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Background: Coronary magnetic resonance angiography (CMRA) is being increasingly used in pediatric 
patients with congenital coronary artery anomalies (CAAs). However, the data on the free-breathing self-
navigation technique, which has the potential to simplify the acquisition plan with a high success rate at 
3T, remain scarce. This study investigated the clinical application value of self-navigated (sNAV) CMRA 
at 3T in pediatric patients with suspected CAAs and compared it to conventional diaphragmatic-navigated 
(dNAV) CMRA.
Methods: From April 2019 to March 2022, we enrolled 65 pediatric patients (38 males and 27 females; 
mean age 8.5±4.4 years) with suspected CAAs in this prospective study. All patients underwent both dNAV 
and sNAV sequences in random order with gradient recalled echo (GRE) sequence during free breathing, 
with 39 (20 males and 19 females; mean age 10.2±3.6 years) of them additionally undergoing coronary 
computed tomography angiography (CCTA) or invasive coronary angiography (ICA). We measured and 
compared the success rate, scan time, visual score of the 9 main coronary artery segments, vessel sharpness, 
and vessel length between the two sequences. The diagnostic accuracy was compared using CCTA or ICA as 
a reference.
Results: The success rate of sNAV-CMRA (65/65, 100%) was higher than that of dNAV-CMRA (61/65, 
93.8%) (P<0.001), and the scan time of sNAV-CMRA (7.3±2.5 min) was significantly shorter than that of 
dNAV-CMRA (9.1±3.6 min) (P=0.002). The acquisition efficiency of dNAV-CMRA was 40.5%±12.9%, 
while for sNAV-CMRA, 100% acquisition efficiency was achieved. There was no significant difference in 
vessel length of any of the coronary arteries, visual score, or vessel sharpness of the left circumflex coronary 
artery (LCX) between the two sequences (all P values >0.050). The visual score and vessel sharpness of 
the right coronary artery and left anterior descending coronary artery (LAD) were significantly improved 
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Introduction 

Coronary artery anomalies (CAAs) encompass several 
congenital conditions, including the abnormal origin of 
the main coronary artery and an anomalous course, with 
prevalence ranging from 0.2% to 5.8% (1). CAAs (2), 
especially anomalous coronary artery originating from the 
opposite sinus of Valsalva (ACAOS) with an interarterial 
course (3), may contribute to myocardial ischemia and 
sudden cardiac death in young adults and children. The 
clinical meaning of CAAs varies significantly depending on 
the artery involved origin and course (1). Thus, the accurate 
diagnosis of CAAs is essential for risk stratification and 
selection of the therapeutic approach. Although invasive 
coronary angiography (ICA) and coronary computed 
tomography angiography (CCTA) are the reference 
standards for diagnosing CAAs, their use in children is 
limited due to invasiveness and exposure to high radiation 
doses or iodinated contrast agents (4). Echocardiography is 
commonly used to evaluate CAAs in children but is limited 
in identifying coronary artery ostia and the surrounding 
structures (5).

Coronary magnetic resonance angiography (CMRA) 
is a noninvasive and radiation-free imaging modality that 
has proven valuable in diagnosing CAAs (6,7). The clinical 
guidelines recommend that CMRA be applied in pediatric 
patients with CAAs for diagnosis and preoperative planning 
(class I, level of evidence B) (8). The most common 
conventional approach to correcting respiratory motion is 
a diaphragmatic-navigated (dNAV) CMRA. However, this 
technique is limited due to its long scan time (9,10), a high 
risk of failure, and complex scan planning (11). To address 
these limitations, Piccini et al. proposed the 3D radial 

spiral phyllotaxis sampling scheme self-navigated CMRA 
(sNAV-CMRA) sequence, which integrates both an intrinsic 
readout arrangement that minimizes eddy current effects, 
and designed an overall uniform readout distribution (12).  
By directly extracting data from the heart to correct 
motion, sNAV achieves 100% acceptance of the acquired 
data (13), simplifying the acquisition plan without the need 
to use a diaphragm navigator, simultaneously improving 
the scan success rate and reducing the acquisition time. 
Moreover, lipid-insensitive binomial off-resonant excitation 
radiofrequency excitation (LIBRE) is pulsed to respiratory 
sNAV 3D radial whole-heart sequence at 3T, which has 
been demonstrated to enable robust large volume fat 
suppression and significantly improve coronary artery image 
quality (14).

In pediatric patients, the clinical application of CMRA is 
challenging due to their faster heart rate, smaller vessel size, 
poor cooperation, and irregular respiration. Increasing the 
availability of higher field strength, such as in 3T magnetic 
resonance imaging (MRI), enables submillimetric spatial 
resolution, higher temporal resolution, and better contrast-
to-noise ratio (CNR) (15,16). Recently, 3T scanners have 
become increasingly used in clinical practice. Several 
researchers have reported that noncontrast and post-
contrast sNAV-CMRA at 1.5T was highly accurate for 
diagnosing CAAs (17,18). However, data for CMRA at 3T 
remains scarce, and the clinical application of 3T CMRA 
remains to be investigated in the clinical context of pediatric 
patients with suspected CAAs. Thus, this study aimed to 
determine the clinical application value of 3T sNAV-CMRA 
in pediatric patients with CAAs and to compare it to that of 
conventional dNAV-CMRA. The scan time, success rate, 
and image quality, as well the diagnostic value in detecting 

in dNAV-CMRA compared with sNAV-CMRA (all P values <0.050). The sensitivity, specificity, positive 
predictive value (PPV), and negative predictive value (NPV) for the detection of CAAs were not significantly 
different between the two sequences (all P values >0.050). 
Conclusions: Our findings demonstrated that both sNAV and dNAV in CMRA provide clinical application 
value in pediatric patients with CAAs and have similar diagnostic performance. Although the image quality 
of sNAV-CMRA is slightly inferior compared to that of dNAV-CMRA, sNAV-CMRA allows for a simpler 
scanning procedure. 

Keywords: Self-navigation; diaphragmatic-navigation; coronary magnetic resonance angiography (CMRA); 

congenital coronary artery anomalies (CAAs)

Submitted Apr 24, 2023. Accepted for publication Oct 07, 2023. Published online Oct 26, 2023.

doi: 10.21037/qims-23-556

View this article at: https://dx.doi.org/10.21037/qims-23-556



Quantitative Imaging in Medicine and Surgery, Vol 14, No 1 January 2024 63

© Quantitative Imaging in Medicine and Surgery. All rights reserved.   Quant Imaging Med Surg 2024;14(1):61-74 | https://dx.doi.org/10.21037/qims-23-556

CAAs using CCTA or ICA as the reference, were compared 
between dNAV-CMRA and sNAV-CMRA in pediatric 
patients with suspected CAAs. 

Methods

Study population

This prospective study was conducted in accordance 
with the Declaration of Helsinki (as revised in 2013) 
and approved by the Ethics Committee of the Sichuan 
University (No. KL108). Written informed consent 
was obtained from each patient’s legal guardian before 
enrollment. From April 2019 to March 2022, consecutive 
pediatric patients suspected to have CAAs according 
to the European Society of Cardiology’s guidelines (1) 
were enrolled in this study. The exclusion criteria were 
arrhythmia, metallic implants, and severe claustrophobia. 
The inclusion flowchart of the study population is shown in 
Figure 1. 

CMRA protocol

All examinations were performed with a 3T MRI system 
(MAGNETOM Skyra; Siemens Healthineers, Erlangen, 
Germany). Patients younger than 6 years old were examined 
under sedation according to clinical request. An 18-channel 
receiver body array coil with a spine array coil was used. 
Acquisitions were triggered with electrocardiography 
(ECG). Localization images of the heart were obtained 
in the three orthogonal directions. Two-dimensional cine 
in 4-chambers with balanced steady-state free precession 
(bSSFP) sequence was performed to assess the relatively 
static period of the right coronary artery (RCA) during 
the cardiac cycle to determine the trigger delay time 
and acquisition window. The detailed parameters of the 
cine sequence were detailed in a previous study (19). We 
optimized both navigator-gated and respiratory sNAV 
whole-heart CMRA protocols that balanced the spatial 
resolution, signal-to-noise ratio (SNR), and scan time in 
clinical practice (20). We performed a phantom experiment 
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Figure 1 Flowchart of study participant inclusion according to study eligibility criteria. CAA, coronary artery anomaly; CMRA, coronary 
magnetic resonance angiography; dNAV-CMRA, diaphragmatic-navigated coronary magnetic resonance angiography; CCTA, coronary 
computed tomography angiography; ICA, invasive coronary angiography.
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to investigate the influence of different imaging parameters 
and strategies of the two sequences on image quality (see 
Figure S1). The diagram of the two sequences is shown 

in Figure 2. Both the dNAV and sNAV approaches were 
acquired in randomized order with gradient recalled echo 
(GRE) sequences during free breathing. Both sequences 
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Figure 2 Diagram of the different components of the dNAV and sNAV sequence. (A) In the sNAV-CMRA, the fat-saturation technique 
LIBRE [A1 reprinted with permission from Bastiaansen et al. (14)] and the segmented 3D radial spiral phyllotaxis sampling scheme [A2 
reprinted with permission from Piccini et al. (21)] were used in sNAV. (B) In the dNAV-CMRA, the fat-saturation technique SPAIR [B1 
reprinted with permission from Lauenstein et al. (22)] and the traditional GRAPPA technique [B2 reprinted with permission from Griswold 
et al. (23)] were used in dNAV. sNAV-CMRA, self-navigated coronary magnetic resonance angiography; T2 Prep, T2 preparation; Fat 
Sat, fat-saturation prepulses; SI, superior-inferior; RF, radio frequency; ADC, apparent diffusion coefficient; TE, echo time; LIBRE, 
lipid-insensitive binomial off-resonant excitation radiofrequency excitation; dNAV-CMRA, diaphragmatic-navigated coronary magnetic 
resonance angiography; NAV, navigator; SPAIR, spectral-attenuated inversion recovery; ACS, auto-calibration signal; GRAPPA, generalized 
autocalibrating partially parallel acquisitions.
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were performed 12–15 min post-contrast without additional 
dedicated contrast agent administration.

For dNAV-CMRA, an ECG-triggered, fat-saturated, 
segmented, 3D GRE sequence was employed. The 3D k-space 
data were collected with Cartesian sampling (centric ordering). 
The parallel imaging technique (GRAPPA) was used with 
an acceleration factor of 2 to accelerate data acquisition (23). 
A cross-pair dNAV with an acceptance window of ±2 mm 
located at the dome of the right hemidiaphragm was used 
to monitor the movement of the diaphragm, and a tracking 
factor of 0.6 was used to reduce respiratory artifacts (24). The 
spectral-attenuated inversion recovery (SPAIR) product fat-
saturation technique (25) and T2 preparation pulse were also 
used for blood-to-myocardium contrast optimization (26).  
The data were reconstructed with GRAPPA (23). The 
parameters of the dNAV-CMRA and sNAV-CMRA protocol 
are shown in Table 1.

For sNAV-CMRA, an ECG-triggered, segmented, 
prototype sNAV, 3D GRE sequence (Siemens Healthineers) 
was employed (12,20,27). The sequence uses 3D radial 

sampling with a spiral phyllotaxis pattern, which has proven 
to be less sensitive to motion compared to the conventional 
cartesian readout (12). Data corresponding to ~20% of the 
radial Nyquist limit were acquired (5-fold acceleration) (12).  
The T2 preparation pulse and the LIBRE fat-suppression 
technique were used to optimize contrast (14). A saturation 
slab was accurately placed on the anterior chest wall to suppress 
the fat signal from the chest (21). The bright signal originating 
from the blood pool along the superior-inferior direction was 
acquired at each heartbeat and used for respiratory motion 
correction. The data were reconstructed with a nonuniform fast 
Fourier transform (non-uniform FFT) with zero-filling, which 
included uniformly distributed density compensation (21).  
Other detailed parameters are shown in Table 1.

CCTA protocol 

CCTA images were obtained using a CT scanner (GE 
HealthCare, Chicago, IL, USA) within 2 weeks of CMRA 
examination. All the patients were examined in the supine 

Table 1 The parameters of dNAV-CMRA and sNAV-CMRA

Parameter dNAV-CMRA sNAV-CMRA

Sampling scheme 3D Cartesian (centric ordering) 3D radial sampling (spiral phyllotaxis)

Acceleration technique GRAPPA, acceleration factor 2 ~20% of radial Nyquist limit acquired, acceleration factor 5

FOV (mm2) 290×190 220×220 

Spatial resolution (mm3) 1.14×1.14×1.0 1.13×1.13×1.13

TE/TR (ms) 1.74/3.9 2.76/6

Receiver bandwidth (Hz/pixel) 610 606

Accept window (mm) ±2.0 N/A

Image matrix 256×168 192×192

Flip angle (°) 20 20

T2 preparation (ms) 50 40

Slice thickness (mm) 1 1.15

Fat suppression SPAIR LIBRE

Radial views – 11,184

Undersampling rate (%) – 20

Reconstruction technique GRAPPA Nonuniform FFT with zero-filling including uniformly distributed 
density compensation

dNAV-CMRA, diaphragmatic-navigated coronary magnetic resonance angiography; sNAV-CMRA, self-navigated coronary magnetic 
resonance angiography; FOV, field of view; TE/TR, time of echo/time of repetition; GRAPPA, generalized autocalibrating partially parallel 
acquisitions; SPAIR, spectral-attenuated inversion recovery; N/A, not applicable; LIBRE, lipid-insensitive binomial off-resonant excitation; 
FFT, fast Fourier transform.
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position, and image acquisitions were prospectively ECG-
gated. Sedation was used in children who could not 
cooperate with the examination. The iodinated contrast 
agent (omnipaque, 1 mL/kg) was intravenously injected. 
The other parameters were as follows: detector coverage, 
100 mm/circle; tube voltage, 80–100 kV; automatic 
tube current; slice thickness, 0.625 mm; and temporal 
resolution, 0.28 s. Images were reconstructed in the 
optimal systolic or diastolic periods after examination with 
an AW VolumeShare 7 post-processing workstation (GE 
HealthCare). An experienced radiologist assessed the CAAs.

ICA

A standard invasive coronary angiographic examination was 
performed on an Allura Xper FD20 catheterization system 
(Philips, Amsterdam, The Netherlands) within 2 weeks 
of the CMRA examination. An experienced cardiologist 
evaluated the presence of CCAs. 

CMRA image quality analysis

CMRA image interpretations were performed on an offline 

workstation (cvi42; Circle Cardiovascular Imaging, Inc., 
Calgary, AB, Canada). The dNAV-CMRA and sNAV-
CMRA datasets were assessed by two experienced (Azhe S 
and Zhou Z) cardiovascular radiologists using transverse 
and curved planar reconstruction (CPR). In addition, the 
radiologists were blinded to the clinical information and the 
results of CCTA and ICA. Indeterminate CMRA tests were 
considered to be diagnostic errors.

A model of 18 coronary artery segments from the 
guidelines of the Society of Cardiovascular Computed 
Tomography (28) was used in our study. The visualization 
of the coronary artery segment was assessed on a 5-point 
scale according to the following scheme: 0= worst (artery 
not visible); 1= moderate (coronary artery visible, with 
markedly blurred borders or edges); 2= good (coronary 
artery visible, with moderately blurred boundaries or 
edges); 3= great (coronary artery visible, with mildly blurred 
borders or edges); and 4= excellent (coronary artery visible, 
with sharply defined borders or edges) (17). The score scale 
in our study is shown in Figure 3; a score higher than 0 was 
considered to be visualized and to satisfy the criteria for 
diagnostic quality. 

In addition, the lengths of the RCA, left anterior 

Figure 3 Illustration of visual scoring of the coronary artery of sNAV-CMRA and dNAV-CMRA. (A) Visual score scale of sNAV-CMRA. 
(B) Visual score scale of dNAV-CMRA. 0= worst, coronary artery poorly visualized; 1= moderate, coronary artery visible but with marked 
blurring; 2= good, coronary artery visible with moderate blurring; 3= great, coronary artery visible with mild blurring; 4= excellent, coronary 
artery visible with sharp edges. sNAV-CMRA, self-navigated coronary magnetic resonance angiography; dNAV-CMRA, diaphragmatic-
navigated coronary magnetic resonance angiography.
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descending coronary artery (LAD), and left circumflex 
coronary artery (LCX) were measured on the CPR images. 
Finally, the vessel sharpness representing the signal 
change at the vessel border was measured on the proximal 
LCX, RCA, and left main coronary artery (LM)-LAD. In 
accordance with a previous study, a higher calculated value 
represented better vessel visualization (29).

Diagnostic performance analysis

The results of CCTA and ICA were evaluated by a 
radiologist (Wen L), who had 8 years of experience in cardiac 
imaging and was blinded to the clinical information and the 
result of CMRA. After the diagnostic work was completed, 
the sensitivity, specificity, positive predictive value (PPV), and 
negative predictive value (NPV) of sNAV-CMRA and dNAV-

CMRA were calculated using CCTA or ICA as references for 
CAAs and ACAOS.

Statistical analysis

The data were analyzed using SPSS (version 25.0, 
IBM Corp., Armonk, NY, USA). Normally distributed 
quantitative data are depicted as the mean ± standard 
deviation, and nonnormally distributed data are expressed 
as the median with interquartile range. The success rate, 
scan time, and image quality were compared between the 
two sequences using paired t-test or Wilcoxon signed rank 
test. The McNemar chi-squared test was performed to 
compare the specificity and sensitivity of sNAV-CMRA and 
dNAV-CMRA. A four-fold-table chi-squared test was used 
to compare the two sequences’ PPV and NPV. A 2-tailed P 
value <0.05 was considered statistically significant.

Results

Initially, 69 patients were eligible for inclusion in this 
study, but 4 were excluded for poor cooperation (n=1) and 
arrhythmia (n=3), leaving 65 patients for examination under 
both sequences. Of these pediatric patients, 4 (12.2±2.6 years)  
failed to complete the dNAV-CMRA examination, and 3 
underwent sNAV-CMRA after dNAV-CMRA; for these  
3 patients, the dNAV-CMRA examination was interrupted 
by operators because of diaphragmatic drift over time due 
to low acquisition efficiency; and for 1 of these patients, 
in whom sNAV-CMRA was performed before dNAV-
CMRA, the examination was interrupted due to patient 
noncompliance and movement during the test. These 4 
pediatric patients were excluded from the analysis, and all 
of them underwent CMRA when awake, with the average 
acquisition efficiency being 21.5%±3.4%. Thus, the final 
study group consisted of 61 patients (age 8.3±4.4 years), of 
whom 40 (11.0±1.8 years) underwent CMRA when awake 
and 21 (3.4±2.3 years) underwent CMRA when sedated. All 
patients were in the sinus rhythm, and the average heart rate 
during scan acquisition was 92±18 beats/min. Moreover, 39 
(10.2±3.6 years) of the patients underwent CCTA or ICA, 
the findings of which were used to evaluate the diagnostic 
performance. Within 2 weeks, 87.2% (34/39) of the patients 
underwent CCTA while 12.8% (5/39) underwent ICA. The 
patients’ characteristics and the distribution of classified 
CAAs are detailed in Table 2. The success rate of sNAV-
CMRA (65/65, 100%) was higher than that of dNAV-
CMRA (61/65, 93.8%) (P<0.001). The scan time of sNAV-

Table 2 Basal characteristics of children with known or suspected 
CAAs

Variable
Children with known or 
suspected CAAs (n=65)

Age (years) 8.5±4.4

Heart rate (beats/min) 92±18

BMI (kg/m2) 17.4±3.5

Male 37 (56.9)

Female 28 (43.1)

Sedation 21 (32.3)

Awake 44 (67.7)

The classification of CAAs based on CCTA or ICA

High tubular aorta 7

Acute angle 3

LCX to sinus 5

LCA to the right sinus 3

RCA to the left sinus 3

Myocardial bridge 10

CA to the aorta wall 2

ALCAPA 1

Normally distributed data are given as mean ± SD or n (%). 
CAA, coronary artery anomaly; BMI, body mass index; CCTA, 
coronary computed tomography angiography; ICA, invasive 
coronary angiography; LCX, left circumflex coronary artery; LCA, 
left coronary artery; RCA, right coronary artery; CA, coronary 
artery; ALCAPA, left coronary artery arising from the pulmonary 
artery; SD, standard deviation.
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CMRA (7.3±2.5 min) was significantly shorter than that of 
dNAV-CMRA (9.1±3.6 min) (P=0.002).

Image quality 

Figure 4 shows the representative images of CAAs in 
CCTA/ICA, dNAV-CMRA and sNAV-CMRA. Quantitative 
and qualitative analysis of image quality between two 
sequences are summarized in Table 3 and shown in Figure 5. 
In the study cohort, coronary artery origins were depicted 
in 98.4% (60/61) of patients, and there was no difference 
in the vessel visualized ratio between these two sequences 
(all P values >0.05). The visible scores of the LM, LCX, 

proximal and middle RCA, and LAD segments showed no 
statistically significant difference between the two sequences 
(all P values >0.05). However, dNAV-CMRA obtained 
higher scores for the distal RCA and LAD (P<0.050). 

The LAD, LCX, and RCA lengths (Table 3) showed 
no differences between the two sequences (P>0.050), and 
the sharpness (Table 3) of the LCX showed no significant 
difference between dNAV-CMRA (3.6±1.6) and sNAV-
CMRA (3.4±2.2) (P=0.176). In contrast, the sharpness of 
the RCA and LAD was significantly improved (both P 
values <0.050) under dNAV-CMRA (3.6±1.6 and 4.0±2.0, 
respectively) compared with sNAV-CMRA (3.2±1.5 and 
3.3±2.2, respectively). 
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Figure 4 Representative images of CAAs in CCTA/ICA, dNAV-CMRA and sNAV-CMRA. Patient 1: a 17-year-old patient was diagnosed 
with acute angle. Patient 2: a 14-year-old patient was diagnosed with a high origin of the coronary artery. Patient 3: an 8-year-old patient 
was diagnosed with myocardial bridge coronary. Patient 4: a 13-year-old patient was diagnosed with the left coronary artery originating 
from the right coronary artery sinus, which was slightly compressed by the ascending aorta and pulmonary artery. The arrows indicate the 
lesion’s location. CCTA, coronary computed tomography angiography; ICA, invasive coronary angiography; dNAV-CMRA, diaphragmatic-
navigated coronary magnetic resonance angiography; sNAV-CMRA, self-navigated coronary magnetic resonance angiography; LM, left 
main coronary artery; CAA, coronary artery anomaly.
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The diagnostic performance of sNAV-CMRA and dNAV-
CMRA 

Diagnostic-quality images were obtained in all 39 patients 
who underwent CCTA or ICA. Among these pediatric 
patients, 79.48% (31/39) were diagnosed with CAAs using 
CCTA or ICA. Both CMRA sequences correctly recognized 
96.8% (30/31) of CAAs diagnosed with CCTA or ICA. The 
sensitivity, specificity, PPV, and NPV of the detection CAAs 
were no different between sNAV-CMRA (96.8%, 100%, 
100%, and 88.9%, respectively) and sNAV-CMRA (96.8%, 
100%, 100%, and 88.9%, respectively) (all P values >0.99). 
The sensitivity, specificity, PPV, and NPV of the detection 
ACAOS also showed no difference between sNAV-CMRA 
(100%, 100%, 100%, and 100%, respectively) and dNAV-
CMRA (100%, 100%, 100%, and 100%, respectively) (all P 
values >0.99).

Discussion

This is the first study to investigate the clinical application 
value of 3T CMRA in pediatric patients with CAAs. The key 
findings are as follows: (I) sNAV-CMRA provided a shorter 
scan time and higher success rate than did dNAV-CMRA. 
(II) There was no significant difference in vessel length of 
all coronary arteries, the visual score, or the vessel sharpness 
of LCX. The visual score and vessel sharpness of the RCA 
and LAD using dNAV-CMRA were superior to that using 
sNAV-CMRA. (III) We found that both sequences had 
similar diagnostic accuracy in detecting CAAs.

Compared to using dNAV, using sNAV had a significantly 
reduced scan time. The sNAV approach achieved 100% 
respiratory scan efficiency without relying on operator 
expertise, and the scan time was highly predictable because 
it depended on the average heart rate of the patient 

Table 3 Quantitative and qualitative analysis of image quality between two sequences

Parameter dNAV-CMRA (n=61) sNAV-CMRA (n=61) P

Visualization of coronary arteries

LM 3.4±0.9 3.3±1.1 0.152

LAD proximal 3.2±1.1 3.2±1.2 0.419

LAD mid 3.0±1.3 2.8±1.3 0.376

LAD distal 2.3±1.2 1.9±1.3 0.015*

RCA proximal 3.3±1.1 3.2±1.1 0.142

RCA mid 3.2±1.3 3.0±1.3 0.095

RCA distal 2.6±1.5 2.0±1.4 0.004*

LCX proximal 3.1±1.2 3.0±1.2 0.611

LCX distal 2.3±1.4 2.3±1.4 0.492

Vessel length (mm)

RCA 77.1±25.2 73.5±24.4 0.080

LAD 79.2±23.8 77.5±29.1 0.274

LCX 67.7±21.4 67.0±21.0 0.800

Vessel sharpness

RCA 3.6±1.6 3.2±1.5 0.032*

LM-LAD 4.0±2.0 3.3±2.2 0.003*

LCX 3.6±1.6 3.4±2.2 0.176

Data are presented as mean ± SD. *, P<0.05. dNAV-CMRA, diaphragmatic-navigated coronary magnetic resonance angiography; sNAV-
CMRA, self-navigated coronary magnetic resonance angiography; LM, left main coronary artery; LAD, left anterior descending coronary 
artery; RCA, right coronary artery; LCX, left circumflex coronary artery; SD, standard deviation.
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Figure 5 Qualitative and quantitative analysis of coronary arteries between sNAV-CMRA and dNAV-CMRA in pediatric patients 
with suspected CAAs. (A) Vessel sharpness; (B) vessel length; (C) visualization of the coronary artery; (D) scan time. LAD, left anterior 
descending coronary artery; LCX, left circumflex coronary artery; RCA, right coronary artery; LM, the left main coronary artery; dNAV-
CMRA, diaphragmatic-navigated coronary magnetic resonance angiography; sNAV-CMRA, self-navigated coronary magnetic resonance 
angiography; CAA, coronary artery anomaly.

(17,21). The conventional dNAV approach, however, is 
associated with unpredictable and prolonged scan time due 
to dNAV-CMRA gate image acquisition discarding and 
reacquiring data falling outside a prerespiratory window. 
Furthermore, inefficient data acquisition due to irregular 
breathing patterns and poor navigator positioning can also 
lead to prolonged scan time (11,30). The second major 
factor that impacts the scan time is the k-space sampling 
technique. The dNAV is accelerated by a factor of 2 with 
GRAPPA, while sNAV is accelerated by a factor of 5 with 
undersampling, and the amount of data to be filled in the 
k-space in sNAV is much more than that in dNAV. It should 
be emphasized that the scan time of sNAV could be longer 
than that of dNAV if the acceleration factor and similar 
acquisition efficiency had been matched between these two 
sequences. Our study also found a reduction in the scan 
time of dNAV-CMRA compared with previous studies in 
adults, which approximately ranged from 10 minutes to 
1 hour (9,31); this may be attributable to the rapid and 

superficial respiration pattern of children in contrast to the 
slower and deeper pattern observed in adults. Additionally, 
21 pediatric patients underwent the examination under 
sedation, resulting in a more stable breathing pattern, which 
might have significantly improved the acquisition efficiency 
and shortened the scan time. 

Regarding examination success rate, sNAV-CMRA 
exhibited a significantly higher success rate than did dNAV-
CMRA. sNAV-CMRA directly estimates respiratory motion 
in the heart, resulting in a 100% scan success rate, and the 
shorter scan time of sNAV is also a factor that contributes 
to a higher success rate (21). The success rate of dNAV-
CMRA ranged from 85–92% in previous studies (32-34),  
which is comparable with that of our investigation. Several 
factors can cause the failure of dNAV-CMRA examination. 
First, the prolonged acquisition time can increase 
susceptibility to movement, leading to irregular respiratory 
patterns and diaphragmatic drift, often resulting in scan 
failure (31,35). Additionally, complex examination planning, 
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such as inadequate positioning of the navigator or inability 
to recognize relatively still periods in the cardiac cycle, 
leads to scanning failure (36). Our study suggests that the 
higher scan success rate and shorter scan time of sNAV-
CMRA can benefit pediatric patients who may exhibit 
poorer cooperation and tolerance toward more extended 
examinations than it can adults.

Although the visual score and vessel sharpness of the 
RCA and LAD using dNAV-CMRA was superior to that of 
sNAV-CMRA, there was no significant difference in vessel 
length in any of coronary arteries, the visual score, or the 
vessel sharpness of LCX, suggesting that both can be used 
to identify the spatial position of the anomalous origin 
and course of the main coronary branches. The potential 
influences of image quality are as follows. First, motion 
correction strategies affect image quality. Both sequences of 
correct respiratory motion in the superior–inferior direction 
have been proven insufficient because they do not consider 
remaining orientations or non-rigid deformations (30).  
However, dNAV-CMRA uses data that fall in a small 
acquisition window to reduce respiratory artifacts, while 
sNAV-CMRA uses the entire respiratory range for motion 
correction; this might have resulted in the inclusion of 
some outlier respiratory positions in the reconstruction and 
decreased the image quality of sNAV-CMRA (12). Another 
factor that might have affected image quality is the k-space 
sampling strategy. The 3D radial trajectories used by sNAV-
CMRA had a higher sampling density near the center of the 
k-space than near the periphery, which might have impacted 
the clarity of the vessel boundary (20). Furthermore, the 
data sNAV-CMRA used to correct respiratory artefacts 
were directly extracted from the ventricular blood pool, 
and the poor image quality might have been due to the 
low tracking efficiency of the self-navigation technique in 
pediatric patients who were young children with smaller 
cardiac structures (37). 

The clinical significance of CAAs varies substantially 
depending on the affected artery and its origin and course. 
Therefore, precise evaluation of the origin and proximal 
course of the coronary arteries is essential for determining 
the clinical significance of any potential CAAs (38). The 
diagnostic performance of CMRA for CAAs has shown 
considerable variation across different studies, which may 
be attributed to the presence or absence of contrast agents, 
and the heterogeneity in the acquisition sequences used. 
Albrecht et al. conducted a study with 21 pediatric patients 
using free-breathing, sNAV-CMRA at 1.5T as the imaging 
modality and CT angiography as the reference standard 

and reported a sensitivity and specificity of 71% and 92% 
for the detection of ACAOS, respectively, and 92% and for 
92% the detection of CAAs, respectively (18). In their study 
of a cohort with 100 pediatric patients, Tangcharoen et al. 
found that CAAs could be confirmed or excluded in all cases 
using 1.5T contrast-enhanced dNAV-CMRA (9). Piccini 
et al. reported that 1.5T contrast-enhanced sNAV-CMRA 
could confirm or exclude CAAs in all cases in a cohort of  
78 adults, including 17 patients with CAAs (17). In our 
study, the diagnostic performance of both dNAV- and 
sNAV-CMRA sequences for CAAs was comparable to 
those of the previous studies. Both sequences successfully 
confirmed or excluded ACAOS, which is considered 
a high-risk factor for ischemia and sudden death. Our 
study demonstrated that 3T sNAV-CMRA and dNAV-
CMRA achieved high sensitivity and specificity in pediatric 
patients with CAAs. Although the image quality of dNAV-
CMRA was slightly higher than that of sNAV-CMRA, the 
diagnostic accuracy was similar to that of sNAV-CMRA. 
Moreover, there were certain challenges in the scanning 
procedure of dNAV-CMRA, while sNAV-CMRA could 
simplify the scanning process to shorten the scan time of 
CMRA of the CAAs in pediatric patients.

There were some limitations in our study. First, the 
patient cohort was relatively small and from a single 
center, which possibly introduced selection bias. Second, 
only 63.93% (39/61) of the pediatric patients could be 
used to calculate diagnostic accuracy due to CCTA and 
ICA exposure to high radiation doses, iodinated contrast 
agents, or invasiveness. Third, the SNR did not differ 
between the two sequences in the phantom experiment. 
However, currently, we only have a water phantom and 
cannot calculate the sharpness with this water phantom, as 
it only has a single type of contrast. Although part of the 
image parameters in the two sequences were not wholly 
matched, we compared dNAV and sNAV in whole-heart 
CMRA using optimized protocols that balanced the spatial 
resolution, SNR, and scan time in clinical practice. Finally, 
both sequences investigated in this study corrected the 
motion in the simplistic superior-inferior direction, which 
is insufficient to account for respiratory-induced complex 
displacement of the heart. To reduce the remaining source of 
error in the superior-inferior motion correction, Abdi et al.  
introduced deep learning, which is an effective method 
to compensate for respiratory motion-induced signal 
loss and phase corruption (39). Prior work developing 
sNAV cine displacement encoding with stimulated echoes 
introduced the match-making method, which effectively 
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addresses the suppression of the T1 echo and corrects for 
in-plane position shifts due to breathing (40). Furthermore, 
advanced CMRA motion compensation strategies, such 
as image-based self-navigation (iNAV)-CMRA, have been 
proposed to improve image quality and reduce the scan 
time. Compared with sNAV, iNAV-CMRA provided similar 
efficiency, predictable scan times, and ease of use while 
also enabling 3D affine or 3D non-rigid reconstruction. It 
was reported that iNAV significantly improved the image 
quality (41), but validation in 3T CMRA and with larger 
cohorts has not yet been completed. 

Conclusions

Our findings demonstrated that both sNAV-CMRA 
and dNAV-CMRA provide clinical application value in 
pediatric patients with CAAs and have similar diagnostic 
performance. Compared to dNAV-CMRA, sNAV-CMRA 
allows for a simpler scanning procedure although the image 
quality of the sNAV-CMRA is slightly inferior. 
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Supplementary

A B

dNAV-CMRA sNAV-CMRA

Figure S1 The signal-to-noise ratio was not different between the dNAV-CMRA and the sNAV-CMRA (dNAV-CMRA: 310; sNAV-
CMRA: 313) in the phantom. The purple circles indicate region of interest. dNAV-CMRA, diaphragmatic-navigated coronary magnetic 
resonance angiography; sNAV-CMRA, self-navigated coronary magnetic resonance angiography.


