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Background: Deep learning has recently shown great potential in medical image reconstruction tasks. For 
positron emission tomography (PET) images, the direct reconstruction from raw data to radioactivity images 
using deep learning without any constraint may lead to the production of nonexistent structures. The aim of 
this study was to specifically develop and test a flexibly deep learning-based reconstruction network guided 
by any form of prior knowledge to achieve high quality and high reliability reconstruction.
Methods: We developed a novel prior information-guided reconstruction network (PIGRN) with a dual-
channel generator and a 2-scale discriminator based on a conditional generative adversarial network (cGAN). 
Besides the raw data channel, an additional channel is provided in the generator for prior information (PI) 
to guide the training phase. The PI can be reconstructed images obtained via conventional methods, nuclear 
medical images from other modalities, attenuation correction maps from time-of-flight-PET (TOF-PET) 
data, or any other physical parameters. For this study, the reconstructed images generated by filtered back 
projection (FBP) were chosen as the input of the additional channel. To improve the image quality, a 2-scale 
discriminator was adopted which can focus on both the coarse and fine field of the reconstruction images. 
Experiments were carried out on both a simulation dataset and a real Sprague Dawley (SD) rat dataset. 
Results: Two classic deep learning-based reconstruction networks, including U-Net and Deep-PET, were 
compared in our study. Compared with these two methods, our method could provide much higher quality 
PET image reconstruction in the study of the simulation dataset. The peak signal-to-noise ratio (PSNR) 
value reached 31.8498, and the structure similarity index measure (SSIM) value reached 0.9754. The real 
study on SD rats indicated that the proposed network also has strong generalization ability.
Conclusions: The flexible PIGRN based on cGAN for PET images combines both raw data and PI. 
The results of comparison experiments and a generalization experiment based on simulation and SD rat 
datasets demonstrated that the proposed PIGRN has the ability to improve image quality and has strong 
generalization ability.
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Introduction

Positron emission tomography (PET) is a modality used in 
nuclear medicine which can visualize various functionalities 
in a living organ and quantitatively estimate radiotracer 
concentrations. However, the radiotracer concentration 
image cannot be directly obtained from the PET scanner. 
An image reconstruction process is required to estimate 
the distribution of the radiotracer concentrations based 
on the raw data, which are usually stored in the form of a 
sinogram.

At present, the traditional reconstruction algorithms 
mainly include the analytic method and the iterative 
method. Analytic methods, such as filtered back projection 
(FBP), are simple and fast but sensitive to high noise and 
susceptible to producing streak artifacts. The iterative 
method can obtain much clearer reconstructed images, but 
the computation is expensive, involving processes such as 
ordered subset expectation maximization (OSEM). Hence, 
considerable research attention has been paid to developing 
a fast and accurate reconstruction method. In recent years, 
deep learning has demonstrated promising potential in 
the field of medical image processing (1-5). Thus, many 
researchers have begun to refine the application of deep 
learning–based reconstruction methods. Deep learning 
was first used in nuclear medicine image reconstruction 
for denoising. After AUTOMAP (automated transform by 
manifold approximation) was proposed by Zhu et al. (6),  
research into direct reconstruction with deep learning 
began to proliferate. AUTOMAP is a unified medical 
image reconstruction framework, which is able to achieve 
a transformation directly from the raw data domain to 
the image domain. Häggström et al. (7) designed a deep 
encoder-decoder network specifically for PET, named 
DeepPET. It provides direct reconstruction from the 
sinogram domain to the image domain. An evaluation 
of the simulation dataset demonstrated that DeepPET 
can generate higher image quality in a shorter amount 
of time compared with traditional methods. However, 
its performance in a real patient dataset was poorer. A 
conditional generative adversarial network (cGAN)-based 
direct network was then proposed by Liu et al. (8); however, 
its performance with real data was still unsatisfactory. The 
direct reconstruction methods mentioned above all attempt 
to learn the mapping from the sinogram domain to the 
image domain without any additional prior information (PI).

Without constraints, the results are not accurate 
and often produce nonexistent structures. Hence, 

several research groups are beginning to study how to 
incorporate auxiliary information in the process of deep 
learning to assist in accurate image generation. Two 
major combination approaches are considered here: (I) 
combination with other nuclear medical modalities, such 
as various types of attenuation correction, typically time-
of-flight (TOF)-PET data (9-12); and (II) combination 
with conventional methods of any form, such as FBP and 
maximum likelihood expectation maximization (MLEM). 
For non-TOF sinogram data, the combination with 
conventional methods is usually selected due to the lack of a 
corresponding attenuation correction map. Gong et al. (13)  
proposed an unsupervised deep learning framework for 
direct reconstruction with magnetic resonance (MR) images 
as PI. Ote et al. (14) developed a deep learning-based 
reconstruction network with view-grouped histo-images 
as the input and computed tomography (CT) images as 
the constraint. Wang et al. (15) designed FBP-Net, which 
combines the FBP algorithm into the neural network to 
improve the image quality. Lv et al. (16) proposed a back-
projection-and-filtering (BPF)-like reconstruction method 
based on U-net. The key to this approach also involves back 
projection and filtering into a deep learning form, with the 
filter being built with modified U-net architecture. Zhang 
et al. (17) proposed a cascading back-projection neural 
network (bpNet) with back-projection operation, which 
achieved transformation from the sinogram domain to the 
back-projection image domain. This operation is similar 
to FBP and can serve as prior knowledge for the whole 
reconstruction network. Xue et al. (18) described a similar 
domain transform approach but implemented on a different 
network. They proposed using a direct reconstruction 
network with back projection based on a cycle-consistent 
generative adversarial network (CycleGAN). GapFill-Recon 
Net (19) is also a domain transform reconstruction network 
based on CNN, but before reconstruction, it combines the 
processing to address the sinogram gap. Yang et al. (20) 
proposed a cycle-consistent, learning-based hybrid iteration 
reconstruction method which also starts from raw data and 
then projects to the image domain for reconstruction. The 
image reconstruction pipeline of all these methods (15-20)  
begins from the sinogram to the back-projection image and 
then to the PET image. The sinogram information is not 
used directly but is projected and filtered into the back-
projection domain. If both of the sinogram data and the BP 
data can be used in a suitable way, the reconstruction image 
quality might be improved.

 Inspired by classic image translation framework, 
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pix2pixHD (21), which obtained excellent results for the 
image-to-image translation task, we propose a cGAN-
based reconstruction network, the prior information-
guided reconstruction network (PIGRN), which includes 
a dual-channel generator and a 2-scale discriminator. The 
input sources of the two channels are respectively raw data 
and PI. In this approach, the input of the first channel 
is the image pairs composed of the sinogram and the 
corresponding radiotracer concentration images (ground 
truth). The flow of this channel is downsampling, several 
residual blocks, and upsampling, after which output images 
with the same size as the ground truth can be obtained. The 
input of the second channel is FBP images which act as the 
PI. After downsampling, the FBP image is the same size as 
the output of the first channel. Both the outputs are then 
concatenated and fed into the next residual blocks. The 
output of the generator is then transposed to the 2-scale 
discriminator, and the average discriminant score of the 
fine scale and the coarse scale is the final answer of the 
total discriminator. The loss function not only includes the 
classic conditional GAN but also incorporates a perceptual 
loss on the discriminator, which has been shown to be useful 
for image processing (22). The ablation experiments on the 
Zubal phantom datasets have confirmed the effectiveness 
of dual-channel generator and 2-scale discriminator. The 
experimental comparisons, in which both simulation 
and real Sprague Dawley (SD) rat datasets were used to 
compare PIGRN with classic U-Net (23) and DeepPET, 
showed substantial advantages in improving the quality and 
accuracy of the reconstructed images. We also designed an 
experiment trained with thorax slices of rats and tested with 
brain slices, with the quantitative results indicating that the 
proposed method has strong generalization ability.

This paper is organized as follows. In “Methods” 
section, the proposed method and its supporting theories 
are introduced in detail; in “Results” section, the ablation 
experiments, comparison experiments, and generalization 
experiments are described; in “Discussion” section, 
the experimental results are reported; and finally, in 
“Conclusions” section, we discuss our results and draw 
conclusions concerning our proposed method.

Methods

Problem definition

In PET imaging, the relationships between the sinogram 
and radioactivity images are normally described as follows:

y Gx e= +  [1]

where Iy R∈  denotes the sinogram data which are collected 
in the PET imaging process, Jx R∈  is the unknown activity 
image that needs to be estimated, ( )I JG R ×∈  is the system 
matrix (which is needed in the iterative algorithms), I is 
the number of lines of response, and J is the number of 
pixels in the image space. In reality, y includes not only the 
accidental coincidences, and these background events are 
summarized as e.

Therefore, the task in our project can be defined as a 
process of generating an activity map x from sinogram data 
y. This task is an obviously ill-posed optimization problem. 
Without any prior information, the estimate of x may be 
out of control. If we can find a x  that is approximate to x 
in the activity image domain, the estimate value of x can be 
within a reasonable range. The activity image xF obtained 
using FBP produces artifacts and is blurred but does provide 
the global structure of the activity image. Therefore, xF can 
be considered as x . After removing the noise out of the 
product term, we can formulate x as follows:

[ ]( ), ,x N y x p=   [2]

where N(∙) is the proposed neural network architecture, 
p is the trainable parameters, and [∙] is the concatenated 
operation which combines both the sinogram and FBP 
information.

Network structure

Inspired by the pix2pixHD framework applied in the image 
translation task, we propose the PIGRN for PET images, 
as shown in Figure 1. The entire network comprises two 
parts: a 2-channel generator and a 2-scale discriminator. 
In the generator, we have two input channels: the first is a 
raw-data channel including the sinogram and radioactivity 
images which is considered to be the ground truth, and the 
second is the corresponding preinformation. The outputs 
of the two channels are concatenated and passed by a 
series of residual blocks. After these operations, we can 
obtain the estimate PET images which are then passed to 
the discriminator. To improve the image quality in detail 
structure, the discriminator is set to be two scales: a fine 
scale and a coarse scale. Averaging the scores of the two 
scale discriminators provides the final results.

Two-channel generator
The generator has two channels: the first is fed with image 
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Conv (7×7, stride 1)−InstanceNorm−ReLU

Conv (3×3, stride 1)−InstanceNorm−ReLU

Conv (5×5, stride 1)−LReLU

Linear−Tanh Downsampling

Conv (3×3, stride 2)−InstanceNorm−ReLU

Conv-transpose (3×3, stride 1/2)−InstanceNorm−ReLU

Conv (5×5, stride 2)−InstanceNorm−LReLU

Channel-wise concatenation

Dual channel generator

True  
or  
False

Score_D2

Score_D1

Ground truth

Sinogram channel

PI channel

DT

Two-scale discriminator

3×3 Conv

InstanceNorm

ReLU

3×3 Conv

InstanceNorm

C

Figure 1 The entire PIGRN including 2 scale generators and 2 discriminators. Each discriminator has 2 layers. After averaging 2 scores, the 
discriminator is able judge the generated image as true or false. PI, prior information; DT, domain transformation; C, concatenation; Conv, 
convolutional layer; ReLU, Rectified Linear Unit; PIGRN, prior information-guided reconstruction network.

Figure 2 The basic structure of the residual blocks. Conv, 
convolut ional  layer ;  ReLU, Rect i f ied Linear  Unit ;  C, 
concatenation.

pairs, and the second is the PI channel which is fed with the 
corresponding prior information. We can adopt different 
information, such as the images generated by traditional 
methods, the attenuation correction mapping, and even 
other physical information, into the second channel to 
improve the reconstruction results. To make the network 
more universal, FBP was used in this study. For convolution 
layers, other than the first layer which use 7×7 kernels, all 
the convolution layers use 3×3 kernels and are followed by 
instance normalization and Rectified Linear Unit (ReLU) 
nonlinearities. To reduce boundary artifacts, all the padding 
layers are reflection padding.

In the first channel, we use a stride of two convolutions 
to downsample the input, which is followed by a series 
of residual blocks and then two convolutional layers with 
a half stride for upsampling. There are two benefits of 
this downsampling and upsampling operation: reducing 
the computational cost and obtaining larger effective 
receptive fields with the same number of layers. In order 
to avoid the network degradation with the deepening 
of training, several residual blocks are added. The basic 
structure is shown in Figure 2. In the second channel, we 
use the corresponding FBP images as input, which are 
obtained after domain transformation (DT). In this work, 
the FBP images are generated using the Michigan Image 
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Reconstruction Toolbox (MIRT) (24). The only task this 
channel is responsible for is downsampling the input to 
ensure the results of the two channels have the same shape. 
Rather than using the element-wise sum of the two outputs, 
channel-wise concatenation can better retain the features of 
each channel. The concatenation is followed by a series of 
residual blocks and upsampling, after which, we can obtain 
the output of the entire generator that has the same shape 
as that of the input.

Two-scale discriminator
The input of the discriminator is the concatenation of the 
ground truth and the estimated images that are generated 
from generator. In order to obtain both the global view 
and finer detail features, we use two discriminators that 
share the same network structure but operate at different 
image scales. We refer to the coarse scale discriminator as 
D1 and the fine scale discriminator which downsamples 
the images by a factor of 2 as D2. D1 and D2 are trained to 
differentiate the ground truth and estimated images at the 
coarse and fine scale, respectively. The basic structure of 
discriminators is Patch GAN (25) which does not score on 
the whole image, but on small patches. Different from that 
of the generator, the kernel size of the convolution layers 
is 5×5. All the convolution layers are followed by instance 
normalization and leaky ReLU layers.

Loss function

With the multiscale discriminators, the learning problem 
becomes a multitask problem, which can be expressed as 
follows:

( )1,2
min max ,

K
cGAN KkG D

L G D
=∑  [3]

where G  i s  the generator,  and  D k denotes  the k th 

discriminator. The classic condition GAN loss LcGAN is given 
as follows:

( ) ( ) ( ) ( )( )( ),, log , log 1 ,cGAN yy xL G D E D y x E D y G y = + −      [4]

where y is the sinogram, and x is the combination of the 
corresponding ground truth and FBP images. The loss 
function not only includes the classic condition GAN but 
also incorporates a perceptual loss on the discriminator, 
which has been shown to be useful for image processing (21). 
The pix2pixHD framework involves a feature matching loss 
that includes the perceptual loss, which can be described as 
follows:

( ) ( )
( ) ( ) ( ) ( )( ), 1

1, , ,
T

i i
F K K Ky x

i i

L G D E D y x D y G y
N

 = − ∑  [5]

where T is the total number of layers of the Patch GAN 
process, Ni denotes the number of elements in each layer, 

and ( )i
KD  denotes the ith layer of Dk. The full loss function 

then can be described as follows:

( )( )( ) ( )
1 2

1,2 1,2,
min max , ,cGAN K F Kk kG D D

L G D L G Dλ
= =

 + 
 ∑ ∑  [6]

where λ controls the weights of the two terms.

Results

Simulation datasets

In this study, we built two types of simulation datasets 
based on the Zubal phantom. The phantom was divided 
into six regions of interest (ROIs) as shown in Figure 3A. 
Figure 3B shows the image pair including the sinogram and 
the corresponding radioactivity image. ROI 6 is a tumor 
we specifically added. The simulated tracer was [18F]-
labeled fluorodeoxyglucose (18F-FDG). All the images were 

Figure 3  Zubal phantom and image pair. (A) Zubal phantom. ROI 1: gray matter; ROI 2: white matter; ROI 3: caudate; ROI 4: putamen; 
ROI 5: thalamus; ROI 6: tumor. (B) Image pairs: sinogram and the corresponding radioactivity image. ROI, region of interest.
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160×160 pixels in size.

Single-shape dataset and various-shape dataset
The single-shape dataset contained 200 sets of radioactivity 
images which had the same shape but were filled with 
different time-activity curves (TACs). The various shape 
dataset was built on 200 phantoms and was generated 
by randomly translating, rotating, and scaling the Zubal 
phantom. The TACs were calculated via the COMKAT 
toolbox after the kinetic parameters, plasma input 
function, and sampling protocol were set. The kinetic 
parameters used in each region in this simulation were 
from the existing literature on tracer dynamics (15).  
The sampling protocol was set to 3×60, 9×180, and 6×300 s. 
Each set thus contained 18 frames. All the true radioactivity 
images were then projected to the sinogram domain by using 
MIRT. The number of projection angles and detector bins 
were 160 and 128, respectively. We also added 20% Poisson 
random noise to the sinograms. After generating both 
radioactivity images and sinograms, we spliced them into 
image pairs. For the corresponding FBP images, they were 
generated with the MIRT. For the input, each sample needs 
an image pair and an FBP image. Each dataset consisted of 
200 subjects which included 200×18 image pairs and 200 
FBP images, and we randomly selected 150 subjects as the 
training dataset and the others as the testing dataset.

SD rat datasets

Animal experiments were approved by the experimental 
animal welfare and ethics review committee of Zhejiang 
University and were performed in compliance with the 
national guidelines for animal experiments and local legal 
requirements.

Whole-body dataset and organ-level dataset
We used 12 SD rats with an average age of 9 weeks and 
a weight of about 300 g with glioma in this experiment. 
The rats were injected with 18F-FDG and scanned using 
an Inveon micro-PET scanner (Siemens Healthineers). 
Each scan lasted 60 minutes, and the tracer dose was 
injected at about 37 MBq. The sampling protocol was set 
to 10×60 s, 3×300 s, and 5×420 s. Before scanning, the 
rats were fasted for at least 8 hours but could drink water. 
During the scanning, the position of the rats was fixed with 
adhesive tape, and 1% isoflurane and 1 L/mL oxygen were 
introduced into the oxygen mask to anesthetize the rats. We 
first used the single-slice rebinning (SSRB) method to rebin 

the 3D sinograms and randomly corrected them to obtain 
the 2D sinograms. For the radioactivity images, they were 
reconstructed using 3D-OSEM algorithm of the scanner 
and were subject to random correction, normalization of 
detection efficiency, and attenuation correction. For FBP 
images, the generation method was the same as that of the 
simulation dataset. Each 3D data set contained 159 slices, 
excluding the slices without effective information in the 
previous and subsequent position, we finally chose 130 
slices of each frame of data. We built two types of datasets 
in our experiments. The first was built based on the whole 
body. The second dataset was designed based on the organ 
level, and we separated the whole body into two parts: the 
brain and the thorax. We attempted to complete training 
with thorax part and to complete testing on the brain part 
to verify the ability of the algorithm to accurately generate 
unseen structures. The training set and the testing set of 
the two datasets were all divided on the individual level. For 
the whole-body dataset, nine rats were randomly selected as 
the training set, while three rats were used as the testing set. 
For the organ-level dataset, we trained our network with 
the head part of the nine rats and tested with the thorax part 
of the other three rats.

Quantitative analysis

Evaluation of the whole image
We adopted two classic metrics here for the image quality 
evaluation. The first was peak signal-to-noise ratio (PSNR), 
with a larger the value indicating a better of the image 
quality:

20 max
10PSNR log

MSE
X =  

 
 [7]

( )2

1

1 ˆMSE
n

i i
i

x x
n =

= −∑  [8]

where x  denotes the ground truth, x̂  denotes the 
reconstructed image, n is the number of all image pixels, 
and Xmax represents the maximum value of the ground truth.

Considering that PSNR is not very close to the 
perception of human eyes, we chose structure similarity 
index measure (SSIM) as the second metrics to reflect the 
similarity of luminance, contrast, and structure between two 
images. The range of SSIM is 0 to 1, the larger SSIM, the 
higher similarity,

( ) ( )( )
( )( )

ˆ ˆ1 2
2 2 2 2
ˆ ˆ1 2

2 2
ˆSSIM , x x xx

x x x x

c c
x x

c c
µ µ σ

µ µ σ σ
+ +

=
+ + + +

 [9]
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Figure 4 Loss curve of in PIGRN. G, generator; D, discriminator; PIGRN, prior information-guided reconstruction network.

where μx and x̂µ  denotes the mean value of x and x̂ , 
respectively; 2

xσ  is the variance of x; 2
x̂σ  is the variance of x̂ ; 

and ˆxxσ  denotes the covariance of x and x̂ . The parameters 
are c1=6.5025 and c2=58.5225.

Evaluation of tumor and ROIs
We calculated the tumor’s bias and variance in the 
simulation dataset as follows:

1

ˆ1Bias
n

i i

i i

x x
n x=

−
= ∑  [10]

2

1

ˆ1Variance
1

n
i i

i i

x x
n x=

 −
=  −  

∑  [11]

where n denotes the overall number of pixels in the ROI,  
ˆix  denotes the reconstructed value at voxel i, xi denotes the 

true value at voxel i, and ix  is the mean value of xi.

Implementation details and convergence of the algorithm

The network was trained for 200 epochs on an Ubuntu 
18.04 LTS server with a TITAN RTX 24G (Nvidia). 
During the experiments, we used the Adam optimizer to 
optimize the loss function with a learning rate (lr) =0.002, 

β1=0.5, β2=0.999, batch size =64, and an empirically set λ1=10 
in the loss function. The loss function curve in Figure 4  
shows the convergence of the generator and discriminator. 
It can be seen that the change of the generator tends to 
be flat around 200 epochs, which is also the reason why  
200 epochs were selected.

Ablation experiments

We designed two ablation experiments based on simulation 
datasets to verify the effectiveness of the dual-channel 
generator and 2-scale discriminator, respectively.

Validation of FBP channel based on the single-shape 
dataset
In this experiment, we examined the reconstruction 
performance based on different input, with the results being 
shown in Figure 5. Regardless of which input was used, the 
overall structure of the images was well reconstructed in 
human vision. However, for small, local ROIs, such as ROI 
3, ROI 4, ROI 5, and the tumor, the result generated by two 
channels (FBP + sinogram) was much closer to the ground 
truth. As shown in Table 1, the 2-channel input generator 
obtained the highest PSNR and SSIM with smaller standard 

 Sinogram FBP + sinogram Only FBP Only sinogram Ground truth
250

200

150

100

50

0

Figure 5 The reconstruction results with different input channels of the generator. FBP, filtered back projection.
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deviations, indicating that the network is more stable with 
the additional FBP channel. For the performance of the 
reconstruction on finer structures, we calculated the mean 
of bias and variance of each small ROI as shown in Figure 6.  

The network with the 2-channel input obtained much 
better results in detailed reconstruction. We also plotted 
the reconstruction results of the tumor (ROI 6) by frame as 
shown in Figure 7. With the FBP channel help, the network 
with the 2-channel input is highly stable and robust on 
dynamic PET images.

Validation of 2-scale discriminator based on the 
various-shape dataset
After the first ablation experiment verification, all the 
subsequent experiments were based on dual-channel input. 
To validate our network on a more complex dataset, this 
experiment was carried out on the various-shape dataset. 
Figure 8 shows the reconstruction results of different 
discriminators including D3, D2, and D1. D3, D2, and D1 
indicate the network is trained with 3-scale, 2-scale, and 

Figure 6 Quantitative results of the small ROIs over all frames. (A) The mean of bias and (B) the mean of variance. ROI, region of interest; 
FBP, filtered back projection.
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Figure 7 Quantitative results of the tumor site (ROI 6) reconstruction according to frames. (A) Bias and (B) variance. ROI, region of 
interest; FBP, filtered back projection.

Table 1 The PSNR and SSIM values of the reconstructed images 
generated with different input channels based on the single-shape 
dataset

Input PSNR SSIM

FBP 27.0235±4.4130 0.9711±0.0141

Sinogram 28.3810±3.1649 0.9771±0.0061

FBP + sinogram 29.1670±2.6810* 0.9789±0.0039*

Data are shown as mean ± SD. *, the results of the proposed 
method. PSNR, peak signal-to-noise ratio; SSIM, structure similarity 
index measure; FBP, filtered back projection; SD, standard deviation.
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1-scale discriminators, respectively. It is obvious that the 
results trained with D2 provided the best image quality 
compared with D1 and D3. For the detailed quantitative 
results, D2 also obtained the highest PSNR and SSIM with 
lower standard deviations, as shown in Table 2. Although 
it seems the image obtained using D3 has a much clearer 
edge structure than does D1, the bias and variance of the 
2 are very similar as, shown in Figure 9. We consider the 
D2 discriminator to have sufficient ability in focusing on 
both global and detailed structure reconstruction, as our 
image size is not too large. The D3 discriminator makes 
the discriminate network so complex that the quantitative 

results are not satisfactory. For the performance on tumor 
shown in Figure 10, although the variance of three types of 
discriminators are very similar, D2 involves a much lower 
bias than do the other two types. We thus adapted the 2-scale 
discriminator in the subsequent experiments.

Comparison experiments

We compared our method with two classic networks in 
medical image processing. The first was U-Net, which 
has demonstrated excellent performance in many medical 
image reconstruction tasks, not only for PET. The second 
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Figure 8 The reconstruction results with different scale discriminators. D1, 1-scale discriminator; D2, 2-scale discriminator; D3, 3-scale 
discriminator.

Table 2 The PSNR and SSIM values of the reconstructed images generated with different scale discriminators based on the various-shape dataset

Input PSNR SSIM

D1 22.9023±3.9877 0.9230±0.0427

D2 23.6658±3.2899* 0.9382±0.0309*

D3 22.7840±3.9117 0.9202±0.0441

Data are shown as mean ± SD. *, the results of the adopted structure. PSNR, peak signal-to-noise ratio; SSIM, structure similarity index 
measure; D1, 1-scale discriminator; D2, 2-scale discriminator; D3, 3-scale discriminator; SD, standard deviation.
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Figure 9 Quantitative results of the small ROIs over all frames according to different scale discriminators. (A) The mean of bias and (B) the 
mean of variance. ROI, region of interest; D1, 1 scale discriminator; D2, 2-scale discriminator; D3, 3-scale discriminator.
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Figure 10 Quantitative results of the small ROIs over all frames according to different scale discriminators: (A) the mean of bias and (B) the 
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Figure 11 The reconstruction results generated by different methods based on the various-shape dataset. The first column is the sinogram 
images, the first row shows the reconstruction results of a scaling phantom, the second row is the reconstruction results of a translating and 
scaling phantom, the third row is the reconstruction results of a rotating phantom, and the last column is the ground truth. The red arrows 
indicate the reconstruction results of the tumor. The proposed method obtained a much higher image quality compared with the other  
2 methods. FBP, filtered back projection; PIGRN, prior information-guided reconstruction network.

was DeepPET method, which is a very popular direct 
reconstruction method proposed for PET images. The 
learning rate was 0.0001, the batch size was 64, and all the 
experiments iterated 200 epochs.

Simulation experiments
Figure 11 shows the three different kinds of deformation 

phantoms that were specifically chosen to illustrate the 
reconstruction results of the comparison methods. In this 
figure, the red arrows indicate the reconstruction results 
of the tumor; as shown in the first column, for the scaling 
transform, our method provides a more approximate global 
structure and much clearer fine parts compared with the 
ground truth; as shown in the second column depicting 
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Table 3 The quantitative results of the reconstructed images generated with different methods based on the various-shape dataset

Method PSNR SSIM Bias (tumor) Variance (tumor)

U-Net 21.0616±6.1045 0.8866±0.0645 0.3871 0.0270

DeepPET 20.8910±4.1045 0.9242±0.0535 0.3519 0.0340

PIGRN 24.4137±2.9526* 0.9492±0.0239* 0.2224* 0.0448*

Data are shown as mean ± SD. *, the results of the proposed method. PSNR, peak signal-to-noise ratio; SSIM, structure similarity index 
measure; PIGRN, prior information-guided reconstruction network; SD, standard deviation.

the translating transform phantom, although the three 
methods are all able to reconstruct the basic structure, 
the radioactivity information reconstructed by the other 
two comparison methods is not accurate; in the third 
column depicting the rotating transform, the quality of the 
reconstructed images generated by DeepPET and U-Net 
are so pooled that there is not even a clear global edge. 
It can be clearly seen that PIGRN has a stronger ability 
in reconstructing the PET images that have substantial 
deformation and translation as compared with DeepPET 
and U-Net. This outstanding performance was also verified 
from a quantitative perspective, as shown in Table 3. The 
much smaller standard deviations of the proposed method 
indicate that our network is extremely stable compared with 
the other two methods. Although the variance value of the 
tumor part of PIGRN is slightly higher than that of the 
other two methods, the bias value is much lower, meaning 
our method performed better on the small structure. For 
dynamic PET images, the SSIM value and PSNR value of 
PIGRN undergoes minimal changes throughout the whole 
dynamic phase, as shown in Figure 12, which demonstrates 
our method also has good robustness.

Whole-body experiments in SD rats
We conducted an experiment to verify the performance of 
our method on real datasets. We trained on nine SD rats and 
tested with another 3. Figure 13 presents the reconstruction 
results of the different methods. In the figure, the red arrows 
indicate the reconstruction results of some fine structures. It 
obvious that the proposed method has a much higher degree 
of reduction in the reconstruction details. The reconstructed 
image of DeepPET is clear but so smooth that some 
important tiny structures are lost. U-Net only has an ability 
to reproduce a rough structure. For both these methods, the 
shape and concentration of many reconstructed regions are 
inaccurate (as indicated by the red arrows). The quantitative 
results of the three methods are summarized in Table 4. 
For both PSNR and SSIM, the values of PIGRN are much 
higher than those of DeepPET and U-Net. As the whole-
body dataset is dynamic, we could also verify the robustness 
of our method on different concentration frames, especially 
the low-concentration frames. As can be seen in Figure 14, 
the SSIM and PSNR curves varied with frames are stable, 
indicating that PIGRN is not only more accurate but also 
has strong robustness.
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Figure 12 Quantitative results of the different methods based on the various-shape dataset according to frames. (A) The mean of PSNR and 
(B) the mean of SSIM. PSNR, peak signal-to-noise ratio; SSIM, structural similarity.
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Network generalization experiments based on the  
organ-level dataset

In additional to its accuracy and robustness, we also 
evaluated the generalization ability of our network. An 
organ level dataset as described in “SD rat datasets” section 
was specifically built for this experiment. We randomly 
chose nine rats for training and the other three for testing. 
In the organ-level experiment, PIGRN was trained with 

only the thorax slices of nine rats. In the whole-body 
experiment, PIGRN was trained with the whole-body 
slices including both the thorax part and the brain part of 
the same nine rats. For comparison, the two experiments 
shared the same testing set, which was composed of the 
brain slices of the other three rats. Figure 15 presents 
the brain reconstruction results under different training 
sets. The reconstructed brain images obtained from the 
whole-body experiment and organ-level experiment are 
shown in the second column (whole-body) and the third 
column (organ-level) respectively. Comparing with organ-
level column, the brain images in the whole-body column 
are closer to ground truth. This is due to similar brain 
slices were used in the training phase of the whole-body 
experiment. While the brain images obtained in the organ-
level experiment are also very close to the ground truth, 
it suggests that PIGRN has the ability to reconstruct a 
previously unseen structure. This strong generalization 
ability was also verified by quantitative results (Table 5), 
with the PSNR and SSIM value of the two datasets being 
extremely similar.
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Figure 13 The reconstruction results generated by the different methods based on the whole-body dataset. The red arrows indicate some 
reconstructed areas of the different methods and the ground truth. PIGRN obtained a much higher image quality compared with the other 
3 methods. FBP, filtered back projection; PIGRN, prior information-guided reconstruction network.

Table 4 The PSNR and SSIM values of the reconstructed images 
generated with different methods based on the whole-body dataset

Method PSNR SSIM

U-Net 26.4909±2.1707 0.9063±0.0416

DeepPET 25.7671±2.2573 0.9060±0.0416

PIGRN 31.8498±3.0512* 0.9754±0.0127*

Data are shown as mean ± SD. *, the results of the proposed 
method. PSNR, peak signal-to-noise ratio; SSIM, structure 
similarity index measure; PIGRN, prior information-guided 
reconstruction network; SD, standard deviation.
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Discussion

PIGRN is a novel reconstruction network designed 
for PET images. The results of the experiments and 
generalization experiment based on simulation datasets 
and the SD rat dataset indicate that the proposed PIGRN 

has the ability to improve image quality with strong 
generalization ability. In addition to the accuracy and 
generalization of reconstruction, the reconstruction time 
of the algorithm is also worth noting, as this is largely 
determines whether the algorithm is feasible in clinical 
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Figure 14 Quantitative results of the different methods based on the whole-body dataset according to frame (A). The mean of PSNR and (B) 
the mean of SSIM. mPSNR, mean peak signal-to-noise ratio; mSSIM, mean structural similarity.
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Figure 15 The reconstruction results of the different training datasets. The first column shows the sinogram images, the second column 
shows the brain images reconstructed by PIGRN with training on the whole-body dataset, the third column shows the brain images 
reconstructed by PIGRN with training on the organ-level dataset, and the fourth column shows the reference images. PIGRN, prior 
information-guided reconstruction network.
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practice. We list the training times and testing times of 
the proposed method and the reference deep learning 
methods in Table 6. For the deep learning methods, the 
training time is the time spent on training the model. 
After the model has been trained, there is no need for 
further training operations, while the testing time is the 
real time for clinical image reconstruction. Although 
the training time is longer, the testing time of a single 
slice is acceptable in clinical experiments and is much 
faster than that of the traditional method FBP. The 
proposed algorithm, while ensuring accuracy, involves a 
reconstruction time that is completely within an acceptable 

range and is only a quarter of that of the FBP algorithm.
In addition to comparing our proposed network with 

other recently popular deep learning reconstruction 
algorithms, we also attempted to compare it with 
the newly proposed FBP-Net. Figure 16 presents the 
reconstruction results of both FBP-Net and the proposed 
method based on the various-shape dataset. For the 
convenience of comparison, we selected the same slices 
as those in Figure 11, and the corresponding quantitative 
results are listed in Table 7. Although the quantitative 
results of the two methods are highly similar, it can be 
clearly seen that the results from PIGRN are closer to 

Table 5 The PSNR and SSIM values of the reconstructed images 
generated with different methods based on the 2 datasets

Dataset PSNR SSIM

Whole-body 30.7769±1.8210 0.9647±0.0120

Organ-level 30.1775±1.5618 0.9629±0.0050

Data are shown as mean ± SD. PSNR, peak signal-to-noise 
ratio; SSIM, structure similarity index measure; SD, standard 
deviation.

Table 6 The training time and testing times of the different 
methods based on the whole-body dataset

Method Training time (h) Testing time (s)

FBP – 0.15

U-Net 0.5 0.008

DeepPET 2.5 0.011

PIGRN 4.17 0.039

FBP, filtered back projection; PIGRN, prior information-guided 
reconstruction network.
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Figure 16 The reconstruction results generated by FBP-Net and PIGRN based on the various-shape dataset. The first column shows the 
sinogram images, the second column shows the reconstruction results based on FBP, the third column shows the reconstruction results 
based on FBP-Net, the fourth column shows the reconstruction results based on PIGRN, and the fifth column shows the ground truth. FBP, 
filtered back projection; PIGRN, prior information-guided reconstruction network.
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the ground truth to the naked eye. Because PIGRN is 
not particularly smooth, the PSNR is higher; however, 
smoothing may not be beneficial for medical images, 
as this may overlook very small targets. Moreover, 
PIGRN has stronger portability, and the PI channel 
can incorporate different PI to assist in reconstruction. 
We look forward to verifying its other effects if richer 
data, such as additional CT images, can be obtained. 
We would like to explore three areas in future PIGRN 
reconstruction tasks:

(I) Large size images. The generator can be extended 
to multiple channels that operate at different scales. 
All the output then be concatenated and fed into 
a discriminator. For the matching generator, the 
discriminator can also be extended to multiple 
scales.

(II) Combination of multiple PI sources. For a generator 
operating on multiple channels, each channel can 
introduce a type of PI into the network. All the PI 
can then be combined for reconstruction processing.

(III) TOF-PET data. For the PET data that are 
collected from TOF-PET scanner, we can directly 
treat the attenuation correction images as the PI 
channel.

Several limitations to our work should be mentioned. 
First, a true comparison of the training time between 
PIGRN and DeepPET or U-Net was not possible, as 
the PIGRN has many more parameters. Second, our real 
dataset was based on SD rats, which are small and cannot 
truly reflect the size of the human body. Therefore, we 
eagerly to seek to evaluate our method using human 
PET data. Finally, our method only focused on 2D image 
reconstruction, as 3D projection data has to be rebinned to 

2D before training.

Conclusions

We developed a PIGRN based on cGAN for reconstructing 
PET images from both raw data and PI. PIGRN can 
ensure good reconstruction accuracy, and the network 
structure is flexible and has strong portability. The 
results of the comparison experiments and generalization 
experiment based on simulation datasets and SD rat dataset 
demonstrated that the proposed PIGRN has the ability to 
improve the image quality and has strong generalization 
ability.
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