majority of previous publications (37).

Simulation of NOE(–1.6 ppm) in ischemic and non-
ischemic tissues

A six-pool CEST model consisting of water (0 ppm), amide 
(3.5 ppm), magnetization transfer (0 ppm), amine (2 ppm), 
and NOE effects at −3.5 and −1.6 ppm was simulated using 
the modified Bloch equations (65) in Matlabs. Field strength 
of 9.4 T and a saturation scheme of 50 Gaussian saturation 
pulses of 20 ms pulse duration and 50% duty cycle were 
used, in line with the experimental parameters. Four flip 
angles (FAs) were simulated: 92º (equivalent to 0.273 µT 
average power continuous wave saturation), 184º, 276º,  
and 366º.

CEST parameters used for the simulation for normal 
and ischemic conditions are presented in Table S1. The 
parameters were extracted from literature (57-62) with 
slight adjustments for field strength, except for the 
water longitudinal and transverse relaxations T1 and T2, 
which were the averaged values obtained from the in vivo 
experiment. The ischemic exchange rate of the NOE(−1.6) 
pool, x was varied between reduction by 30–50% of the 
normal value. Assumptions such as negligible changes in the 
proton concentrations were also made as the induced stroke 
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was in the early time point (8).
From the s imulated data,  NOE(−1.6 ppm) was 

calculated according to equation (3) in the main text, where  
Z(19 ppm)/Z(3.5 ppm) was used as the reference, similar to 
the in vivo experiment. In addition, the contrast between the 
normal and ischemic NOE(−1.6 ppm) was evaluated using 
equation (4) in the main text.

When the exchange rate of NOE(−1.6) was decreased 
by 44% of  the normal  va lue ( i schemic exchange  
rate =28 Hz) to simulate the ischemic tissue, it produced 
a decreased ischemic NOE(−1.6 ppm) (Figure S3A), in 
line with the experimental findings. While the simulated 
ischemic and non-ischemic NOE(−1.6 ppm) both increased 
with FA, similar to in vivo, the simulated values of both 
tissues were slightly lower than that of the experiment 
across all FAs. This could be due to the far away saturated 
offset (±300 ppm) treated as the unsaturated signal, 

slight differences in the water relaxation values and/or 
magnetization transfer parameters used. Likewise, the 
contrast of the simulated data was found to align well with 
the trend of the CNR of the experimental data, increasing 
from 92º to 276º, peaking at 276º, before decreasing at 366º 
FA (Figure S3B). 
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Figure S1 Average AREX values of ischemic and non-ischemic tissue, and the corresponding CNR of AREX(3.5 ppm) and AREX(2 ppm). 
The shaded region represents the standard deviations of the quantified AREX values. AREX, apparent exchange-dependent relaxation; 
CNR, contrast-to-noise ratio.
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Figure S2 AThe MTRasym(3.5 ppm) maps of three representative animals (Animals 1–3) and the composite relative MTRasym(3.5 ppm) of 
all five animals at three saturation flip angles: 184º, 276º, and 366º. *, P<0.05. MTRasym, magnetization transfer ratio asymmetry; FA, flip 
angle. 
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Table S1 Six-pool CEST data simulation parameters taken from literature (57-61)

CEST Pools Water Amide MT NOE Amine NOE

Chemical shift (ppm) 0 3.5 0 −3.5 2 −1.6

T1 (s)

Normal 1.63 1.63 1.63 1.63 1.63 1.63

Ischemic 1.83 1.63 1.63 1.64 1.63 1.63

T2 (ms)

Normal 40.16 20.00 0.02 0.40 38 0.4

Ischemic 38.68 20.00 0.02 0.40 38 0.4

Exchange rate (Hz)

Normal – 30 25 50 1,000 50

Ischemic – 18 25 50 500 x*

Concentration (M0a)

Normal 1 0.001 0.1 0.007 0.002 0.003

Ischemic 1 0.001 0.1 0.007 0.002 0.003

*, varied between 30–50% reduction from 50 Hz. CEST, chemical exchange saturation transfer; NOE, nuclear Overhauser enhancement; 
MT, magnetization transfer.

Figure S3 NOE(−1.6 ppm) and CNR/contrast of the simulated and experimental data. (A) Simulated NOE(−1.6 ppm) and average 
experimental NOE(−1.6 ppm) of ischemic and non-ischemic tissues; the shaded areas represents the standard deviations of the experimental 
NOE(−1.6 ppm). (B) CNR or contrast between the two tissues of experimental and simulated data respectively. NOE, nuclear Overhauser 
enhancement; CNR, contrast-to-noise ratio.


