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Background: An increasing number of patients with suspected clinically significant prostate cancer (csPCa) 
are undergoing prostate multiparametric magnetic resonance imaging (mpMRI). The role of artificial 
intelligence (AI) algorithms in interpreting prostate mpMRI needs to be tested with multicenter external 
data. This study aimed to investigate the diagnostic efficacy of an AI model in detecting and localizing visible 
csPCa on mpMRI a multicenter external data set.
Methods: The data of 2,105 patients suspected of having prostate cancer from four hospitals were 
retrospectively collected to develop an AI model to detect and localize suspicious csPCa. The lesions were 
annotated based on pathology records by two radiologists. Diffusion-weighted imaging (DWI) and apparent 
diffusion coefficient (ADC) values were used as the input for the three-dimensional U-Net framework. 
Subsequently, the model was validated using an external data set comprising the data of 557 patients from 
three hospitals. Sensitivity, specificity, and accuracy were employed to evaluate the diagnostic efficacy of the 
model.
Results: At the lesion level, the model had a sensitivity of 0.654. At the overall sextant level, the model had 
a sensitivity, specificity, and accuracy of 0.846, 0.884, and 0.874, respectively. At the patient level, the model 
had a sensitivity, specificity, and accuracy of 0.943, 0.776, and 0.849, respectively. The AI-predicted accuracy 
for the csPCa patients (231/245, 0.943) was significantly higher than that for the non-csPCa patients (242/312, 
0.776) (P<0.001). The lesion number and tumor volume were greater in the correctly diagnosed patients than 
the incorrectly diagnosed patients (both P<0.001). Among the positive patients, those with lower average 
ADC values had a higher rate of correct diagnosis than those with higher average ADC values (P=0.01).
Conclusions: The AI model exhibited acceptable accuracy in detecting and localizing visible csPCa at the 
patient and sextant levels. However, further improvements need to be made to enhance the sensitivity of the 
model at the lesion level.
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Introduction

Prostate multiparametric magnetic resonance imaging 
(mpMRI) is a non-invasive examination used for the 
detection and localization of clinically significant prostate 
cancer (csPCa). It aims to increase the positive rate of 
biopsies and reduce unnecessary biopsies (1). Multiple 
studies (1-3) have advocated for the use of mpMRI prior 
to biopsy to identify high-risk patients and pinpoint target 
areas for subsequent biopsy. However, work efficiency 
needs to be enhanced and variation in prostate mpMRI 
interpretations needs to be minimized to meet the escalating 
demand for MRI-based diagnosis (4).

The Prostate Imaging Reporting and Data System (PI-
RADS) (5-8) is continuously updated to standardize prostate 
mpMRI interpretation. However, it still demonstrates some 
degree of variability (9,10). Intra-reader agreement ranges 
from 60% to 74%, while inter-reader agreement falls below 
50% (9). Such variation has resulted in discrepancies in 
the diagnostic efficacy of image-guided targeted biopsies, 
with csPCa detection rates varying by up to 40% for PI-
RADS 5 lesions (11). Further, the steep learning curve 
poses challenges for practitioners, and mpMRI reporting 
necessitates a high level of expertise (12,13).

The integration of deep-learning models and mpMRI 
has shown promise in providing automated and scalable 
assistance in identifying biopsy candidates and guiding 
biopsy sampling (14). Previous studies have reported that 
the performance of prostate artificial intelligence (AI) 
models has been encouraging in specific data sets; however, 
the generalization and clinical applicability of these models 
have not been extensively investigated. AI models need to 
be validated in external cohorts before any consideration is 
given to their clinical deployment (15).

In this multicenter study, we developed an AI model and 
validated it in an external data set to evaluate its diagnostic 
efficacy in detecting and localizing csPCa. We present 
this article in accordance with the TRIPOD reporting 
checklist (available at https://qims.amegroups.com/article/
view/10.21037/qims-23-791/rc).

Methods

This retrospective study was approved by the Institutional 
Review Board (IRB) of Peking University First Hospital 
(IRB number: 2021060). The requirement of individual 
consent for this retrospective analysis was waived. The 
study was conducted in accordance with the Declaration of 
Helsinki (as revised in 2013).

Data inclusion

Figure 1 shows the data enrollment process. In total, 2,221 
consecutive prostate MR images acquired between January 
2014 and December 2019 were retrospectively collected 
from 16 MR scanners in four hospitals (Hospital 1, Hospital 
2, Hospital 3, and Hospital 4) to develop an AI model for 
csPCa segmentation. Further, 580 consecutive prostate 
MR images acquired between January 2020 and November 
2021 were retrospectively collected from 14 MR scanners 
in three hospitals (Hospital 1, Hospital 2, and Hospital 3) 
to establish an external validation data set. Importantly, the 
images used in the development data set for the AI model 
and the external validation data set were mutually exclusive 
and adhered to the same inclusion and exclusion criteria.

To be eligible for inclusion in the study, patients had to 
meet the following inclusion criteria: (I) have undergone 
mpMRI prior to biopsy with a clinical suspicion of prostate 
cancer (PCa) due to an elevated serum prostate-specific 
antigen (PSA) level, abnormal findings during a digital rectal 
examination, and/or abnormal transrectal ultrasound results; 
(II) have undergone an image-guided biopsy, transurethral 
prostatectomy, or radical prostatectomy within one month of 
the MRI examination and received pathological confirmation; 
(III) have not undergone any PCa-related treatment prior 
to the examination; and (IV) have tested negative for PCa 
during biopsy and showed no potential signs of PCa during 
clinical follow-up for over 1 year. Clinical information, 
including age, total PSA levels in serum, and pathology 
results, was collected for all patients.

Patients were excluded from the study if they met any 
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Figure 1 Diagram showing the inclusion of patients in the study. mpMRI, multiparametric magnetic resonance imaging; csPCa, clinically 
significant prostate cancer.

of the following exclusion criteria: (I) they had incomplete 
image data; (II) the quality of the image was poor; and/or 
(III) there were inconsistencies between the MRI image and 
the pathology results, such as variations in tumor location, 
MRI-invisible csPCa, and imaging that indicated csPCa but 
pathology results that confirmed its absence.

MR scanning protocols

Prostate MRI images were acquired using 16 different 
MR scanners for the model development data set and 14 
different MR scanners for the external validation data set. 
The imaging setup involved the use of body coils as transmit 
coils and phased array coils as receiver coils, but no use of 
endorectal coils. The MRI sequences included T1-weighted 
imaging, T2-weighted imaging (T2WI), diffusion-weighted 
imaging (DWI), and apparent diffusion coefficient (ADC) 
maps. The acquisition of a dynamic contrast-enhanced 

sequence was not mandatory. For the DWI, a diffusion-
weighted single-shot gradient echo planar imaging sequence 
was used. For the T2WI, a T2-weighted fast spin echo 
sequence at both 3.0 T and 1.5 T was used. The ADC maps 
were generated from the DWI sequence using high and low 
b-values. Detailed information regarding the MR scanning 
protocols for both the model development data set and the 
external validation data set is presented in Table 1.

Patient classification and localization of csPCa

All the patients included in this study underwent a 
transrectal ultrasonography-guided systematic biopsy using 
either 12- or 6-core needles, as well as a cognitive-targeted 
biopsy. The process of the systematic and cognitive-targeted 
biopsy is described in detail in Appendix 1. The pathology 
results from both biopsy approaches were combined (16). 
Sextants showing the highest grade assigned by either 

https://cdn.amegroups.cn/static/public/QIMS-23-791-Supplementary.pdf
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Table 1 Information of MR scanners and protocols

Parameters
Model development data set External validation data set

Training (N=1,681) Validation (N=212) Test (N=212) P Overall (N=557)

DWI/ADC

Model name 0.87

Achieva 52 (3.1) 5 (2.4) 4 (1.9) 13 (2.3)

Aera 217 (12.9) 32 (15.1) 22 (10.4) 22 (3.9)

Amira 1 (0.1) 1 (0.5) 0 (0.0) 0 (0.0)

DISCOVERY MR750 844 (50.2) 112 (52.8) 109 (51.4) 243 (43.6)

DISCOVERY MR750w 75 (4.5) 13 (6.1) 7 (3.3) 44 (7.9)

Ingenia 107 (6.4) 8 (3.8) 19 (9.0) 45 (8.1)

Ingenia CX 1 (0.1) 0 (0.0) 0 (0.0) 1 (0.2)

Multiva 24 (1.4) 2 (0.9) 4 (1.9) 3 (0.5)

Prisma 29 (1.7) 2 (0.9) 4 (1.9) 20 (3.6)

SIGNA EXCITE 36 (2.1) 2 (0.9) 4 (1.9) 0 (0.0)

Signa HDxt 3 (0.2) 0 (0.0) 0 (0.0) 1 (0.2)

SIGNA Premier 1 (0.1) 0 (0.0) 0 (0.0) 0 (0.0)

Skyra 46 (2.7) 6 (2.8) 8 (3.8) 25 (4.5)

TrioTim 114 (6.8) 17 (8.0) 18 (8.5) 108 (19.4)

uMR 790 87 (5.2) 8 (3.8) 7 (3.3) 6 (1.1)

Verio 44 (2.6) 4 (1.9) 6 (2.8) 25 (4.5)

MAGNETOM_ESSENZA 0 (0.0) 0 (0.0) 0 (0.0) 1 (0.2)

Magnetic field 0.38

1.5 T 254 (15.1) 36 (17.0) 26 (12.3) 27 (4.8)

3.0 T 1,427 (84.9) 176 (83.0) 186 (87.7) 530 (95.2)

B value (s/mm2) 1,400 [1,400, 1,400] 1,400 [1,400, 1,400] 1,400 [1,400, 1,400] 0.70 1,400 [1,400, 1,400]

Slice thickness (mm) 4.00 [4.00, 4.00] 4.00 [4.00, 4.00] 4.00 [4.00, 4.00] 0.96 4.0 [3.0, 5.0]

Slice spacing (mm) 4.00 [4.00, 4.50] 4.00 [4.00, 4.50] 4.00 [4.00, 4.50] 0.87 4.0 [3.0, 6.5]

Repetition time (ms) 3,000 [2,640, 4,380] 2,930 [2,640, 4,110] 2,910 [2,640, 4,130] 0.76 2,671 [2,000, 6,759]

Echo time (ms) 61.3 [59.7, 63.8] 61.2 [60.0, 63.7] 61.3 [59.7, 63.5] 0.97 61 [51, 93]

Field of view (mm) 240 [220, 250] 240 [220, 250] 240 [220, 250] 0.34 240 [220, 250]

Flip angle (°) 90 [90, 90] 90 [90, 90] 90 [90, 90] 0.81 90 [90, 90]

T2WI

Slice thickness (mm) – – – – 4.0 [3.5, 4.0]

Slice spacing (mm) – – – – 4.0 [4.0, 4.0]

Repetition time (ms) – – – – 3,340 [3,000, 4,000]

Echo time (ms) – – – – 95 [87, 106]

Field of view (mm) – – – – 240 [200, 240]

Flip angle (°) – – – – 90 [90, 90]

The quantitative variables are presented as the median [Q1, Q3] for the non-normalized data. The categorical variables are presented as n 
(%). MR, magnetic resonance; DWI, diffusion-weighted imaging; ADC, apparent diffusion coefficient; T2WI, T2-weighted imaging.
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the systematic biopsy or the cognitive-targeted biopsy 
were categorized based on the International Society of 
Urological Pathology (ISUP) grade, while all other sextants 
were graded based on the systematic biopsy results. Some 
patients in this study subsequently underwent transurethral 
prostatectomy or radical prostatectomy. When obtaining 
the final comprehensive pathological diagnosis, priority was 
given to the pathology results from radical prostatectomy 
over those from transurethral prostatectomy, with the 
combined biopsy results ranked last. The ISUP grading 
system was used to classify patients as non-csPCa (the no-
cancer or ISUP group 1) or csPCa (ISUP group 2). Patients 
with negative PCa biopsies were classified as negative if 
they had an additional follow-up period of at least one year 
and no evidence of underlying PCa.

All the cases included in this study underwent a 
retrospective review and were delineated based on the 
comprehensive pathological diagnosis results of each lesion 
by two uro-radiologists (Zhaonan Sun and Xiaoying Wang, 
who had 5 and 30 years of experience in prostate MRI 
interpretation, respectively) in consensus. The open-source 
software ITK-SNAP (version 3.8.0; available at http://www.
itksnap.org) was used to annotate the tumor foci.

Sextant areas were automatically generated using the 
prostate sextant location model (Appendix 2). Subsequently, 
these sextant areas were classified as cancerous or non-
cancerous based on the presence or absence of cancer within 
each sextant. For instance, if the ground-truth segmentation 
overlapped with a sextant, it was categorized as a cancerous 
area.

AI model development

In this study, we employed an end-to-end AI model 
comprising the following four components: (I) MRI 
sequence classification; (II) prostate gland segmentation 
and measurement (17); (III) prostate zonal anatomy 
segmentation;  and (IV) csPCa foci  segmentat ion 
and measurement (18). These models were executed 
automatically in sequence. Based on the identified 
suspicious areas, various parameters, including the number 
of suspicious lesions, three-dimensional (3D) diameter, 
volume, sextant location, and average ADC value, were 
calculated and automatically incorporated into the PI-
RADS structured report (19). The primary focus of this 
study was the csPCa foci segmentation model, which 
provided a binary output. Detailed information about the 
other AI models can be found in Appendix 2.

Preprocessing
The DWI, ADC maps, and T2WI were registered through 
rigid transformation using the coordinate information 
stored in the Digital Imaging and Communications in 
Medicine (DICOM) image headers. For the automatic pre-
segmentation of the prostate gland region, a model (17)  
previously developed at our institution was employed; 
detailed information about the latest updated model 
can be found in Appendix 2. All the prostate areas were 
standardized and cropped to a size of 64×64×64 (x, y, z), 
with pixel intensity normalized to the range of [0, 1]. To 
augment the training set, random rotations (within a range 
of 10 degrees), random noise, and parallel translations 
within the range of [(–0.1, 0.1); (–0.1, 0.1)] pixels were 
applied.

Deep learning
The collected data were divided randomly into the following 
three data sets: a training data set (comprising 80% of the 
data); a validation data set (comprising 10% of the data); 
and an internal test data set (comprising10% of the data). 
The AI model used a combination of DWI and ADC maps 
as input for the PCa segmentation (18). A cascade 3D 
U-Net framework (20) was employed for the segmentation 
process. The training processes were conducted using 
the NVIDIA Tesla P100 16G GPU. The algorithm was 
implemented using Python 3.6, PyTorch 0.4.1, OpenCV 
3.4.0.12, Numpy 1.16.2, and SimpleITK 1.2.0. Taking into 
consideration aspects such as computational efficiency, 
generalization, training stability, and data set size, a batch 
size of 60 was employed during training, and 1,000 epochs 
were conducted to train the networks. The optimization 
algorithm employed was the Adaptive Moment Estimation 
(Adam) gradient descent, which had a learning rate of 
0.0001, and the binary cross-entropy loss function was 
minimized.

Post-processing
Based on the current capabilities of mpMRI, csPCa volumes 
greater than or equal to 0.5 cc can feasibly be detected (7). 
However, the current use of AI models for csPCa diagnosis 
is often associated with a high rate of false positive (FP) 
results (21-23). To address the potential impact of the very 
small, predicted tumor foci, an output threshold of 0.5 cc 
was adopted. It is important to emphasize that this post-
processing step was only performed on the test and external 
validation data sets and was not performed on the training 
and validation sets. The rationale for adopting this approach 
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during the training phase was to enhance the training 
efficiency and enable the model to learn from a diverse 
range of cancerous voxels in which a volume threshold was 
deliberately omitted.

Evaluation of the AI prediction results

At the lesion level, each connected domain predicted by 
the AI model was regarded as a predicted lesion. For each 
patient, we focused on studying the four largest lesions. To 
assess the performance of the AI model, we compared the 
predicted lesions with the reference standard. The spatial 
overlap between the predicted lesion and the reference 
standard was measured using the mean dice similarity 
coefficient (DSC). If a lesion overlapped with the reference 
standard, it was classified as a true positive (TP) lesion. 
Conversely, if an AI-predicted lesion did not overlap with 
the reference standard, it was classified as an FP lesion. 
Similarly, if a reference lesion did not overlap with any AI-
predicted lesion, it was classified as a false negative (FN) 
lesion.

At the sextant level, the right-upper, right-middle, right-
lower, left-upper, left-middle, and left-lower regions of 
the prostate gland were independently examined. The 
presence of lesion overlap within a sextant was defined as a 
positive finding. Thus, if a sextant overlapped with both the 
reference lesion and AI-predicted lesion, it was classified as 
a TP sextant. If a sextant only overlapped with the reference 
lesion and not the AI-predicted lesion, it was classified as a 
FN sextant. Conversely, if a sextant only overlapped with 
the AI-predicted lesion and not the reference lesion, it was 
classified as a FP sextant. Finally, if a sextant did not overlap 
with either the reference lesion or the AI-predicted lesion, 
it was classified as a true negative (TN) sextant.

At the patient level, a patient with any TP sextant was 
classified as a TP case. A patient with all TN sextants was 
classified as a TN case. A patient with TN and FP sextants, 
without any TP sextants, was classified as a FP case. 
Similarly, a patient with TN and FN sextants without any 
TP sextants was classified as a FN case.

To assess the ability of the AI model to detect lesions, 
we calculated the sensitivity at the lesion level. At the 
sextant level, we evaluated sensitivity, specificity, and 
accuracy to assess the ability of the AI model to localize 
lesions, comparing these metrics across the six sextants. 
Additionally, sensitivity, specificity, and accuracy were 
calculated at the patient level to evaluate the ability of the 
AI model to identify biopsy candidates. The accuracy of the 

AI model at the patient level was also examined; the tumor 
number, volume, and average ADC value were considered 
contributing factors.

Statistical analysis

The statistical analyses were conducted using the R software 
(version 4.2.0). For the normalized data, the quantitative 
variables are presented as the mean (standard deviation). 
For the non-normalized data, the quantitative variables are 
presented as the median (Q1, Q3). The categorical variables 
are reported as numbers (percentages). The Wilcoxon test 
was used to compare the quantitative variables, and the chi-
square test was used to compare the categorical variables. 
Segmentation metrics, including the DSC, Jaccard 
Coefficient (JACARD), volume similarity (VS), Hausdorff 
distance (HD), and average distance (AD), were calculated 
and compared by an analysis of variance.

A free-response receiver operating characteristic (FROC) 
analysis was conducted to assess the lesion detection 
accuracy of the AI model. A Bland-Altman analysis was used 
to evaluate the measured values of PCa. All the statistical 
tests were two-tailed, and a significance level of 5% was 
applied.

Results

Clinical characteristics

The model development data set comprised 2,105 patients, 
of whom 1,368 had a confirmed diagnosis of PCa and 737 
did not have PCa. For the external validation, the data set 
comprised 557 patients, of whom 245 had a confirmed 
diagnosis of PCa and 312 did not have PCa. The clinical 
characteristics of these patients are presented in Table 2.

Segmentation metrics and quantitative evaluation

In the test set of the model development data set, the model 
exhibited proficient performance in lesion segmentation, 
achieving a DSC value of 0.80 (0.61, 0.86). The DSC, 
JACRD, VS, HD, and AD values of the different data 
sets are displayed in Table 3. Further, Table 4 and Figure 2 
present the results of the Bland-Altman analysis for the 
measured values of PCa foci, including the right-left (RL) 
diameter, anteroposterior (AP) diameter, superoinferior 
(SI) diameter, volume, and ADC value. The Bland-Altman 
analysis used radiologist-annotated results as the reference 
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Table 2 Clinical characteristics of the patients in the study

Parameters
Model development data set External validation data set

P value
Negative (N=737) Positive (N=1,368) Negative (N=312) Positive (N=245)

Age (years) 64.5 (60, 69) 69.0 (63.0, 77.0) 65.5 (60.0, 71.0) 70.0 (64.0, 76.0) 0.23

tPSA value 7.5 (6.2, 8.6) 16.2 (10.6, 32.5) 8.22 (5.07, 18.8) 12.1 (6.87, 33.2) <0.001

Final ISUP group <0.001

Biopsy-NoPCa 698 (94.7) 0 (0.0) 299 (95.8) 0 (0.0)

1 39 (5.3) 0 (0.0) 13 (4.2) 0 (0.0)

2 0 (0.0) 628 (45.9) 0 (0.0) 101 (41.2)

3 0 (0.0) 208 (15.2) 0 (0.0) 40 (16.3)

4 0 (0.0) 164 (12.0) 0 (0.0) 37 (15.1)

5 0 (0.0) 232 (17.0) 0 (0.0) 46 (18.8)

Positive 0 (0.0) 136 (9.9) 0 (0.0) 21 (8.6)

ISUP source <0.001

Biopsy 701 (95.1) 808 (59.1) 307 (98.4) 137 (55.9)

TURP 36 (48.9) 54 (3.9) 5 (1.6) 9 (3.7)

RP 0 (0.0) 506 (37.0) 0 (0.0) 99 (40.4)

Per-patient PI-RADS category <0.001

PI-RADS 1–2 492 (66.8) 112 (8.2) 232 (74.3) 17 (6.9)

PI-RADS 3 194 (26.3) 364 (26.6) 67 (21.5) 61 (24.9)

PI-RADS 4 26 (3.5) 263 (19.2) 9 (2.9) 43 (17.6)

PI-RADS 5 25 (3.4) 629 (46.0) 4 (1.3) 124 (50.6)

Number of lesions <0.001

0 737 (100.0) 0 (0.0) 312 (100.0) 0 (0.0)

1 0 (0.0) 596 (43.6) 0 (0.0) 140 (57.1)

2 0 (0.0) 340 (24.9) 0 (0.0) 47 (19.2)

3 0 (0.0) 168 (12.3) 0 (0.0) 23 (9.4)

4 0 (0.0) 98 (7.2) 0 (0.0) 35 (14.3)

>4 0 (0.0) 166 (12.1) 0 (0.0) 0 (0.0)

Hospital <0.001

Hospital 1 641 (87.0) 930 (68.0) 263 (84.3) 69 (28.2)

Hospital 2 74 (10.0) 229 (16.7) 21 (6.7) 67 (27.3)

Hospital 3 9 (1.2) 186 (13.6) 28 (9.0) 109 (44.5)

Hospital 4 13 (1.8) 23 (1.7) 0 (0.0) 0 (0.0)

The quantitative variables are presented as the median (Q1, Q3) for the non-normalized data. The categorical variables are presented as n 
(%). tPSA, total prostate-specific antigen; ISUP, Pathological International Society of Urological Pathology; TURP, transurethral resection 
of the prostate; RP, radical prostatectomy; PI-RADS, Prostate Imaging Reporting and Data System.
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Table 3 Segmentation metrics of the model in the model development data set

Parameters Training (N=1,681) Validation (N=212) Test (N=212) P value

DSC 0.93 (0.91, 0.95) 0.81 (0.70, 0.87) 0.80 (0.61, 0.86) <0.001

JACARD 0.87 (0.83, 0.90) 0.68 (0.53, 0.77) 0.67 (0.44, 0.76) <0.001

VS 0.99 (0.98, 1.00) 0.90 (0.80, 0.95) 0.87 (0.73, 0.95) <0.001

HD 5.63 (2.50, 12.4) 9.94 (6.76, 18.0) 12.5 (7.91, 20.4) <0.001

AD 0.08 (0.05, 0.18) 0.40 (0.18, 1.11) 0.49 (0.23, 1.67) <0.001

The quantitative variables are presented as the median (Q1, Q3) for the non-normalized data. DSC, dice similarity coefficient; JACARD, 
Jaccard Coefficient; VS, volumetric similarity; HD, Hausdorff distance; AD, average distance.

Table 4 Bland-Altman analysis of the measured values of prostate cancer

Parameters RL diameter AP diameter SI diameter Volume ADC value

Bias –0.464 –0.431 –0.526 –1.306 –0.464

BiasUpperCI –0.394 –0.37 –0.464 –1.053 –0.394

BiasLowerCI –0.533 –0.492 –0.588 –1.56 –0.533

BiasStdDev 1.63 1.425 1.453 5.926 1.63

BiasSEM 0.036 0.031 0.032 0.129 0.036

LOA_SEM 0.061 0.053 0.054 0.221 0.061

UpperLOA 2.73 2.361 2.322 10.309 2.73

UpperLOA_upperCI 2.85 2.465 2.428 10.742 2.85

UpperLOA_lowerCI 2.611 2.257 2.216 9.876 2.611

LowerLOA –3.657 –3.223 –3.374 –12.922 –3.657

LowerLOA_upperCI –3.538 –3.119 –3.267 –12.489 –3.538

LowerLOA_lowerCI –3.777 –3.327 –3.48 –13.355 –3.777

Regression.fixed.slope 0.15 0.12 0.12 –0.02 0.15

Regression.fixed.intercept –0.83 –0.71 –0.82 –1.1 –0.83

RL, right-left; AP, anteroposterior; SI, superoinferior; ADC, apparent diffusion coefficient; CI, confidence interval; LOA, limits of agreement; 
SEM, standard error of mean.

standard to assess the consistency of the AI measurements 
with these reference standards. These results demonstrated 
a high level of agreement in the predicted volumes, 3D 
diameters, and ADC values of the PCa lesions compared to 
the reference standard. The differences observed between 
the majority of the AI results and the reference standard 
were minimal and fell within the 95% limit of agreement.

Lesion-level performance in the external validation data set

In total, 434 locations of PCa lesions were annotated by the 
radiologists and used as the reference standard for evaluating 

the AI model. Additionally, the AI model identified an 
additional 96 locations, resulting in a total of 530 locations 
for analysis. The AI model had a sensitivity of 0.654 and a 
positive predictive value of 0.747 at the lesion level. The AI-
predicted results at the lesion level are depicted in line 3 of 
Figure 3. The AI model correctly identified 284 cancer foci 
in 231 patients, yielding a lesion-level sensitivity of 65.4%. 
The prediction results at the lesion level on the MR images 
are illustrated in Figure 4. The results of the FROC analysis 
of the lesion detection ability of the AI model are shown in 
Figure 5. By illustrating the trade-off between the sensitivity 
and FP results per patient, this curve visually presents the 
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Figure 2 Bland-Altman analysis of the values of the RL diameter (A), AP diameter (B), SI diameter (C), volume (D), and ADC value (E) of 
the manual label and the predicted label of prostate cancer. RL, right-left; AP, anteroposterior; SI, superoinferior; ADC, apparent diffusion 
coefficient.

performance characteristics of the algorithm.

Sextant-level performance in the external validation data set

Of the 3,342 sextant areas evaluated in the 557 patients, the 
AI model diagnosed 745 TP, 136 FN, 2,175 TN, and 286 FP  
sextants. As a result, the overall sensitivity, specificity, and 
accuracy of the AI model at the sextant level were 0.846, 
0.884, and 0.874, respectively (Table 5). In relation to each 
specific type of sextant (i.e., right-superior, right-middle, 
right-inferior, left-middle, and left-inferior), the sensitivity 
ranged from 0.772 to 0.902 (P=0.01), the specificity ranged 
from 0.851 to 0.915 (P=0.02), and the accuracy ranged from 
0.858 to 0.894 (P=0.34) (Figure 6).

Patient-level performance in the external validation data set

At the patient level, the AI model correctly detected that 

231 of 245 patients had csPCa, and 242 of 312 patients did 
not have csPCa (Figure 3). Thus, the sensitivity, specificity, 
and accuracy for the detection of csPCa patients were 0.943, 
0.776, and 0.849, respectively (Table 5).

Table 6 and Figure 7 present the factors that influenced 
the accuracy of the AI model at the patient level. The AI 
model accurately predicted the presence of csPCa in a 
higher proportion of csPCa patients (231/245, 0.943) than 
non-csPCa patients (242/312, 0.776) (P<0.001) (Figure 7A). 
The lesion number and tumor volume (24) were greater 
in the correctly diagnosed patients than the incorrectly 
diagnosed patients [0 (0, 1) vs. 0 (0, 0); 0.00 (0.00, 0.00) 
vs. 0.00 (0.00, 2.36) cm3, both P<0.001] (Figure 7B,7C). 
Additionally, among the positive patients, those with lower 
average ADC values were more accurately diagnosed 
than those with higher average ADC values [0.750 (0.643, 
0.866) ×10−3 mm2/s vs. 0.884 (0.765, 0.966)×10−3 mm2/s, 
P=0.011] (Figure 7D). The statistical analysis indicated that 
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Figure 3 AI-predicted results at the lesion level. csPCa, clinically significant prostate cancer; TP, true positive; FN, false negative; TN, true 
negative; FP, false positive; AI, artificial intelligence.

with the exception of the hospital variable (P=0.04), there 
were no significant differences in the accuracy of the AI 
model among the different magnetic fields, vendors of MR 
scanners, or PCa locations (all P>0.05).

Discussion

Before any AI model can be used to assist radiologists to 
manage the increase in imaging volumes, it must undergo 
external evaluation. Thus, this study sought to demonstrate 
that an AI model could accurately detect and localize 
suspicious findings on prostate MRI. A diverse multicenter 
data set was employed for the external validation of our 
PCa AI model. The correlation between model efficacy 
and disease characteristics was investigated to promote the 
transparent validation and facilitate the clinical translation 
of our findings.

The meta-analysis (25) showed that the model had 
a pooled sensitivity of 0.89 and a specificity of 0.73 in 
diagnosing patients with csPCa using PI-RADS Version 2. 
In relation to sextant location, a previous study reported 
that radiologists had a sensitivity of 0.55 to 0.67 and a 
specificity of 0.68 to 0.80 (26). In our study, the sensitivity 
and specificity of the AI model were 0.943 and 0.776 at 
the patient level, and 0.846 and 0.884 at the sextant level, 
respectively. It is crucial to compare the results of the 
AI model with those of the radiologists. The AI model 
provides a binary classification of positive and negative 
results. Radiologists use the PI-RADS scoring system to 

assess the likelihood of PCa during image interpretation. 
Since the PI-RADS scores provided by radiologists are 
subjective evaluations, there may be inconsistencies between 
different observers and even within the same observer. 
We have previously conducted research on this very issue, 
comparing the diagnostic accuracy, diagnostic confidence, 
and diagnostic time of radiologists when using AI versus not 
using AI. As the results of this previous study have already 
been published (18), we elected not to include this content 
in the current manuscript to avoid duplicate publication. 
It is crucial to note that our AI model performed well at 
both the patient and sextant levels, effectively fulfilling the 
two main objectives of identifying biopsy candidates and 
providing accurate guidance for targeted biopsies. Our 
AI model had an average sensitivity of 94.3% in detecting 
index lesions but only 65.4% in detecting all lesions; thus, 
the lesion-level sensitivity of the model needs to be further 
enhanced. The use of PIRADS V2 enabled radiologists 
to achieve a sensitivity of 91% in identifying index PCa 
lesions and a sensitivity of 63% in detecting all lesions (27).  
The sensitivity of the AI model at the lesion level is 
comparatively lower; however, it remains consistent with 
the diagnostic performance currently achieved by medical 
professionals using PIRADS V2. The per-sextant sensitivity 
was much higher than the per-lesion sensitivity. The 
observed difference between the per-sextant sensitivity 
and per-lesion sensitivity can be attributed to the inherent 
complexity of lesion detection and the manner in which 
lesions are distributed within the sextants. The lower per-
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Figure 4 An example of algorithm segmentation and location. ADC map (A), DWI (B), and T2WI (C) showed two prostate cancer lesions 
in the right peripheral zone (white arrow) and the left transition zone (yellow arrow). (D) Sextant location image. (E-L) Axial and coronal 
images with overlaid segmentations (the red polygon outlines the ground truth of clinically significant prostate cancer, and the green polygon 
outlines the predicted area by the AI algorithm). The lesion located in the right peripheral zone is a TP lesion and occupies the right-upper 
and right-middle sextants; thus, the two sextants are TP sextants. The predicted area located in the left transitional zone is a FN lesion; thus, 
the left-middle sextant is an FN sextant, and the remaining sextants are TN zones. At the patient level, the patient was diagnosed with TP. 
ADC, apparent diffusion coefficient; DWI, diffusion-weighted imaging; T2WI, T2-weighted imaging; AI, artificial intelligence; TP, true 
positive; FN, false negative; TN, true negative.

lesion sensitivity arises from the potential occurrence of 
missed diagnoses at the lesion level, which led to a decrease 
in the model’s overall sensitivity for detecting individual 
lesions. Lesions with larger volumes tend to have a lower 

rate of missed diagnosis and higher detection accuracy, as 
their size facilitates easier identification. Consequently, 
larger lesions often span multiple sextants, resulting in the 
correct diagnosis of more sextants.
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Recently, numerous studies have presented compelling 
evidence in this domain (28). The commercially available 
software provided at https://fuse-ai.de/prostatecarcinoma-
ai has a comparable level of reliability to that of radiologists 
in detecting carcinomas, with a patient-level sensitivity of 
0.86, which, in contrast, is inferior to our model’s sensitivity 
value of 0.94. Several researchers (18,26,29) have sought 
to evaluate the efficacy of the U-Net network for PCa 
detection at various levels, including the lesion, sextant, and 
patient levels. However, these studies did not examine the 

effect of different cancer foci on the diagnostic efficiency 
of the models. Zhong et al. (30) employed a training set 
(comprising data from 110 prostate patients) and a test set 
(comprising data from 30 patients) to assess the effectiveness 
of their model, and found that the transfer learning-
based model exhibited superior efficacy in diagnosing 
PCa than the deep-learning model without transfer 
learning. However, it should be noted that their analysis 
was limited to the lesion level. Further, Cao et al. (31)  
trained a FocalNet model to autonomously identify prostate 
lesions. Their model achieved a confidence score that 
yielded outcomes on par with those achieved by experienced 
radiologists but was specifically limited to high-sensitivity or 
high-specificity scenarios. These models were trained and 
validated on private data sets, which are often homogeneous 
and lack external validation with data from other institutions 
and scanners produced by different manufacturers.  
Table S8 provides an overview of the key differences 
between our study and recent previous studies using deep 
learning in prostate MRI.

As we enter a new phase in the application of AI to 
prostate mpMRI, our goal is to prioritize transparent 
validation and clinical translation. Previous studies have 
primarily focused on reporting the performance metrics of 
AI models, such as sensitivity, specificity, and areas under 
the curve, but have often failed to offer interpretations of 
these values. Such interpretations are crucial in enhancing 
radiologists’ confidence in the results and facilitating the 
clinical implementation of AI models. In our research, we 
examined the effects of inherent characteristics of PCa 
on the performance of the AI model. In our analysis, we 
observed a substantial discrepancy in the AI-predicted 
accuracy between patients with csPCa and those without 
csPCa. Specifically, our model’s accuracy for csPCa patients 
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Figure 5 AI-predicted results at the lesion level as shown by the 
FROC curve. The y-axis represents the LLF, which corresponds 
to the sensitivity of lesion detection. The x-axis represents the 
NLF, indicating the average number of FPs per case. LLF, lesion 
localization fraction; NLF, negative localization fraction; AI, 
artificial intelligence; FROC, free-response receiver operating 
characteristic; FP, false positive.

Table 5 Evaluation metrics for the detection of prostate cancer at different levels

Parameters Patient level Sextant level Lesion level

Accuracy 0.849 (0.849, 0.850) 0.874 (0.874, 0.874) –

Sensitivity 0.943 (0.914, 0.972) 0.846 (0.822, 0.869) 0.654 (0.608, 0.699)

Specificity 0.776 (0.729, 0.822) 0.884 (0.871, 0.896) *

Positive predictive value 0.767 (0.720, 0.815) 0.723 (0.695, 0.750) 0.747 (0.701, 0.790)

Negative predictive value 0.945 (0.917, 0.973) 0.941 (0.932, 0.951) *

*, due to the absence of TN findings for lesion detection, calculating the specificity and negative predictive value was infeasible at the 
lesion level. The data presented in the table represent various metrics with their corresponding values and their respective 95% confidence 
intervals. TN, true negative.

https://fuse-ai.de/prostatecarcinoma-ai
https://fuse-ai.de/prostatecarcinoma-ai
https://cdn.amegroups.cn/static/public/QIMS-23-791-Supplementary.pdf


Quantitative Imaging in Medicine and Surgery, Vol 14, No 1 January 2024 55

© Quantitative Imaging in Medicine and Surgery. All rights reserved.   Quant Imaging Med Surg 2024;14(1):43-60 | https://dx.doi.org/10.21037/qims-23-791

 0.832 0.902 0.772 0.806 0.888 0.814
 0.915 0.854 0.879 0.884 0.851 0.910
 0.894 0.871 0.858 0.865 0.864 0.890

 Ll LM LS Rl RM RS
Sextants

P
er

ce
nt

ag
e

100

75

50

25

0

FN

FP

TN

TP

Sensitivity
Specificity
Accuracy
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Table 6 Factors affecting AI accuracy at the patient level

Parameters Overall (n=557) Error (n=84) Right (n=473) P value

Patient diagnosis <0.001

Negative 312 (56.0) 70 (83.3) 242 (51.2)

Positive 245 (44.0) 14 (16.7) 231 (48.8)

Lesion number 0.00 (0.00, 1.00) 0.00 (0.00, 0.00) 0.00 (0.00, 1.00) <0.001

Tumor volume (cm3) 0.00 (0.00, 1.87) 0.00 (0.00, 0.00) 0.00 (0.00, 23.55) <0.001

Average ADC value (10–3 mm2/s) 0.753 (0.643, 0.875) 0.884 (0.765, 0.966) 0.750 (0.643, 0.866) 0.011

Hospital 0.042

Hospital 1 332 (59.6) 52 (61.9) 280 (59.2)

Hospital 2 88 (15.8) 19 (22.6) 69 (14.6)

Hospital 3 137 (24.6) 13 (15.5) 124 (26.2)

Magnetic field 0.999

1.5 T 27 (4.8) 4 (4.8) 23 (4.9)

3.0 T 530 (95.2) 80 (95.2) 450 (95.1)

Vendor 0.364

GE 288 (51.7) 50 (59.5) 238 (50.3)

PHILIPS 62 (11.1) 8 (9.5) 54 (11.4)

SIEMENS 201 (36.1) 26 (31.0) 175 (37.0)

UIH 6 (1.1) 0 (0.0) 6 (1.3)

PCa location 0.512

PZ 32 (5.7) 3 (21.4) 29 (12.6)

TZ 188 (33.8) 2 (14.3) 23 (10.0)

PZ + TZ 25 (4.5) 9 (64.3) 179 (77.4)

The quantitative variables are presented as the median (Q1, Q3) for the non-normalized data. The categorical variables are presented as n 
(%). AI, artificial intelligence; ADC, apparent diffusion coefficient; PCa, prostate cancer; PZ, peripheral zone; TZ, transition zone.
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Figure 7 Factors affecting the accuracy of the AI model at the patient level. (A) The AI model was significantly more accurate in predicting 
csPCa patients (231/245, 0.943) than non-csPCa patients (242/312, 0.776) (P<0.001). (B,C) The lesion number and tumor volume were 
greater in the correctly diagnosed patients than the incorrectly diagnosed [0 (0, 1) vs. 0 (0, 0); 0.00 (0.00, 0.00) vs. 0.00 (0.00, 2.36) cm3, both 
P<0.001]. (D) Among the positive patients, those with lower average ADC values had a higher rate of correct diagnosis than those with 
higher average ADC values [0.750 (0.643, 0.866) vs. 0.884 (0.765, 0.966)×10–3 mm2/s, P=0.011]. csPCa, clinically significant prostate cancer; 
AI, artificial intelligence; ADC, apparent diffusion coefficient.

was significantly higher than that for non-csPCa patients. 
Thus, the AI model’s enhanced ability to detect csPCa 
could be leveraged to mitigate FN results and unnecessary 
biopsies. However, it is important to emphasize that further 
validation at a higher level is required to establish the 
association between the AI models’ diagnostic results and 
their clinical value. Thus, future studies with prospective 
cohorts of patients with long-term follow-up periods need 
to be conducted to validate these results. Other findings 
indicate that patients with a greater number of lesions, a 
larger tumor volume, and lower average ADC values tend 
to receive a more accurate diagnosis from the AI model. 
These trends align with the performance of radiologists. 
Using the PI-RADS Version 2 system, radiologists detected 
PCa in 12–33%, 22–70%, and 72–91% of lesions with PI-
RADS scores of 3, 4, and 5, respectively (32,33).

Recent studies have shown the favorable performance 
of architectures that integrate two cascaded networks: a 
first model that segments or performs a crop around the 

prostate area, and a second binary model that segments 
the PCa lesion. In the study conducted by Yang et al. (34), 
convolutional neural networks (CNNs) were employed 
to crop square regions encompassing the entirety of the 
prostate area. Subsequently, their proposed co-trained 
CNNs were fed with pairs of aligned ADC and T2WI 
squares. Expanding on this work, Wang et al. (35) and 
Zhu et al. (29) adapted the workflow to create an end-to-
end trainable deep neural network comprising two sub-
networks. The first sub-network was responsible for 
prostate detection and ADC-T2WI registration, while the 
second sub-network was a dual-path multimodal CNN that 
generated a classification score for csPCa and non-csPCa. 
In the study conducted by Saha et al. (36), a preparatory 
network called anisotropic 3D U-Net was employed to 
generate deterministic or probabilistic zonal segmentation 
maps. These maps were subsequently fused in a second 
CNN that produced a probability map for csPCa. Despite 
the additional weights and more intensive training process 
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introduced by the two-step workflow, it has proven to 
be an effective method. Certain attention mechanisms 
have demonstrated improved segmentation performance 
in prostate imaging tasks. Rundo et al. (37) employed a 
“squeeze & excitation” (SE) module for prostate zonal 
segmentation on diverse MRI data sets, and reported a 
1.4–2.9% increase in the DSC compared to the U-Net 
baseline, specifically for peripheral zone segmentation, 
when evaluating their multi-source model across different 
data sets. Zhang et al. (38) introduced combined channel-
attention (inspired by the SE module) and position-
attention layers, and achieved a DSC that surpassed their 
baseline by 1.8% for prostate lesion segmentation on 
T2WI. Additionally, Saha et al. (36) improved the sensitivity 
by 4.34% by incorporating the aforementioned SE model 
and grid-attention gates mechanisms into a 3D UNet++ (39) 
backbone architecture for binary PCa segmentation.

At the lesion level, 530 lesions were analyzed, of which 
53.6% (284/530) lesions were correctly diagnosed (TP 
lesions) by the AI model, 28.3% (150/530) lesions were 
missed (FN lesions), and 18.1% (96/530) additional lesions 
were over detected (FP lesions). Despite some misdiagnosed 
lesions, the overall accuracy of the AI model at the lesion 
level was similar to the results of the imaging interpretation 
by radiologists. In previous studies, the FP rates of 
radiologists for lesions with PI-RADS scores ≥3 have 
varied from 32% to 50% (40). Additionally, the FN rate of 
radiologists may reach 12% for high-grade cancers during 
screening, and may be as high as 34% in men undergoing 
radical prostatectomy (1,41). There might be other reasons 
for the high prevalence of FN and FP lesions in our study. 
In terms of the FN lesions, our study methodology may 
have falsely increased the FN rate. One limitation of our 
study is that when multiple lesions were detected by the AI 
model in a case, only the four largest lesions detected by 
the AI model were studied. Because PI-RADS recommends 
reporting no more than four lesions in structured reporting, 
we followed this rule to simulate a real clinical scenario. 
Thus, if AI detects more than four TP lesions in a patient, 
the extra lesions would be considered FN lesions. In 
terms of the FP lesions, the imperfect match between the 
reference standard annotation and the real pathology might 
have increased the FP rate. In this study, the diagnoses of 
79.7% of the patients were pathologically proven by image-
guided biopsy. In comparison to radical prostatectomy 
specimens, image-guided biopsy pathology results may miss 
some lesions (16). When radiologists outline the reference 
area of csPCa foci on MR images according to the biopsy 

pathology results, they may miss lesions or underestimate 
the extent of the lesions (42). Conversely, if the missed 
lesions were detected by the AI model and considered FPs, 
the lesions may be correctly detected.

In addition to the above-mentioned methodological 
limitations, our study had a number of other limitations. 
First, the retrospective study design and unbalanced data 
prevented a robust assessment of the clinical impact of the 
model. Ideally, AI models should be deployed in prospective 
randomized studies to test their performance. Second, if 
there were mismatches between the MR images and the 
pathology data, the data were not analyzed. The reference 
standard was based on image-guided biopsy, and the result 
obtained by using whole-mount step section pathology 
as the reference standard was more credible than image-
guided biopsy pathology. Third, poor image quality data 
were excluded; however, we intend to address this in future 
clinical applications. Finally, there is a lack of research on 
radiologists interacting with AI models. In the future, we 
plan to invite radiologists with varying levels of experience 
to interpret mpMRI reports with the assistance of AI 
models to determine whether AI models add value in real 
clinical settings.

Conclusions

In the external validation, the AI model achieved acceptable 
accuracy for the detection and localization of csPCa at the 
patient level and the sextant level. However, the sensitivity 
at the lesion level should be improved for future clinical 
application.
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Appendix 1 The process of systematic and 
cognitive-targeted biopsy

A total of 12 dedicated urologists from three hospitals 
performed the prostate biopsies using the same biopsy 
techniques with their own hardware; that is, double-plane 
B-ultrasounds (LOGIQ E9, GE; EPIQ 7, Philips; Hivision 
Ascendus, Hitachi; RS80A, Samsung), transrectal probes, 
and corresponding puncture needle guns. For the system 
biopsy, 12- or 6-core needle biopsies were performed. For 
the targeted biopsy, based on structured reports prepared 
by dedicated urogenital radiologists during during routine 
clinical procedure, lesions suspected of malignancy were 
marked on a prostate sector map for the targeted biopsy. 
At least one urologist and one urogenital radiologist would 
review the MR images before biopsy in a multidisciplinary 
meeting to ensure the accurate localization of suspicious 
lesions. When performing the biopsies, the urologists 
examined each suspicious lesion with an additional needle 
core (a 2- to 5-core needle). The dedicated genitourinary 
pathologists analyzed and recorded the histopathology on 
each specimen.

Appendix 2 The components of the end-to-end AI 
model

In our processing pipeline, we trained distinct models 
to conduct MRI sequence classification, prostate gland 
segmentation and measurement, and prostate zonal 
anatomy segmentation. The training data for these models 
was acquired from 2009 to 2021, with varying volumes 
for each task. The training process for each model was 
concluded upon achieving a notable level of effectiveness. 
It should be noted that in the entire end-to-end AI model, 
the data of the external validation data set were not only 
mutually exclusive with the fourth model, but also were not 
used in the first three models.

Converse ly,  the  csPCa foc i  segmentat ion and 
measurement model was trained using data from 2014 to 
2019, and subsequently tested with data from 2020 to 2021. 
This approach ensured that the images used in the model’s 
development data set and the external validation data set 
remained mutually exclusive.

It is worth noting that clinicopathological information 
on prostate mpMRI prior to 2014 was unavailable and 
thus data from 2014 onwards were exclusively used for 
the training process. Notably, the training process for the 
first three models relied solely on image data (and was not 

restricted by pathological information), which enabled us to 
incorporate data from 2009 to 2021.

MRI sequence classification

Data enrollment
The mpMRI images were retrospectively collected from 
1,086 patients (1,153 mpMRI examinations) studied from 
July 28, 2009, to November 26, 2021. After importing the 
anonymized data, the DICOM data were converted to Nifty 
format using dicom2nii.py (Python 3.5) to obtain the image 
data. First, the DICOM data were split into multiple scan 
sequences for one MR examination. Individual sequences 
with more than 15 slices were included in the study. Then, 
each sequence was further split into an image group. The 
images with the same acquisition parameters and the same 
spatial location were split into one image group. The 
diffusion weighted imaging (DWI) sequence was grouped 
by b-value, for example, a DWI sequence with three 
b-values was split into three independent image groups, 
with each image group having only one unique b-value. In 
total, 5,151 images from five image types were ultimately 
classified, including (I) DWI_High (b value ≥500 s/mm2, 
N=1,045); (II) DWI_Low (b value ≤100 s/mm2, N=1,012); 
(III) apparent diffusion coefficient (ADC) map (N=906); (IV) 
T2-weighted imaging_nan (T2WI_nan) (non-fat-sat T2WI, 
N=1,000); and (V) T2WI_fs (fat-sat T2WI, N=1,188). The 
T1-weighted imaging (T1WI) and dynamic enhancement 
(DCE) images were scanned but excluded from the study.

MR scanners and imaging protocols
The mpMRI images were obtained from 15 MR scanners 
from four vendors. The transmit coils were body coils, and 
the receiver coils were phased array coils. No endorectal 
coils were used. Information on the MR scanners and image 
types is provided in Table S1.

Development of deep learning model
The input image was set to the automatic window width 
window level. Histogram equalization was performed. 
Each image was resized to 64×128×128 pixels. The training 
and validation data sets were augmented by some image 
transformations: rotation by –10° to 10°, random noise 
addition, perspective transformation, and translation of  
0.01 pixels in cardinal or ordinal directions.

In total, 5,151 images were randomly split into 80% 
training, 10% validation, and 10% test sets. A modified 
Med3D network (Figure S1) was retrained to classify 

Supplementary
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the sequences of prostate mpMRI. Using the method of 
transfer learning, we adopted the weight of the encoder to 
extract the image features. The encoder part was retained, 
and the decoder part (deconvolution part) of the network 
was replaced with the convolution layer and full connection 
layer of the classical classification network structure. The 
convolution layer used for classification had the following 
four layers: (I) the max-pooling layer (stride: 2); (II) the 
convolution layer (kernel: 3); (III) the max-pooling layer 
(stride: 2); (IV) the convolution layer (kernel: 3). The full-
connection layer of the classification network was composed 
of 128 neurons, and the image features were combined 
and classified. The result was calculated, and output the 
classification array by the softmax function.

All the training processes were performed using the 
GPU NVIDIA Tesla P100 16G. The algorithm was 
coded by Python 3.6, PyTorch 0.4.1, OpenCV 3.4.0.12, 
Numpy 1.16.2, and SimpleITK 1.2.0. The parameters of 
the training options were set as follows: initial learning 
rate: 0.0001; mini-batch size: 4; maximum epochs: 400.
The classification efficiency was evaluated by the confusion 
matrix.

Results
The confusion matrixes of the prediction results in different 
data sets are shown in Figure S2. The corresponding 
prediction efficacies of the image classification model in 
different data sets are shown in Table S2. The prediction 
accuracies of the training, validation, and test data sets were 
0.992–1.000, 0.989–1.000, and 0.995–1.000, respectively.

Prostate gland segmentation and measurement

Data enrollment
The mpMRI images were retrospectively collected from 
2,673 patients (2,849 mpMRI examinations) studied from 
July 28, 2009, to November 26, 2021.

After importing the anonymized data, the DICOM data 
were converted to nifty format using dicom2nii.py (Python 
3.5). The ADC maps (N=2,320) were calculated from the 
DWI sequence with high and low b-values. Conventional 
T2WI and fat saturation T2WI (fat-sat T2WI) (N=3,654) 
were selected.

MR scanners and imaging protocols
The mpMRI images were obtained from 19 MR scanners 
from four vendors. The transmit coils were body coils, and 
the receiver coils were phased array coils. No endorectal 

coils were used. Information on the MR scanners and image 
types is shown in Table S3.

Development of the deep-learning model
The ground truth of the prostate gland was manually 
outlined by two experts, both of whom had more than five 
years of experience. The ADC and T2WI images were 
resized to 64×256×224 (z, y, x) pixels and were taken as 
the input of the network. We augmented the data in the 
training set by random rotation (rotation angle within 10°), 
adding random noise, and parallel translation at a range of 
[(–0.1; 0.1); (–0.1; 0.1)] pixels.

The results of the preliminary experiment have been 
published (17). We used the classic U-Net (20) framework, 
which enables accurate pixelwise prediction by combining 
spatial and contextual information in a network architecture 
comprising convolutional layers. All the training and 
experiments were conducted on a personal computer 
equipped with an Intel Core i5 3.2 GHz CPU with 16 GB  
main memory and an NVIDIA GTX1060 GPU. The 
proposed deep-learning network was implemented using the 
Keras open-source deep-learning library, and TensorFlow 
was chosen as a backend deep-learning engine. The learning 
rate was set as 0.0001, and the U-Net models were trained 
for up to 400 iterations.

The T2WI images were resized to 64×256×224 (z, y, 
x) pixels and were taken as the input of the network. We 
augmented the data in the training set by random rotation 
(rotation angle within 10°), adding random noise, and 
parallel translation at a range of [(–0.1; 0.1); (–0.1; 0.1)] 
pixels. In total, 1,225 images were randomly split into 80% 
training, 10% validation, and 10% test sets. A 3D U-Net 
segmentation framework (20) was used for the prostate 
anatomic segmentation. The model took the T2 weight 
image as input. All the training processes were performed 
using the GPU NVIDIA Tesla P100 16G. The algorithm 
was coded by Python 3.6, PyTorch 0.4.1, OpenCV 3.4.0.12, 
Numpy 1.16.2, and SimpleITK 1.2.0. The batch size was set 
as 10. The networks were trained for a total of 300 epochs. 
Adam was employed as an optimizer to minimize loss with 
a learning rate of 0.0001 and a binary cross-entropy loss 
function.

Results
Dice similarity coefficient (DSC), Jacard index, volumetric 
similarity (VS), Hausdorf distance (HD), and average 
distance (AD) values were used to compare the model 
and manual segmentation results. The right and left (RL) 
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diameter, anterior and posterior (AP) diameter, and superior 
and inferior (SI) diameter of the prostate gland were 
automatically measured using the algorithm rule of the 
minimum volume bounding box (Figure S3).

The DSC, Jacard index, VS, HD, and AD in different 
data sets are shown in Table S4 and Figure S4. The 
segmentation metrics of the T2WI were superior to those 
of the ADC map in all data sets (all P<0.001). The Bland-
Altman analysis of the measured values of the prostate 
gland, including RL diameter, AP diameter, SI diameter, 
volume, and signal intensity, are shown in Table S5 and 
Figure S5. The differences between the manual label and 
the predicted label to their means were –2.058% to 4.257%.

Prostate zonal anatomy segmentation

Prostate sextant locations model
First, the prostate gland was segmented by the established 
model (refer to part II). For the sextant location, the 
prostatic gland was then trisected to obtain the base, mid-
gland, and apex in the longitudinal axis direction. It was 
bisected to divide the prostate gland into left and right parts 
in the horizontal axis direction. Thus, the sextants were 
automatically generated (Figure S6). When one sextant 
overlapped with a lesion, it was considered a cancer sextant; 
otherwise, it was considered a non-cancer sextant.

Prostate zonal anatomy segmentation
Second, for the anatomic zone locations, we developed an 
anatomic regional model to segment the peripheral zone 
(PZ), transition zone (TZ), central zone (CZ), anterior 
fibromuscular stroma (AFS), urethra (URE), left seminal 
vesicle (LS), and right seminal vesicle (RS) (Figure S7).

Data enrollment
The mpMRI images were retrospectively collected from 
1,225 patients from August 29, 2012, to November 26, 
2021. After importing the anonymized data, the DICOM 

data were converted to nifty format using dicom2nii.
py (Python 3.5). T2WI images were used to develop the 
prostate zonal anatomy segmentation model.

MR scanners and imaging protocols
The T2WI images were obtained from 17 MR scanners 
from four vendors. The transmit coils were body coils, and 
the receiver coils were phased array coils. No endorectal 
coils were used. Information on the MR scanning protocols 
is provided in Table S6.

Development of deep-learning model
The T2WI images were resized to 64×256×224 (z, y, x) 
pixels and were taken as the input of the network. We 
augmented the data in the training set by random rotation 
(rotation angle within 10°), adding random noise, and 
parallel translation at a range of [(–0.1; 0.1); (–0.1; 0.1)] 
pixels. In total, 1,225 images were randomly split into 80% 
training, 10% validation, and 10% test sets. A 3D U-Net 
segmentation framework (20) was used for the prostate 
anatomic segmentation. The model took the T2 weight 
image as input. All the training processes were performed 
using the GPU NVIDIA Tesla P100 16G. The algorithm 
was coded by Python 3.6, PyTorch 0.4.1, OpenCV 3.4.0.12, 
Numpy 1.16.2, and SimpleITK 1.2.0. The batch size was set 
as 10. The networks were trained for a total of 300 epochs. 
Adam was employed as an optimizer to minimize loss with 
a learning rate of 0.0001 and a binary cross-entropy loss 
function.

Results
The DSC, JACRD, volume similarity, Hausdorff distance, 
and average distance in different data sets are shown in  
Table S7. The median metrics in the training, validation, 
and test data set showed statistically significant differences 
(P<0.001). When one zone overlapped with a lesion, it was 
considered a cancer zone; otherwise, it was considered a 
non-cancer zone.
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Table S1 Information on the MR scanners and image types

Parameters Overall (N=5,151) Training (N=4,122) Validation (N=513) Test (N=516) P value

Age (years)

Median [Q1, Q3] 71.0 [65.0, 76.0] 71.0 [65.0, 76.0] 71.0 [66.0, 77.0] 71.0 [65.0, 76.0] 0.46

Image type

ADC 906 (17.6%) 730 (17.7%) 86 (16.8%) 90 (17.4%) >0.99

DWI_High 1,045 (20.3%) 835 (20.3%) 105 (20.5%) 105 (20.3%)

DWI_Low 1,012 (19.6%) 808 (19.6%) 102 (19.9%) 102 (19.8%)

T2WI_Fs 1,188 (23.1%) 950 (23.0%) 120 (23.4%) 118 (22.9%)

T2WI_nan 1,000 (19.4%) 799 (19.4%) 100 (19.5%) 101 (19.6%)

Magnetic field

1.5 T 657 (12.8%) 523 (12.7%) 59 (11.5%) 75 (14.5%) 0.33

3.0 T 4494 (87.2%) 3599 (87.3%) 454 (88.5%) 441 (85.5%)

Manufacture

GE Medical Systems 2,635 (51.2%) 2100 (50.9%) 253 (49.3%) 282 (54.7%) 0.50

Philips Medical Systems 491 (9.5%) 397 (9.6%) 50 (9.7%) 44 (8.5%)

SIEMENS 2,025 (39.3%) 1625 (39.4%) 210 (40.9%) 190 (36.8%)

Station name

AWP145938 597 (11.6%) 468 (11.4%) 73 (14.2%) 56 (10.9%) 0.17

AWP152194 119 (2.3%) 96 (2.3%) 12 (2.3%) 11 (2.1%)

AWP166059 194 (3.8%) 164 (4.0%) 17 (3.3%) 13 (2.5%)

AWP174090 8 (0.2%) 5 (0.1%) 0 (0.0%) 3 (0.6%)

AWP39300 6 (0.1%) 5 (0.1%) 0 (0.0%) 1 (0.2%)

DVMRDVMR 1,172 (22.8%) 939 (22.8%) 124 (24.2%) 109 (21.1%)

GEHC 1,023 (19.9%) 821 (19.9%) 87 (17.0%) 115 (22.3%)

GEHCGEHC 440 (8.5%) 340 (8.2%) 42 (8.2%) 58 (11.2%)

MRC35207 696 (13.5%) 567 (13.8%) 69 (13.5%) 60 (11.6%)

MRC40764 387 (7.5%) 306 (7.4%) 37 (7.2%) 44 (8.5%)

MRSUZTB03A 57 (1.1%) 49 (1.2%) 4 (0.8%) 4 (0.8%)

PHILIPS-8FA1B4E 72 (1.4%) 62 (1.5%) 5 (1.0%) 5 (1.0%)

PHILIPS-CB0GKAC 12 (0.2%) 9 (0.2%) 0 (0.0%) 3 (0.6%)

PHILIPS-DSALI1J 156 (3.0%) 124 (3.0%) 17 (3.3%) 15 (2.9%)

PHILIPS-NK6RG9A 194 (3.8%) 153 (3.7%) 24 (4.7%) 17 (3.3%)

The quantitative variables are presented as the median [Q1, Q3] for the non-normalized data. Fs, fat saturation; T2WI, T2-weighted 
imaging; ADC, apparent diffusion coefficient; DWI, diffusion-weighted imaging.
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Table S2 Prediction efficacies of the image classification model in different data sets

Image type
Image 

number
Accuracy Sensitivity Specificity PPV NPV F1 Kappa Prevalence

Detection 
rate

Detection 
prevalence

Training

ADC 718 1.000 1.000 1.000 0.999 1.000 0.999 0.999 0.174 0.174 0.174

DWI_High 849 0.996 0.994 0.998 0.991 0.998 0.992 0.990 0.206 0.205 0.207

DWI_Low 815 0.992 0.987 0.998 0.991 0.997 0.989 0.986 0.198 0.195 0.197

T2WI_Fs 957 0.998 0.997 0.999 0.998 0.999 0.997 0.997 0.232 0.231 0.232

T2WI_nan 783 1.000 1.000 1.000 0.999 1.000 0.999 0.999 0.190 0.190 0.190

Validation

ADC 96 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.187 0.187 0.187

DWI_High 93 0.989 0.978 1.000 1.000 0.995 0.989 0.987 0.181 0.177 0.177

DWI_Low 101 0.998 1.000 0.995 0.981 1.000 0.990 0.988 0.197 0.197 0.201

T2WI_Fs 107 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.209 0.209 0.209

T2WI_nan 116 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.226 0.226 0.226

Test

ADC 92 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.178 0.178 0.178

DWI_High 103 0.995 0.990 1.000 1.000 0.998 0.995 0.994 0.200 0.198 0.198

DWI_Low 96 0.999 1.000 0.998 0.990 1.000 0.995 0.994 0.186 0.186 0.188

T2WI_Fs 124 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.240 0.240 0.240

T2WI_nan 101 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.196 0.196 0.196

ADC, apparent diffusion coefficient; T2WI, T2-weighted imaging; DWI, diffusion weighted imaging; Fs, fat saturation; PPV, positive 
predictive value; NPV, negative predictive value.
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Table S3 Information on the MR scanners and image types

Parameters Overall (N=5,974) Training (N=4,780) Validation (N=601) Test (N=593) P value

Age (years), median [Q1, Q3] 70.0 [64.0, 76.0] 70.0 [64.0, 76.0] 70.0 [64.0, 76.0] 70.0 [63.0, 75.0] 0.29

Magnetic field 0.50

1.5 T 1,034 (17.3%) 841 (17.6%) 96 (16.0%) 97 (16.4%)

3.0 T 4,940 (82.7%) 3,939 (82.4%) 505 (84.0%) 496 (83.6%)

Image type 0.35

ADC 2,320 (38.8%) 1,873 (39.2%) 217 (36.1%) 230 (38.8%)

T2WI 3,654 (61.2%) 2,907 (60.8%) 384 (63.9%) 363 (61.2%)

Manufacture 0.79

GE Medical Systems 3,243 (54.3%) 2,599 (54.4%) 316 (52.6%) 328 (55.3%)

Philips Medical Systems 810 (13.6%) 637 (13.3%) 91 (15.1%) 82 (13.8%)

SIEMENS 1,695 (28.4%) 1,368 (28.6%) 168 (28.0%) 159 (26.8%)

UIH 226 (3.8%) 176 (3.7%) 26 (4.3%) 24 (4.0%)

Model name 0.87

Achieva 150 (2.5%) 123 (2.6%) 17 (2.8%) 10 (1.7%)

Ingenia 583 (9.8%) 456 (9.5%) 64 (10.6%) 63 (10.6%)

Ingenia CX 3 (0.1%) 2 (0.0%) 1 (0.2%) 0 (0.0%)

Discovery MR750 2,753 (46.1%) 2,204 (46.1%) 276 (45.9%) 273 (46.0%)

Discovery MR750w 304 (5.1%) 250 (5.2%) 21 (3.5%) 33 (5.6%)

Signa EXCITE 173 (2.9%) 135 (2.8%) 16 (2.7%) 22 (3.7%)

Signa HDxt 11 (0.2%) 9 (0.2%) 2 (0.3%) 0 (0.0%)

Signa Premier 2 (0.0%) 1 (0.0%) 1 (0.2%) 0 (0.0%)

Aera 889 (14.9%) 724 (15.1%) 81 (13.5%) 84 (14.2%)

Amira 4 (0.1%) 3 (0.1%) 1 (0.2%) 0 (0.0%)

Essenza 2 (0.0%) 2 (0.0%) 0 (0.0%) 0 (0.0%)

Multiva 74 (1.2%) 56 (1.2%) 9 (1.5%) 9 (1.5%)

Prisma 127 (2.1%) 99 (2.1%) 16 (2.7%) 12 (2.0%)

Skyra 188 (3.1%) 156 (3.3%) 18 (3.0%) 14 (2.4%)

TrioTim 348 (5.8%) 273 (5.7%) 39 (6.5%) 36 (6.1%)

Verio 137 (2.3%) 111 (2.3%) 13 (2.2%) 13 (2.2%)

uMR 790 226 (3.8%) 176 (3.7%) 26 (4.3%) 24 (4.0%)

The quantitative variables are presented as the median [Q1, Q3] for the non-normalized data. ADC, apparent diffusion coefficient; T2WI, 
T2-weighted imaging.
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Table S4 Segmentation metrics in different data sets

Param-
eters

Overall Training Validation Test

ADC (N=2,320) T2WI (N=3,654) ADC (N=1,873) T2WI (N=2,907) ADC (N=217) T2WI (N=384) ADC (N=230) T2WI (N=363)

DSC 0.921 (0.0337) 0.937 (0.0322) 0.925 (0.0279) 0.940 (0.0270) 0.902 (0.0491) 0.922 (0.0445) 0.900 (0.0446) 0.923 (0.0449)

JACRD 0.854 (0.0549) 0.883 (0.0537) 0.862 (0.0467) 0.889 (0.0458) 0.825 (0.0755) 0.857 (0.0717) 0.822 (0.0704) 0.861 (0.0726)

VS 0.970 (0.0303) 0.979 (0.0245) 0.974 (0.0236) 0.981 (0.0200) 0.953 (0.0478) 0.967 (0.0370) 0.955 (0.0449) 0.971 (0.0339)

HD 6.460 (3.150) 5.880 (2.830) 6.20 (2.720) 5.640 (2.490) 7.450 (4.700) 6.780 (3.730) 7.700 (3.990) 6.840 (3.730)

AD 0.140 (0.149) 0.168 (4.01) 0.122 (0.0962) 0.172 (4.49) 0.213 (0.293) 0.152 (0.196) 0.214 (0.233) 0.149 (0.186)

Data conforming to a normal distribution are presented as the mean (standard deviation). DSC, dice similarity coefficient; VS, volumetric 
similarity; HD, Hausdorff distance; AD, average distance; T2WI, T2-weighted imaging; ADC, apparent diffusion coefficient.

Table S5 Bland-Altman analysis of the measured values of the prostate gland

Parameters RL diameter (mm) AP diameter (mm) SI diameter (mm) Volume (cm3) Signal intensity

Means of label and plabel 56.025 59.670 63.655 108.623 56.025

Differences 2.230 2.540 –1.310 –0.924 2.230

Means/differences proportion 3.980 4.257 –2.058 –0.851 3.980

Means of label 57.140 60.940 63.000 108.160 57.140

Means of plabel 54.910 58.400 64.310 109.085 54.910

Bias of the label and plabel 0.733 1.094 –1.180 –0.623 0.733

Bias upper CI 0.800 1.172 –1.063 –0.477 0.800

Bias lower CI 0.665 1.017 –1.298 –0.769 0.665

Bias std dev 2.679 3.057 4.643 5.756 2.679

Bias standard error 0.035 0.040 0.060 0.745 0.035

LOA standard error 0.059 0.068 0.103 0.127 0.059

Upper LOA 5.984 7.085 7.919 10.659 5.984

Upper LOA_upperCI 6.100 7.218 8.120 10.908 6.100

Upper LOA_lowerCI 5.868 6.953 7.718 10.409 5.868

Lower LOA –4.519 –4.897 –10.280 –11.904 –4.519

Lower LOA_upperCI –4.403 –4.764 –10.078 –11.655 –4.403

Lower LOA_lowerCI –4.635 –5.029 –10.481 –12.154 –4.635

Regression fixed slope 0.076 0.071 0.032 0.023 0.076

Regression fixed intercept –3.100 –2.100 –2.700 –1.900 –3.100

LOA, limits of agreement; CI, confidence interval; RL, right-left; AP, anteroposterior; SI, superoinferior.
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Table S6 Scanning protocols of the T2WI

Parameters Overall (N=1,225) Training (N=973) Validation (N=99) Test (N=153) P value

Magnetic field

1.5 T 271 (22.1%) 213 (21.9%) 14 (14.1%) 44 (28.8%) 0.02

3.0 T 954 (77.9%) 760 (78.1%) 85 (85.9%) 109 (71.2%)

Manufacture

GE Medical Systems 665 (54.3%) 540 (55.5%) 65 (65.7%) 60 (39.2%) <0.001

Philips Medical Systems 155 (12.7%) 111 (11.4%) 10 (10.1%) 34 (22.2%)

SIEMENS 365 (29.8%) 289 (29.7%) 20 (20.2%) 56 (36.6%)

UIH 40 (3.3%) 33 (3.4%) 4 (4.0%) 3 (2.0%)

Model name

Achieva 26 (2.1%) 20 (2.1%) 3 (3.0%) 3 (2.0%) 0.01

Aera 239 (19.5%) 192 (19.7%) 8 (8.1%) 39 (25.5%)

Amira 1 (0.1%) 1 (0.1%) 0 (0.0%) 0 (0.0%)

DISCOVERY MR750 547 (44.7%) 446 (45.8%) 54 (54.5%) 47 (30.7%)

DISCOVERY MR750w 78 (6.4%) 64 (6.6%) 5 (5.1%) 9 (5.9%)

Ingenia 111 (9.1%) 79 (8.1%) 5 (5.1%) 27 (17.6%)

Ingenia CX 1 (0.1%) 1 (0.1%) 0 (0.0%) 0 (0.0%)

MAGNETOM_ESSENZA 1 (0.1%) 1 (0.1%) 0 (0.0%) 0 (0.0%)

Multiva 17 (1.4%) 11 (1.1%) 2 (2.0%) 4 (2.6%)

Prisma 10 (0.8%) 7 (0.7%) 1 (1.0%) 2 (1.3%)

SIGNA EXCITE 36 (2.9%) 28 (2.9%) 5 (5.1%) 3 (2.0%)

Signa HDxt 3 (0.2%) 1 (0.1%) 1 (1.0%) 1 (0.7%)

SIGNA Premier 1 (0.1%) 1 (0.1%) 0 (0.0%) 0 (0.0%)

Skyra 34 (2.8%) 28 (2.9%) 3 (3.0%) 3 (2.0%)

TrioTim 41 (3.3%) 35 (3.6%) 2 (2.0%) 4 (2.6%)

uMR 790 40 (3.3%) 33 (3.4%) 4 (4.0%) 3 (2.0%)

Verio 39 (3.2%) 25 (2.6%) 6 (6.1%) 8 (5.2%)

FatSat

fs 87 (7.1%) 67 (6.9%) 10 (10.1%) 10 (6.5%) 0.47 

Non-fs 1,138 (92.9%) 906 (93.1%) 89 (89.9%) 143 (93.5%)

Repetition time (ms) 3,560 [3,040, 3,880] 3,460 [3,040, 3,850] 3,560 [3,070, 3,790] 3,730 [3,000, 4,200] 0.30 

Echo time (ms) 92.9 [87.5, 112] 92.2 [87.4, 110] 90.3 [87.4, 103] 99.0 [88.0, 115] 0.05 

Pixel bandwidth (Hz) 163 [163, 200] 163 [163, 200] 163 [122, 188] 200 [160, 218] <0.001

Flip angle 111 [111, 140] 111 [111, 140] 111 [111, 111] 111 [111, 150] 0.37 

Reconstruction diameter (mm) 240 [200, 240] 240 [200, 240] 240 [200, 240] 220 [200, 240] 0.01

Slice thickness (mm) 4.00 [3.50, 4.00] 4.00 [3.50, 4.00] 4.00 [3.40, 4.00] 4.00 [3.50, 4.00] 0.44

Slice spacing (mm) 4.00 [4.00, 4.00] 4.00 [4.00, 4.00] 4.00 [4.00, 4.00] 4.00 [3.60, 4.00] 0.06 

Pixel spacing (mm) 0.469 [0.469, 0.577] 0.469 [0.469, 0.625] 0.469[0.417, 0.469] 0.469 [0.344, 0.625] 0.05 

Data are presented as n (%) or median [Q1, Q3].



Table S7 Segmentation metrics of the model

Parameters Overall (N=1,225) Training (N=979) Validation (N=123) Test (N=123) P value

AFS

DSC

Median [Min, Max] 0.790 [0, 0.920] 0.800 [0, 0.920] 0.710 [0, 0.890] 0.690 [0.0300, 0.860] <0.001

Missing 11 (0.9%) 8 (0.8%) 1 (0.8%) 2 (1.6%)

JACRD

Median [Min, Max] 0.650 [0, 0.850] 0.670 [0, 0.850] 0.550 [0, 0.800] 0.530 [0.020, 0.760] <0.001

Missing 11 (0.9%) 8 (0.8%) 1 (0.8%) 2 (1.6%)

VS

Median [Min, Max] 0.930 [0.0300, 1.00] 0.940 [0.0300, 1.00] 0.885 [0.230, 1.00] 0.890 [0.140, 1.00] <0.001

Missing 11 (0.9%) 8 (0.8%) 1 (0.8%) 2 (1.6%)

HD

Median [Min, Max] 5.05 [1.56, 50.3] 4.77 [1.56, 50.3] 6.89 [2.21, 47.0] 6.64 [2.50, 48.6] <0.001

Missing 11 (0.9%) 8 (0.8%) 1 (0.8%) 2 (1.6%)

AD

Median [Min, Max] 0.260 [0.0900, 25.3] 0.230 [0.090, 25.3] 0.410 [0.100, 9.58] 0.450 [0.130, 3.73] <0.001

Missing 11 (0.9%) 8 (0.8%) 1 (0.8%) 2 (1.6%)

PZ

DSC

Median [Min, Max] 0.870 [0, 0.960] 0.88 [0, 0.96] 0.84 [0.48, 0.92] 0.840 [0.390, 0.930] <0.001

Missing 1 (0.1%) 1 (0.1%) 0 (0.0%) 0 (0.0%)

JACRD

Median [Min, Max] 0.770 [0, 0.920] 0.780 [0, 0.920] 0.720 [0.31, 0.86] 0.720 [0.240, 0.870]

Missing 1 (0.1%) 1 (0.1%) 0 (0.0%) 0 (0.0%)

VS

Median [Min, Max] 0.970 [0.100, 1.00] 0.970 [0.100, 1.00] 0.95 [0.61, 1.00] 0.960 [0.530, 1.00] <0.001

Missing 1 (0.1%) 1 (0.1%) 0 (0.0%) 0 (0.0%)

HD

Median [Min, Max] 7.55 [2.50, 50.2] 7.20 [2.50, 43.7] 8.91 [2.58, 50.2] 8.11 [3.85, 44.3] <0.001

Missing 1 (0.1%) 1 (0.1%) 0 (0.0%) 0 (0.0%)

AD

Median [Min, Max] 0.160 [0.0500, 19.5] 0.150 [0.0500, 19.5] 0.240 [0.080, 2.05] 0.240 [0.080, 4.43] <0.001

Missing 1 (0.1%) 1 (0.1%) 0 (0.0%) 0 (0.0%)

CZ

DSC

Median [Min, Max] 0.810 [0, 0.930] 0.820 [0.410, 0.930] 0.650 [0.05, 0.87] 0.630 [0, 0.900] <0.001

Missing 6 (0.5%) 6 (0.6%) 0 (0.0%) 0 (0.0%)

JACRD

Median [Min, Max] 0.680 [0, 0.880] 0.700 [0.260, 0.880] 0.480 [0.03, 0.770] 0.460 [0, 0.810] <0.001

Missing 6 (0.5%) 6 (0.6%) 0 (0.0%) 0 (0.0%)

VS

Median [Min, Max] 0.920 [0.170, 1.00] 0.930 [0.490, 1.00] 0.88 [0.180, 1.00] 0.880 [0.170, 1.00] <0.001

Missing 6 (0.5%) 6 (0.6%) 0 (0.0%) 0 (0.0%)

AD

Median [Min, Max] 4.60 [2.00, 45.5] 4.29 [2.00, 34.1] 6.53 [2.80, 45.5] 6.50 [2.73, 33.0] <0.001

Missing 6 (0.5%) 6 (0.6%) 0 (0.0%) 0 (0.0%)

HD

Median [Min, Max] 0.240 [0.0600, 9.09] 0.220 [0.060, 3.89] 0.600 [0.140, 8.41] 0.610 [0.120, 9.09] <0.001

Missing 6 (0.5%) 6 (0.6%) 0 (0.0%) 0 (0.0%)

TZ

DSC

Median [Min, Max] 0.930 [0.610, 0.970] 0.940 [0.720, 0.970] 0.910 [0.610, 0.970] 0.920 [0.700, 0.970] <0.001

Missing 1 (0.1%) 1 (0.1%) 0 (0.0%) 0 (0.0%)

JACRD

Median [Min, Max] 0.870 [0.440, 0.950] 0.880 [0.560, 0.950] 0.830 [0.44, 0.940] 0.850 [0.540, 0.940] <0.001

Missing 1 (0.1%) 1 (0.1%) 0 (0.0%) 0 (0.0%)

VS

Median [Min, Max] 0.980 [0.770, 1.00] 0.990 [0.840, 1.00] 0.970 [0.770, 1.00] 0.970 [0.830, 1.00] <0.001

Missing 1 (0.1%) 1 (0.1%) 0 (0.0%) 0 (0.0%)

HD

Median [Min, Max] 4.59 [2.34, 38.3] 4.46 [2.34, 34.0] 5.33 [2.47, 38.3] 4.91 [2.72, 19.4] <0.001

Missing 1 (0.1%) 1 (0.1%) 0 (0.0%) 0 (0.0%)

AD

Median [Min, Max] 0.080 [0.020, 1.07] 0.080 [0.020, 0.890] 0.130 [0.03, 1.07] 0.110 [0.0300, 0.730] <0.001

Missing 1 (0.1%) 1 (0.1%) 0 (0.0%) 0 (0.0%)

URE

DSC

Median [Min, Max] 0.910 [0, 0.980] 0.920 [0.520, 0.980] 0.830 [0, 0.960] 0.830 [0.490, 0.960] <0.001

Missing 8 (0.7%) 5 (0.5%) 1 (0.8%) 2 (1.6%)

JACRD

Median [Min, Max] 0.830 [0, 0.960] 0.840 [0.350, 0.960] 0.700 [0, 0.930] 0.700 [0.320, 0.930] <0.001

Missing 8 (0.7%) 5 (0.5%) 1 (0.8%) 2 (1.6%)

VS

Median [Min, Max] 0.940 [0.0800, 1.00] 0.950 [0.550, 1.00] 0.890 [0.080, 1.00] 0.900 [0.490, 1.00] <0.001

Missing 8 (0.7%) 5 (0.5%) 1 (0.8%) 2 (1.6%)

HD

Median [Min, Max] 1.88 [0.780, 49.5] 1.75 [0.780, 49.5] 3.31 [0.940, 17.1] 3.13 [0.780, 33.8] <0.001

Missing 8 (0.7%) 5 (0.5%) 1 (0.8%) 2 (1.6%)

AD

Median [Min, Max] 0.0900 [0.020, 723] 0.080 [0.020, 1.18] 0.220 [0.04, 723] 0.200 [0.03, 1.13] <0.001

Missing 8 (0.7%) 5 (0.5%) 1 (0.8%) 2 (1.6%)

RS

DSC

Median [Min, Max] 0.920 [0, 0.970] 0.930 [0, 0.970] 0.900 [0.710, 0.97] 0.900 [0, 0.970] <0.001

Missing 1 (0.1%) 1 (0.1%) 0 (0.0%) 0 (0.0%)

JACRD

Median [Min, Max] 0.860 [0, 0.940] 0.860 [0, 0.940] 0.82 [0.550, 0.930] 0.830 [0, 0.940] <0.001

Missing 1 (0.1%) 1 (0.1%) 0 (0.0%) 0 (0.0%)

VS

Median [Min, Max] 0.970 [0.760, 1.00] 0.980 [0.780, 1.00] 0.970 [0.760, 1.00] 0.960 [0.760, 1.00] <0.001

Missing 1 (0.1%) 1 (0.1%) 0 (0.0%) 0 (0.0%)

AD

Median [Min, Max] 4.17 [1.37, 52.9] 3.98 [1.37, 52.9] 4.94 [1.92, 39.7] 4.74 [1.88, 37.0] <0.001

Missing 1 (0.1%) 1 (0.1%) 0 (0.0%) 0 (0.0%)

HD

Median [Min, Max] 0.090 [0.030, 805] 0.080 [0.030, 805] 0.130 [0.03, 107] 0.120 [0.030, 15.1] <0.001

Missing 1 (0.1%) 1 (0.1%) 0 (0.0%) 0 (0.0%)

LS

DSC

Median [Min, Max] 0.920 [0.080, 0.970] 0.930 [0.260, 0.970] 0.90 [0.08, 0.960] 0.900 [0.260, 0.960] <0.001

Missing 1 (0.1%) 1 (0.1%) 0 (0.0%) 0 (0.0%)

JACRD

Median [Min, Max] 0.860 [0.040, 0.950] 0.860 [0.150, 0.950] 0.830 [0.04, 0.920] 0.830 [0.150, 0.920] <0.001

Missing 1 (0.1%) 1 (0.1%) 0 (0.0%) 0 (0.0%)

VS

Median [Min, Max] 0.980 [0.120, 1.00] 0.980 [0.800, 1.00] 0.970 [0.120, 1.00] 0.960 [0.260, 1.00] <0.001

Missing 1 (0.1%) 1 (0.1%) 0 (0.0%) 0 (0.0%)

HD

Median [Min, Max] 3.75 [1.33, 42.3] 3.75 [1.33, 41.3] 4.26 [1.88, 35.5] 4.42 [2.08, 42.3] <0.001

Missing 1 (0.1%) 1 (0.1%) 0 (0.0%) 0 (0.0%)

AD

Median [Min, Max] 0.0900 [0.030, 9.54] 0.080 [0.030, 9.54] 0.110 [0.04, 4.80] 0.130 [0.0400, 1.70] <0.001

Missing 1 (0.1%) 1 (0.1%) 0 (0.0%) 0 (0.0%)

The categorical variables are presented as numbers (percentages). The quantitative variables are presented as the median [Min, Max] for 
the non-normalized data. DSC, dice similarity coefficient; VS, volumetric similarity; HD, Hausdorff distance; AD, average distance; AFS, 
anterior fibromuscular stroma; PZ, peripheral zone; CZ, central zone; TZ, transition zone; URE, urethra; LS, left seminal vesicle; RS, right 
seminal vesicle.
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Figure S1 The modified Med3D network. 3D, three-dimensional; CONV, convolution; FC, fully connected.
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Table S8 Recent deep-learning studies in prostate cancer detection or segmentation

Study Algorithm Sequences Scanner
Field 

strength
Cohort 

(patients)

Validation 
cohort 

(patients)

Ground 
truth

Performance

Lesion
Sextant Patient

AUC Sen Spe AUC Sen Spe

Sun (18) U-Net DWI, ADC 7 1.5, 3.0 1,628 200 WMHP, 
Biopsy

Sen: 0.9 0.895 0.92 0.908 0.865 0.97 0.77

Zhu (19) Res-Unet T2W, ADC 1 3.0 347 88 Biopsy Sen: 0.955 – 0.956 0.915 – 0.986 0.648

Schelb (26) U-Net T2WI, DWI 1 3.0 312 62 Biopsy – – 0.59 0.66 – 0.96 0.31

Zhong (30) ResNet T2W, ADC 6 3.0 140 30 WMHP AUC: 0.726, lesion pach level – – – – – –

Cao (31) CNN T2W, ADC 4 3.0 553 126 WMHP FROC: 0.50, 0.80, and 0.90 at 
0.43, 3.39, and 11.7 false-positive 

detections per patient

– –  – – –

CNN, convolutional neural network; DWI, diffusion-weighted imaging; ADC, apparent diffusion coefficient; T2WI, T2-weighted imaging; Sen, sensitivity; Spe, specificity; AUC, area 
under the curve; WMHP, whole-mount histopathology; FROC, free-response receiver operating characteristic.
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Figure S3 Whole prostate segmentation and the algorithm rule of the minimum volume bounding box.

Figure S2 Confusion matrix of the prediction results in the training, validation, and test data sets. The number in the middle of each tile 
is the counted number of images. The percentage number at the bottom of each tile is the column percentage. The percentage number at 
the right side of each tile is the row percentage. The color intensity is based on the counts. T2WI, T2-weighted imaging; Fs, fat saturation; 
DWI, diffusion-weighted imaging; ADC, apparent diffusion coefficient.



© Quantitative Imaging in Medicine and Surgery. All rights reserved. https://dx.doi.org/10.21037/qims-23-791

Figure S4 The DSC, Jacard index, VS, HD, and AD values in different data sets. The metrics of the T2WI were superior to those of the 
ADC map in all the data sets (all P<0.001). DSC, dice similarity coefficient; VS, volumetric similarity; HD, Hausdorff distance; AD, average 
distance; T2WI, T2-weighted imaging; ADC, apparent diffusion coefficient.
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Figure S5 Bland-Altman analysis of the values of the RL diameter (A), AP diameter (B), SI diameter (C), volume (D), and signal intensity (E) 
of the manual label and the predicted label of the prostate gland. RL, right and left; AP, anterior and posterior; SI, superior and inferior.
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Figure S7 Anatomic zone locations.

Figure S6 Sextant locations.


