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Background: Radiomics has recently received considerable research attention for providing potential 
prognostic biomarkers for locally advanced rectal cancer (LARC). We aimed to comprehensively evaluate the 
methodological quality and prognostic prediction value of radiomic studies for predicting survival outcomes 
in patients with LARC.
Methods: The Cochrane, Embase, Medline, and Web of Science databases were searched. The radiomics 
quality score (RQS), Transparent Reporting of a Multivariable Prediction Model for Individual Prognosis 
or Diagnosis (TRIPOD) checklist, the Image Biomarkers Standardization Initiative (IBSI) guideline, and 
the Prediction Model Risk of Bias Assessment Tool were used to assess the quality of the selected studies. A 
further meta-analysis of hazard ratio (HR) regarding disease-free survival (DFS) and overall survival (OS) 
was performed.
Results: Among the 358 studies reported, 15 studies were selected for our review. The mean RQS score 
was 7.73±4.61 (21.5% of the ideal score of 36). The overall TRIPOD adherence rate was 64.4% (251/390). 
Most of the included studies (60%) were assessed as having a high risk of bias (ROB) overall. The pooled 
estimates of the HRs were 3.14 [95% confidence interval (CI): 2.12–4.64, P<0.01] for DFS and 3.36 (95% 
CI: 1.74–6.49, P<0.01) for OS. 
Conclusions: Radiomics has potential to noninvasively predict outcome in patients with LARC. However, 
the overall methodological quality of radiomics studies was low, and the adherence to the TRIPOD statement 
was moderate. Future radiomics research should put a greater focus on enhancing the methodological quality 
and considering the influence of higher-order features on reproducibility in radiomics.
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Introduction

Colorectal cancer (CRC) is the third most common and 
second deadliest cancer worldwide (1). Over one-third 
of CRCs are located in the rectum, and more than 70% 
of cases are diagnosed as locally advanced rectal cancer 
(LARC). Total mesorectal excision (TME) after neoadjuvant 
chemoradiotherapy (nCRT) has become the standard 
treatment for patients with LARC (2). This therapeutic 
strategy has reduced the local recurrence rate of rectal 
cancer patients, but the 5-year survival rates remain low. 
Therefore, to improve the long-term prognosis of patients 
with LARC, it is crucial that adverse prognostic factors are 
accurately identified (3).

Tumor-node-metastasis (TNM) staging is a key part of 
prognostic assessment and risk stratification, but it lacks 
precision (4,5). In the current TNM staging system, the 
inclusion of tumor deposits (TDs) within nodal staging 
has given rise to worldwide discussions (6-8). Other 
significant prognostic factors, such as circumferential 
resection margin (CRM) and extramural vascular invasion 
(EMVI), are prone to subjective factors, making prognosis 
prediction less reliable (9,10). As a result, a more accurate 
survival estimation that considers each patient’s unique 
circumstances is needed.

The growing field of radiomics has the potential 
to provide noninvasive imaging biomarkers for tumor 
aggressiveness that may be utilized preoperatively to guide 
treatment decisions. Radiomics involves the extraction of 
high-throughput features from conventional images to 
build high-dimensional datasets, which are then mined 
for features related to molecular tumor typing, treatment 
response, and clinical outcomes to promote accurate 
tumor diagnosis (11). Mounting evidence suggests that 
radiomics could play an important role in evaluating tumor 
development and progression in various types of cancers. A 
recent meta-analysis indicated that radiomics shows good 
prognostic performance in patients with nasopharyngeal 
carcinoma (12). Another meta-analysis supported a similar 
conclusion that radiomics-based models offered modest 
prognostic capabilities for predicting survival in non-
small cell lung cancer (13). Recent studies have suggested 
a potential prognostic role of radiomics in LARC patients 
as well (14-18). Therefore, the purpose of this study was 
to analyze the current status of radiomics studies used 
to predict survival outcomes in patients with LARC and 

to evaluate the quality of radiomics studies by using the 
radiomics quality score (RQS) tool, the Transparent 
Reporting of a Multivariable Prediction Model for 
Individual Prognosis or Diagnosis (TRIPOD) statement, 
the Image Biomarkers Standardization Initiative (IBSI) 
guideline, and the Prediction Model Risk of Bias Assessment 
Tool (PROBAST) (19-22). In addition, quantitative analysis 
was used to assess the role of radiomics in predicting 
disease-free survival (DFS) and overall survival (OS) 
outcomes in patients with LARC. We present this article in 
accordance with the PRISMA reporting checklist (available 
at https://qims.amegroups.com/article/view/10.21037/
qims-23-692/rc) (23).

Methods

Protocol and registration

The review protocol was registered on the Prospective 
Register of Systematic Reviews (PROSPERO; https://www.
crd.york.ac.uk; registration number CRD42022342859).

Search strategy

A comprehensive search of the Cochrane, Embase, Medline, 
and Web of Science databases was conducted for studies 
published between 1 January 2012 and 30 June 2022. The 
search terms mainly included “rectal neoplasms”, “rectal 
cancer”, “radiomics”, “texture”, “prognosis”, and “survival”. 
The list of retrieved references was manually searched to 
identify additional eligible studies. Table S1 provides a full 
description of the search strategy.

Study selection

Studies were selected based on the following criteria: (I) 
patients had pathologically confirmed rectal cancer; (II) 
imaging was assessed using radiomics; (III) the main survival 
outcome was reported as DFS and/or OS; and (IV) hazard 
ratio (HR) values based on radiomics models were reported.

Studies were excluded based on the following criteria: (I) 
reviews, editorials, and conference summaries; (II) tumors 
other than rectal cancer; and (III) insufficient survival data 
for estimating performance measurement indices. Eligible 
studies were selected by two reviewers (Feng Y and Tong T) 
individually.

https://qims.amegroups.com/article/view/10.21037/qims-23-692/rc
https://qims.amegroups.com/article/view/10.21037/qims-23-692/rc
https://www.crd.york.ac.uk
https://www.crd.york.ac.uk
https://cdn.amegroups.cn/static/public/QIMS-23-692-Supplementary.pdf
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Data extraction

Data extraction and further statistical analysis were 
performed by two reviewers independently (Feng Y and 
Tong T). If there was a disagreement, the two reviewers 
discussed or reassessed the issue and reached a consensus. 
The following data were extracted: (I) study information: 
authors, publication year, country, median follow-up time, 
and study design (prospective or retrospective); (II) cohort 
information: number of overall participants, mean age 
or age range, sex, tumor stages, and treatment protocols; 
(III) information on radiomic models: imaging modality, 
software, segmentation, feature selection, and numbers and 
categories of radiomic features; and (IV) clinical outcomes 
and HRs with 95% confidence intervals (95% CIs).

Quality assessment

The included studies’ methodology was evaluated using the 
RQS (19,24), which comprises 16 items assessing crucial 
aspects of radiomics study methodology. The scoring of 
the specific RQS items was based on a previous report (19). 
In addition, the reporting completeness of the included 
prediction models was determined using the TRIPOD 
statement (20). Several modifications needed to be made 
to the TRIPOD statement before it could be utilized in 
radiomics studies, as it had originally been designed for 
clinical prediction models. Items 21 and 22 related to 
funding and supplemental materials were excluded. In 
addition, when calculating overall adherence rates, “if 
completed” or “if relevant” items (5c, 11, and 14b) and 
validation items (10c, 10e, 12, 13c, 17, and 19a) were 
excluded from both the numerator and denominator, as 
reported previously (25-29). The IBSI guideline provides a 
comprehensive and unified reporting checklist for radiomics 
studies (21). Since many items in the IBSI checklist overlap 
with those in the RQS or TRIPOD checklists, we included 
only the items relevant to image pre-processing steps, as 
indicated in Table S2. Finally, the bias risk in the included 
studies was assessed using the PROBAST, which assesses 
bias risk in four domains (participants, predictors, outcomes, 
and analysis) and applicability in three domains (participants, 
predictors, and outcomes) (22). Based on a comprehensive 
evaluation, the included studies were categorized into 
three groups: high, low, and unclear risk of bias (ROB) 
and applicability. The quality assessment was performed 
independently by two reviewers (Feng Y and Gong J). If a 
disagreement occurred, a final decision was made with the 

assistance of a third reviewer (Tong T). The mean score, 
percentage of the ideal RQS score, detailed checklist of the 
TRIPOD statement adherence rate of IBSI, and rate of 
ROB were calculated and recorded.

Meta-analysis

The HR is a common metric for evaluating time-to-event 
data. Therefore, the HRs and 95% CIs of the radiomics 
models regarding DFS and/or OS were extracted for further 
meta-analysis. When HRs were not recorded, calculations 
were performed using Engauge Digitizer (Version 12.1; 
http://markummitchell.github.io/engauge-digitizer/) 
based on Kaplan-Meier curves. The forest plot figures 
presented the pooled HR and its 95% CI. When significant 
heterogeneity was observed, a random-effects model 
was used; otherwise, a fixed-effects model was used (30). 
Cochran’s Q test and Higgins I2 statistic were employed 
to assess heterogeneity. An I2 value of ≤25% indicated 
insignificant heterogeneity, whereas an I2 of >25% to ≤50% 
indicated low heterogeneity, I2>50% to ≤75% indicated 
moderate heterogeneity, and I2>75% signified significant 
heterogeneity (31). Subgroup analysis was applied to explore 
the origin of heterogeneity. For results containing more 
than ten studies, publication bias was assessed using a funnel 
plot and Egger’s test, as <10 studies could lead to bias in the 
interpretation of the funnel plot (32). A 2-sided P<0.05 was 
considered statistically significant. All these data analysis 
processes were performed by using the statistical software 
R (version 4.1.0; R Foundation for Statistical Computing, 
Vienna, Austria).

Results

Literature search

A flowchart of the research selection procedure is shown in 
Figure 1. A total of 358 studies were identified during the 
first search process cycle. In the end, 232 studies remained 
after removal of all duplicates. When abstracts and titles were 
considered, 215 studies were excluded. After reviewing each 
manuscript in detail, we eliminated an additional two articles 
because they lacked survival data. Finally, only 15 studies met 
the criteria for statistical analysis (14-16,18,33-43).

Study characteristics

A total of 15 studies, including 2,151 patients overall, that 

https://cdn.amegroups.cn/static/public/QIMS-23-692-Supplementary.pdf
http://markummitchell.github.io/engauge-digitizer/
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Records identified through searching (n=358):

• Cochrane (n=4)

• Embase (n=87)

• Medline (n=127)

• Web of Science (n=140)

Duplicate records removed (n=126)

Records excluded (n=215)

• Reviews, case reports, and conference 

abstract (n=59)

• Not locally advanced rectal cancer (n=39)

• Not radiomics (n=13)

• Not on topic (n=104)

Reports not retrieved (n=0)

Full-text articles excluded (n=2)

• Missing survival data (n=2)

Records screened (n=232)

Reports sought for retrieval (n=17)

Reports assessed for eligibility (n=17)

Studies included in the meta-analysis and review 

(n=15)

Figure 1 Flowchart of the research selection procedure.

had applied radiomics methods to predict patient survival 
status were selected in our review. All the studies were 
retrospective. Only 1 study was from multiple centers (36), 
and the others were all from a single center. In addition, 8 
of the studies established both development and validation 
sets (15,16,33-36,38,39), whereas the other 7 established 
only development sets (14,18,37,40-43). The number of 
patients included in the studies ranged from 48 to 411. 
In addition, the mean/median age ranged from 52.8 to 
67, and the median follow-up time ranged from 27.2 to  
60 months. All participants underwent nCRT. Other clinical 
characteristics are summarized in Table 1.

Radiomics model metrics

Table 2 provides a summary of the radiomics model metrics 
of the included studies. In terms of imaging modalities, 9 
(60.0%) studies used magnetic resonance imaging (MRI) 
(14-16,33-36,39,42), 3 (20.0%) used computed tomography 

(CT) (37,38,40), and 3 (20.0%) used positron emission 
tomography/computed tomography (PET/CT) (18,41,43). 
In MRI-based research, 8 studies employed T2-weighted 
imaging (T2WI), several employed mixed sequences, such as 
contrast T1-weighted imaging (T1WI), diffusion-weighted 
imaging (DWI), apparent diffusion coefficient (ADC) maps, 
and dynamic contrast enhanced MRI (DCE-MRI), and 1 
employed true fast imaging with steady state precession 
(TrueFISP) (14). There were a variety of feature extraction 
and selection approaches. A total of 13 studies (86.7%) 
employed the 3-dimensional (3D) region of interest (ROI) 
segmentation method. Manual segmentation was performed 
in all studies. Furthermore, 11/15 (73.3%) studies were 
associated with first-order statistics (FOS), 10/15 (66.7%) 
with gray-level co-occurrence matrix (GLCM), and 8/15 
(53.3%) with gray-level run-length matrix (GLRLM). 
Other higher-order features, such as gray-level size zone 
matrix (GLSZM) and neighboring gray-tone difference 
matrix (NGTDM), were rare, occupying 4/15 (26.7%) and 
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Figure 2 Quality assessment of the eligible studies. (A) Percentages of the ideal RQS score; (B) TRIPOD adherence rate. RQS, radiomics 
quality score; TRIPOD, Transparent Reporting of a Multivariable Prediction Model for Individual Prognosis or Diagnosis.

3/15 (20.0%) studies, respectively.

Quality assessment of the radiomics models based on RQS 
score

In the 15 selected studies, the overall percentage of the 
total RQS score was 21.5% (Figure 2A). Among the six key 
domains, domain 5 performed the worst, with no significant 
high level of evidence, including prospective study and cost-
effectiveness analysis. The second lowest score compared 
to the ideal score was observed in domain 6, with a mean 
of 3.3%, which meant that only two studies made code and 
data publicly available. Domain 1, domain 3, and domain 
4 performed similarly, with mean scores of 33.3%, 36.7%, 
and 38.7%, respectively.

The details of the assessment of a total of 16 items for 
RQS are recorded in Table 3 and Table S3. The mean ± 
standard deviation [SD; median, range] of the total RQS 
score was 7.73±4.61 [8, 2–14]. In domain 1, all studies 

followed a well-documented image protocol. Some 53.3% 
of the studies were completed with multiple segmentations 
by different physicians or software. Only one study 
evaluated the feature robustness of CT scanners, and only 
one collected image of individuals at additional time points. 
In domain 2, all studies performed feature reduction or 
adjustment to decrease the risk of overfitting. Validation 
in seven studies was missing, seven studies were based on a 
dataset from the same institute, and only one was employed 
on another independent dataset. In domain 3, 13 studies 
reported the correlation between radiomics and non-
radiomics features, 6 studies compared radiomics to “the 
gold standard”, and 4 investigated potential clinical utility. 
However, no studies detected and discussed biological 
correlates with radiomics. In domain 4, to reduce the risk of 
overly optimistic reporting, 11 studies analyzed the effects 
of the cutoff values on the model performance. In addition, 
10 studies reported discrimination statistics of radiomics 
models, 3 of which applied bootstrapping or cross-

Actual RQS score rate Gap from the ideal RQS score rate

Actual adherence rate Gap from the ideal adherence rate
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Table 3 Basic score rate of the RQS items 

16 items according to 6 key domains (N=15) Total score range Mean score Percentage of ideal score (%)

Total 16 items −8 to 36 7.73 21.5 

Domain 1: protocol quality and stability in image and segmentation 0 to 5 1.67 33.3 

Image protocol quality 0 to 2 1.00 50.0 

Multiple segmentation 0 to 1 0.53 53.3 

Phantom study on all scanners 0 to 1 0.07 6.7 

Imaging at multiple time points 0 to 1 0.07 6.7 

Domain 2: feature selection and validation −8 to 8 1.80 22.5 

Feature reduction or adjustment for multiple testing −3 to 3 3.00 100.0 

Validation −5 to 5 −1.20 0 

Domain 3: biologic/clinical validation and utility 0 to 6 2.20 36.7 

Multivariate analysis with non-radiomics features 0 to 1 0.87 86.7 

Detect and discuss biologic correlates 0 to 1 0.00 0.0 

Comparison to gold standard 0 to 2 0.80 40.0 

Potential clinical utility 0 to 2 0.53 26.7 

Domain 4: model performance index 0 to 5 1.93 38.7 

Cut-off analysis 0 to 1 0.73 73.3 

Discrimination statistics 0 to 2 0.87 43.3 

Calibration statistics 0 to 2 0.33 16.7 

Domain 5: high level of evidence 0 to 8 0.00 0.0 

Prospective study registered in a trial database 0 to 7 0.00 0.0 

Cost-effective analysis 0 to 2 0.00 0.0 

Domain 6: open science and data 0 to 4 0.13 3.3 

Open science and data 0 to 4 0.13 3.3 

RQS, radiomics quality score.

validation. Only 4 studies reported calibration statistics. In 
domain 5, none of the studies provided the highest level of 
evidence or reported on the cost-effectiveness of the clinical 
application.

Quality assessment of prognosis studies based on the 
TRIPOD checklist

In 26 out of 35 items in the TRIPOD checklist (Figure 2B, 
Table 4), excluding “if relevant”, “if done”, and “validation” 
items, the mean number of adhered items was 16.7±3.8 
(SD; range, 15–21), with an overall adherence rate of 64.4% 
(251/390). None of the studies satisfied the items of title 
(item 1), blindness in assessments (items 6b and 7b), missing 

data (item 9), and model recalibration in statistical analysis 
methods and results (items 10e and 17). The completeness 
of reporting individual TRIPOD items is shown in Table 4.

Quality assessment of the radiomics models based on IBSI 
guideline

Table 5 presents the pre-processing steps carried out in 
the included studies, following the IBSI guidelines, with 
an overall adherence rate of 51.4% (54/105). Intensity 
normalization and image interpolation were the most 
frequently conducted pre-processing steps, both at 53.3%. 
Image filtering was conducted in seven studies, accounting 
for 46.7% of the total. Grey-level discretization was carried 
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Table 4 TRIPOD adherence of included studies

35 selected items (N=15) Adherence rate, n (%)

Overall 251/390 (64.4)

Title and Abstract 8/30 (26.7)

1. Title—identify developing/validating a model, target population, and the outcome 0 (0.0) 

2. Abstract—provide a summary of objectives, study design, setting, participants, sample size, predictors, 
outcome, statistical analysis, results, and conclusions

8 (53.3)

Introduction 16/30 (53.3)

3a. Background—explain the medical context and rationale for developing/validating the model 14 (93.3)

3b. Objective—specify the objectives, including whether the study describes the development/validation of 
the model or both

2 (13.3)

Methods 117/195 (60.0)

4a. Source of data—describe the study design or source of data (randomized trial, cohort, or registry data) 15 (100.0)

4b. Source of data—specify the key dates 14 (93.3)

5a. Participants—specify key elements of the study setting including number and location of centers 14 (93.3)

5b. Participants—describe eligibility criteria for participants (inclusion and exclusion criteria) 13 (86.7)

5c. Participants—give details of treatment received, if relevant NA

6a. Outcome—clearly define the outcome, including how and when assessed 15 (100.0)

6b. Outcome—report any actions to blind assessment of the outcome 0 (0.0)

7a. Predictors—clearly define all predictors, including how and when assessed 15 (100.0)

7b. Predictors—report any actions to blind assessment of predictors for the outcome and other predictors 0 (0.0)

8. Sample size—explain how the study size was attained 2 (13.3)

9. Missing data—describe how missing data were handled with details of any imputation method 0 (0.0)

10a. Statistical analysis methods—describe how predictors were handled 15 (100.0)

10b. Statistical analysis methods—specify type of model, all model-building procedures (any predictor 
selection), and method for internal validation

9 (60.0)

10d. Statistical analysis methods—specify all measures used to assess model performance and if relevant, 
to compare multiple models (discrimination and calibration)

5 (33.3)

11. Risk groups—provide details on how risk groups were created, if conducted (N=7) NA

Results 66/90 (73.3)

13a. Participants—describe the flow of participants, including the number of participants with and without 
the outcome. A diagram may be helpful

14 (93.3)

13b. Participants—describe the characteristics of the participants, including the number of participants with 
missing data for predictors and outcome

12 (80.0)

14a. Model development—specify the number of participants and outcome events in each analysis 15 (100.0)

14b. Model development—report the unadjusted association between each candidate predictor and 
outcome, if done (N=9)

NA

15a. Model specification—present the full prediction model to allow predictions for individuals (regression 
coefficients, intercept)

8 (53.3)

15b. Model specification—explain how to the use the prediction model (nomogram, calculator, etc.) 7 (46.7)

Table 4 (continued)
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out in six studies, comprising 18.8% of the sample. In 
addition, robustness assessment of imaging biomarkers 
was performed in 6 studies, making up 40.0% of the total. 
Among the software packages used for radiomics feature 
extraction, only PyRadiomics (https://www.radiomics.
io/pyradiomics.html) conforms to the IBSI guidelines, 
which was utilized in 33.3% of the articles. Lastly, the 
segmentation method employed during delineation was 

exclusively manual tracing. None of the included studies 
utilized fully automatic or semi-automatic methods for 
segmentation.

Quality assessment of the radiomics models based on 
PROBAST tool

The analysis of ROB and applicability is presented in 
Figure 3. The overall ROB was unclear in 6 studies and 
high in 9 studies (Figure 3A). Within the ROB assessment, 
high bias was identified in the “analysis” domain for 93.3% 
of the studies, contrasting with low bias observed in the 
“results” domain (73.3%). Concerning overall applicability 
(Figure 3B), 12 studies displayed low concern, 3 studies 
had unclear concern, and additional details are provided in 
the Table S4.

Meta-analysis results for DFS

The association between radiomic features and DFS was 
evaluated in 12/15 (80%) studies, and all of them showed 
a significant association between radiomic features and 
DFS. Furthermore, 10 studies with a total of 1,492 patients 
provided HR values, which were then extracted for further 

Table 5 Adherence rate of IBSI pre-processing steps

Pre-processing performed
Number of studies  
(adherence rate, %)

Total 54 (51.4)

Intensity normalization 8 (53.3)

Segmentation method 15 (100.0)

Image interpolation 8 (53.3)

Grey-level discretization 5 (33.3)

Image filter 7 (46.7)

Extraction software 5 (33.3)

Robustness assessment 6 (40.0)

IBSI, Image Biomarkers Standardization Initiative.

Table 4 (continued)

35 selected items (N=15) Adherence rate, n (%)

16. Model performance—report performance measures (with confidence intervals) for the prediction model 10 (66.7)

Discussion 44/45 (97.8)

18. Limitations—discuss any limitations of the study 15 (100.0)

19b. Interpretation—give an overall interpretation of the results 15 (100.0)

20. Implications—discuss the potential clinical use of the model and implications for future research 14 (93.3)

For validation (N=8) 24/48 (50.0)

10c. Statistical analysis methods—describe how the predictions were calculated 6 (75.0)

10e. Statistical analysis methods—describe any model updating (recalibration), if conducted 0 (0.0)

12. Development vs. validation—Identify any differences from the development data in setting, eligibility 
criteria, outcome, and predictors

8 (100.0)

13c. Participants (for validation)—show a comparison with the development data of the distribution of 
important variables

8 (100.0)

17. Model updating—report the results from any model updating, if performed 0 (0.0)

19a. Interpretation (for validation)—discuss the results with reference to performance in the development 
data and any other validation data

2 (25.0)

TRIPOD, Transparent Reporting of a Multivariable Prediction Model for Individual Prognosis or Diagnosis; NA, not available.

https://www.radiomics.io/pyradiomics.html
https://www.radiomics.io/pyradiomics.html
https://cdn.amegroups.cn/static/public/QIMS-23-692-Supplementary.pdf
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Figure 3 Quality assessment with PROBAST for (A) ROB and (B) applicability. PROBAST, Prediction Model Risk of Bias Assessment 
Tool; ROB, risk of bias.

meta-analysis. The pooled HR for DFS was 3.14 (95% CI: 
2.12–4.64), and Cochran’s Q test (P=0.02) and Higgins’ 
I2 test (56%) showed moderate heterogeneity among the 
included studies (Figure 4A). A further subgroup analysis 
based on the imaging modality found significant results in 
the MRI, CT, and PET/CT subgroups (Figure 4B, MRI: 
HR =3.34, 95% CI: 2.10–5.32; CT: HR =2.10, 95% CI: 
1.11–3.98; PET/CT: HR =10.30, 95% CI: 2.90–36.53). 
Visual inspection of the funnel plot and Egger’s test 
(P=0.398) showed no publication bias (Figure S1).

Meta-analysis results for OS

The association between radiomic features and OS was 
evaluated in 8/15 (53.3%) studies, and all of them showed 
a significant association between radiomic features and OS. 
In addition, 7 of these studies, with a combined total of 1,230 
patients, provided HR values, which were then extracted for 
further meta-analysis. The pooled HR for OS was 3.36 (95% 
CI: 1.74–6.49), and Cochran’s Q test (P=0.01) and Higgins’ 
I2 test (63%) showed moderate heterogeneity among the 
included studies (Figure 5A). A further subgroup analysis 

based on the imaging modality found significant results in 
the MRI and PET/CT subgroups (Figure 5B, MRI: HR 
=6.98, 95% CI: 3.24–15.02; PET/CT: HR =3.90, 95% CI: 
1.71–8.89).

Discussion

To the best of our knowledge, this is the first study to 
perform both a systematic review and a meta-analysis 
regarding radiomics prediction value on survival outcomes 
in LARC patients undergoing nCRT. This systematic 
review combined the outcomes of 2,151 LARC patients 
from 15 individual studies and extracted the HR values 
for further meta-analysis, which showed that radiomics 
based on the primary LARC lesion, depicting intratumor 
heterogeneity, played a promising role in LARC prognosis 
prediction.

Radiomics is a novel, noninvasive, and potential tool to 
extract quantitative features from medical images, which 
could convert images into mineable data for subsequent 
analysis. In particular, radiomics has been shown to reveal 
tumor heterogeneity, which is associated with prognosis in 

https://cdn.amegroups.cn/static/public/QIMS-23-692-Supplementary.pdf
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Figure 4 Meta-analysis results for DFS. (A) A forest plot of the pooled estimates of HR for DFS; (B) subgroup analysis based on imaging 
modality for DFS. Subgroup 1 contained studies based on MRI, subgroup 2 CT, and subgroup 3 PET/CT. HR, hazard ratio; CI, confidence 
interval; SE, standard error; DFS, disease-free survival; df, degrees of freedom; MRI, magnetic resonance imaging; CT, computed 
tomography; PET/CT, positron emission tomography/computed tomography.

A

B

LARC patients. Our meta-analyses indicated that radiomics 
based on the primary LARC lesion significantly predicted 
poor DFS (HR =3.14, 95% CI: 2.12–4.64, P<0.01) and 
OS (HR =3.36, 95% CI: 1.74–6.49, P<0.01). The results 
showed that the radiomics model may be an independent 
and noninvasive predictive biomarker, allowing us to stratify 
patients into low- and high-risk groups and identify those 
who may truly benefit from treatment and achieve long-

term survival by mining medical image data to reflect tumor 
heterogeneity. Similar conclusions have been reached in 
previous meta-analyses regarding the prognosis of non-
small cell lung cancer, esophageal cancer, pancreatic ductal 
adenocarcinoma, and ovarian cancer (44-47). In addition, 
deep learning is a machine learning algorithm based on 
neural networks, providing an alternative to traditional 
manual radiomics (48). It alleviates the model’s reliance on 



Quantitative Imaging in Medicine and Surgery, Vol 13, No 12 December 2023 8407

© Quantitative Imaging in Medicine and Surgery. All rights reserved.   Quant Imaging Med Surg 2023;13(12):8395-8412 | https://dx.doi.org/10.21037/qims-23-692

Figure 5 Meta-analysis results for OS. (A) A forest plot of the pooled estimates of HR for OS; (B) subgroup analysis based on imaging 
modality for OS. Subgroup 1 contained studies based on MRI, subgroup 2 CT, and subgroup 3 PET/CT. HR, hazard ratio; CI, confidence 
interval; SE, standard error; df, degrees of freedom; OS, overall survival; MRI, magnetic resonance imaging; CT, computed tomography; 
PET/CT, positron emission tomography/computed tomography.

A

B

accurate tumor segmentation and feature definition, thereby 
enhancing feature consistency and reproducibility while 
reducing the workload associated with data management. 
However, its current application in the literature remains 
limited (49-52), possibly due to its substantial demand for 
training data and lack of interpretability in models (53). In 
the future, the integration of radiomics with deep learning 
could lead to the creation of a new frontier in personalized 
medical imaging, resulting in the development of higher-
performance models.

Generally, radiomics data contain first-, second-, and 
higher-order statistics (11). In our review, we summarized 

the radiomics features associated with survival (Table 2). The 
results were similar to those of Schurink et al., who found 
that simpler features (e.g., first-order, shape, GLCM, and 
GLRLM) showed overall good reproducibility, whereas 
higher-order features (e.g., GLSZM and NGTDM) 
were poorly reproducible (54). These results also aligned 
with those of previous studies (55-57). In addition, Gao 
et al. selected nine studies for the meta-analysis, which 
indicated that first-order entropy was reported multiple 
times in the studies on prognosis prediction and showed 
a significant pooled HR of 1.66 (95% CI: 1.18–2.34) in 
pancreatic ductal adenocarcinoma patients (46). Although 
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these studies preliminarily demonstrate seemingly good 
reproducibility, the reproducibility of simpler radiomics 
features is still insufficient compared with the measurement 
of carcinoembryonic antigen (CEA), carbohydrate antigen 
19-9 (CA19-9), and other tumor markers, which has been 
one of the most important challenges in radiomics for 
years. However, the IBSI guideline, which was an IBSI 
instigated by Zwanenburg et al., aims to improve the 
standardization of imaging protocols and results reporting; 
thus, strict compliance may improve reproducibility (21). In 
addition, the inclusion of higher-order features in radiomics 
models may be a major cause of poor reproducibility, 
but no relevant studies have shown how much it affects 
reproducibility, thus future research should focus on higher-
order features.

For radiomics quality, different tools were utilized in 
this analysis to provide an in-depth and all-encompassing 
evaluation of the included studies. We found that the 
quality of radiomics studies for prognosis assessment in 
LARC patients was insufficient. The overall mean RQS 
score in our study was 7.73±4.61 (21.5% of the ideal score), 
which was consistent with those of other systematic reviews 
(12,25,29,58), and the most problematic issues were similar. 
The included studies performed the worst in domain 5 
(item prospective study and cost-effective analysis), with 
the actual score being 0% of the ideal RQS score (Figure 2, 
Table 3). In the era of evidence-based medicine, radiomics, 
as the basis of promising noninvasive imaging markers, 
must first be prospectively validated in clinical populations 
before it can be used in the clinic, and then the utility of 
radiomics in comparison to other accessible biomarkers 
needs to be evaluated through a cost-effectiveness analysis. 
However, most radiomic studies are proof-of-concept 
studies, and no prospective trials on prognosis prediction 
in LARC have been initialized. Therefore, it is essential to 
consider prospective trials and cost-effectiveness analyses in 
the design of future radiomics studies.

In addition, the mean RQS score on item validation 
of domain 2 was only 0.56 because most of the included 
studies used the single-center internal validation cohort and 
received a score of 2, yet the rest did not use the validation 
cohort and received a score of –5. The RQS score assigns 
a –5 if validation is missing, a 2 if validation is based on 
the same institute’s dataset, a 3 if validation is based on 
another institute’s dataset, a 4 if validation is based on two 
datasets from two different institutes or validates previously 
published features, and a 5 if validation is based on datasets 
from 3 or more different institutes. As a result of the current 

poor scores, a multicenter validation set or validation of the 
previous radiomics features will be required in the future 
to improve the estimated quality of radiomics. Federated 
multicenter data studies can increase sample size and data 
diversity, thus improving the generalization of models. 
However, for reasons such as medical data privacy and 
security, it is difficult to centralize data in one place for 
centralized machine learning. Therefore, how to combine 
multicenter data to build radiomics models without sharing 
private patient data is also one of the future research 
priorities. Federated learning techniques may be one 
solution to address this issue.

Furthermore, there were certain other prevalent issues. 
The insufficiency of phantom study, test-retest, cutoff, 
and open science and data were repeatedly addressed. 
Although the performance was good in terms of image 
protocol quality, multiple segmentation, feature reduction, 
multivariate analysis with non-radiomics features, and 
discrimination statistics, of the six domains, only domain 
4 exceeded 50% in the percentage of the ideal score. 
According to the TRIPOD checklist, the keywords 
“development” and “validation” were seldom ever used 
in the titles, abstracts, or objectives. The vast majority 
of studies lack blinded assessment, processing of missing 
data, and sample size determination. However, the large 
number of features compared to the number of patients 
makes sample size calculations virtually impossible. 
Therefore, considering the specificity of radiomics features, 
a reasonable sample size determination standard designed 
specifically for radiomics must be developed.

This systematic review has some limitations. First, there 
was moderate heterogeneity among the included studies in 
the HR values for DFS and OS. Although we performed 
subgroup analyses, the sample sizes may be too small to 
draw reliable conclusions from the group analyses. Second, 
the main limitation of our study is that the study designs 
of the published studies were all retrospective in design. 
Some patients may be lost to follow-up, which might affect 
the accuracy of prognosis prediction. Third, because of 
the limited study numbers, visual inspection of the funnel 
plot and Egger’s test for studies predicting OS were not 
employed. Fourth, due to overlapping with RQS and 
TRIPOD, we focused on evaluating the pre-processing 
steps based on the IBSI guidelines. In future research, it 
would be beneficial to integrate these checklists to establish 
universally accepted methods and reporting standards. 
Finally, only radiomics-based prognostic models that were 
not integrated with other clinical factors were evaluated 
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because these factors varied greatly between trials and were 
unsuitable for pooled values.

Conclusions

In conclusion, the primary tumor lesion-based radiomics 
model performed promisingly in LARC prognosis 
prediction. However, the overall methodological quality 
of radiomics studies was low and the adherence to the 
TRIPOD statement was moderate. Future radiomics 
research should put a greater focus on enhancing 
methodological quality and considering the influence of 
higher-order features on reproducibility in radiomics.
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Figure S1 Funnel plot of studies included for DFS in the meta-analysis. Funnel plot with pseudo 95% confidence limits for assessment of 
publication bias included in the meta-analysis. The Egger’s test revealed that the likelihood of publication bias was low (P=0.398). DFS, 
disease-free survival.
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Table S1 Study search strategy

1.1 Cochrane search strategy 
Available via https://www.cochrane.org/

No. Query Results

#1 Rectal Neoplasms 3,113

#2 (Rectal Neoplasm): ab,ti,kw OR (Rectum Neoplasm): ab,ti,kw OR (Rectal Tumor): ab,ti,kw OR (Rectal Cancer): ab,ti,kw 
OR (Rectum Cancer):ab,ti,kw OR (rectal malignancy): ab,ti,kw OR (rectum malignancy): ab,ti,kw

7,497

#3 #1 OR #2 7,978

#4 (radiomics): ab,ti,kw OR (radiomic): ab,ti,kw OR (texture): ab,ti,kw 2,046

#5 (prognosis): ab,ti,kw OR (survival): ab,ti,kw 140,645

#6 #3 AND #4 AND #5 with Cochrane Library publication date Between Jan 2012 and Jun 2022, in Trials 4

1.2 Embase search strategy 
Available via www.embase.com 

No. Query Results

#1 ‘rectal neoplasms’/exp OR ‘rectal neoplasms’ 112,653

#2 ‘rectal neoplasm’: ab,ti OR ‘rectum neoplasm’: ab,ti OR ‘rectal tumor’:ab,ti OR ‘rectal cancer’: ab,ti OR ‘rectum 
cancer’:ab,ti OR ‘rectal malignancy’:ab,ti OR ‘rectum malignancy’: ab,ti

43,746

#3 #1 OR #2 117,719

#4 ‘radiomics’: ab,ti OR ‘radiomic’: ab,ti OR ‘texture’:ab,ti 47,524

#5 ‘prognosis’: ab,ti OR ‘survival’:ab,ti 2,090,192

#6 #3 AND #4 AND #5 96

#7 #3 AND #4 AND #5 AND [01-01-2012]/sd NOT [01-07-2022]/sd 87

1.3 Medline search strategy
Available via https://pubmed.ncbi.nlm.nih.gov

No. Query Results

#1 Rectal Neoplasms 70,789

#2 ((((((Rectal Neoplasm) OR (Rectum Neoplasm)) OR (Rectal Tumor)) OR (Rectal Cancer)) OR (Rectum Cancer)) OR (rectal 
malignancy)) OR (rectum malignancy)

97,528

#3 (Rectal Neoplasms) OR (((((((Rectal Neoplasm) OR (Rectum Neoplasm)) OR (Rectal Tumor)) OR (Rectal Cancer)) OR 
(Rectum Cancer)) OR (rectal malignancy)) OR (rectum malignancy))

97,528

#4 ((radiomics) OR (radiomic)) OR (texture) 54,132

#5 (Prognosis) OR (Survival) 3,871,427

#6 (“2012/1/1”[Date - Publication]: “2022/6/30”[Date - Publication]) 12,686,164

#7 ((((Rectal Neoplasms) OR (((((((Rectal Neoplasm) OR (Rectum Neoplasm)) OR (Rectal Tumor)) OR (Rectal Cancer)) OR 
(Rectum Cancer)) OR (rectal malignancy)) OR (rectum malignancy))) AND (((radiomics) OR (radiomic)) OR (texture))) AND 
((Prognosis) OR (Survival))) AND ((“2012/1/1”[Date - Publication]: “2022/6/30”[Date - Publication]))

127

1.4 Web of Science search strategy 
Available via https://www.webofscience.com/wos/diidw/basic-search

No. Query Results

#1 TS= (Rectal Neoplasms OR Rectal Neoplasm OR Rectum Neoplasm OR Rectal Tumor OR Rectal Cancer OR Rectum 
Cancer OR rectal malignancy OR rectum malignancy)

67,331

#2 TS= (radiomics OR radiomic OR texture) 696,382

#3 TS= (Prognosis OR Survival) 3,025,915

#4 #1 AND #2 AND #3 140
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Table S2 Pre-processing steps according to IBSI guideline

IBSI# Pre-processing performed Explanation

46 Intensity normalization—describe the method and settings 
used to normalize intensity distributions within a patient or 
patient cohort

Any kind of normalization method was accepted, such as white 
stripe normalization, z-score normalization, or normalization 
using the μ±3σ method

48 Segmentation method—describe how regions of interest were 
segmented; describe the number of experts, their expertise and 
consensus strategies for manual delineation; describe methods 
and settings used for semi-automatic and fully automatic 
segmentation; describe which image was used to define 
segmentation in case of multi-modality imaging

Any kind of segmentation method was accepted, such as 
manual segmentation, semi-automatic segmentation, or fully 
automatic segmentation, with or without providing number of 
experts, their expertise and consensus strategies for manual 
delineation, or settings used for semi-automatic or fully 
automatic segmentation

50 Image interpolation—describe which interpolation algorithm 
was used to interpolate the image; describe how the position 
of the interpolation grid was defined; describe how the 
dimensions of the interpolation grid were defined; describe how 
extrapolation beyond the original image was handled

Mentioning the exact term “interpolation” or “resampling” was 
presumed to perform iso-voxel resampling with or without 
providing interpolation algorithm, the position of the interpolation 
grid, or how extrapolation beyond the original image was 
handled

56 Grey-level discretization—describe the method used to 
discretize image intensities

Mentioning the exact term “discretization” was presumed to 
perform gray-level discretization with or without providing the 
number of bins or the size of the bins

57 Image filter—describe whether and which methods and 
settings were used to filter images

Any kind of filtering method was accepted, such as Laplacian-
of-Gaussian, wavelet, or a declaration of non-filtering

59 IBSI compliance—state if the software used to extract the 
set of image biomarkers is able to reproduce the IBSI feature 
reference values

A software is compliant if and only if it is able to reproduce 
image biomarker reference values for the digital phantom and 
for one or more image processing configurations using the 
radiomics CT phantom. We documented the name of software, 
and then found out whether they were IBSI compliant or not

60 Robustness—describe how robustness of the image 
biomarkers was assessed

Robustness is one of the key concerns for generalizability and 
application of radiomics models. We documented the method 
of robustness assessment, e.g., test-retest analysis, before the 
model building

IBSI,  Image Biomarkers Standardization Initiative; CT, computed tomography.



Table S3 RQS rating per study 

Study
Meng, 
2018 

(1)

Wang, 
2019 

(2)

Cui, 
2021 

(3)

Tibermacine, 
2021 (4)

Chiloiro, 
2022 (5)

Zhou, 
2022 

(6)

Cui, 
2022 

(7)

Nie, 
2022 

(8)

Wang, 
2022 

(9)

Meng, 
2018 
(10)

Bang, 
2015 
(11)

Chee, 
2017 
(12)

Jali, 
2016 
(13)

Lovinfosse, 
2017 (14)

Hotta, 
2021 
(15)

Total 16 items (ideal score 36) 11 10 12 11 2 13 14 13 8 8 2 2 3 3 4 

Domain 1: protocol quality and stability in image and segmentation  
(0 to 5 points)

2 2 1 2 2 2 2 2 2 1 1 2 1 1 2 

1. Protocol quality (2 points) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

2. Multiple segmentations (1 point) 1 1 0 1 0 1 1 1 0 0 0 1 0 0 1 

3. Phantom study (1 point) 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 

4. Imaging at multiple time points (1 point) 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 

Domain 2: feature selection and validation (−8 to 8 points) 5 5 5 6 -2 5 5 5 -2 5 -2 -2 -2 -2 -2 

5. Feature reduction or adjustment of multiple testing (−3 or 3 points) 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 

6. Validation (-5, 2, 3, 4, or 5 points) 2 2 2 3 -5 2 2 2 -5 2 -5 -5 -5 -5 -5 

Domain 3: biologic/clinical validation and utility (0 to 6 points) 1 1 3 1 1 3 3 3 4 0 3 1 3 3 3 

7. Non-radiomics features (1 point) 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 

8. Biologic correlations (1 point) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

9. Comparison to “gold standard” (2 points) 0 0 0 0 0 0 0 2 2 0 2 0 2 2 2 

10. Potential clinical utility (2 points) 0 0 2 0 0 2 2 0 2 0 0 0 0 0 0 

Domain 4: model performance index (0 to 5 points) 3 2 3 1 1 3 4 3 3 2 0 1 1 1 1 

11. Cut-off analysis (1 point) 1 0 1 0 0 1 1 1 1 1 0 1 1 1 1 

12. Discrimination statistics (2 points) 2 2 1 1 1 1 1 1 2 1 0 0 0 0 0 

13. Calibration statistics (2 points) 0 0 1 0 0 1 2 1 0 0 0 0 0 0 0 

Domain 5: high level of evidence (0 to 8 points) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

14. Prospective study (7 points) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

15. Cost-effectiveness analysis (1 point) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Domain 6: Open science and data (0 to 4 points) 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 

16. Open science and data (0 to 4 points) 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 

RQS, radiomics quality score.
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Table S4 PROBAST assessment for each study

Study
Risk of bias Applicability Overall

Participants Predictors Outcome Analysis Participants Predictors Outcome Risk of bias Applicability

Meng, 2018 (1)  +  +  + −  +  +  + −  + 

Wang, 2019 (2)  +  +  + −  +  +  + −  + 

Cui, 2021 (3)  +  +  + −  +  +  + −  + 

Tibermacine, 2021 (4)  +  + ? −  +  + ? ? ?

Chiloiro, 2022 (5)  +  +  + −  +  +  + −  + 

Chuanji, 2022 (6)  +  +  + ?  +  +  + −  + 

Cui, 2022 (7)  + − ? −  +  +  + ?  + 

Nie, 2022 (8)  + ?  + −  +  +  + ?  + 

Wang, 2022 (9) ?  + ? −  +  +  + ?  + 

Meng, 2018 (10)  + ?  + −  +  +  + ?  + 

Bang, 2015 (11) −  + − −  +  +  + −  + 

Chee, 2017 (12) − ?  + −  + ?  + ? ?

Jalil, 2016 (13) − −  + −  + ?  + − ?

Lovinfosse, 2018 (14) −  +  + −  +  +  + −  + 

Hotta, 2021 (15)  +  +  + −  +  +  + −  + 

+, low; −, high; ?, unclear. PROBAST, Prediction Model Risk of Bias Assessment Tool. 
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